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Foreword

Branching processes were proposed as a mathematical model for the survival
of family names as well as the evolution of species over time (generations).
Historically speaking, Francis Galton is credited with proposing the basic model
for the survival of British peerage names in the 1870s. He posed it as a problem for
solution in a London journal. It was solved, albeit incorrectly, by the Rev. Henry
Watson, using generating functions of offspring distributions and their iterates.
The correct surname extinction risk was found only 50 years later. Australian
probabilists Eugene Seneta and Christopher Heyde, however, discovered that the
French mathematician I.J. Bienaymé had derived the correct extinction probability
almost 50 years before Galton formulated the problem and suggested that the basic
model be named after all three, Bienaymé, Galton, and Watson.

The subject had major contributions from the Russian school of A.N. Kol-
mogorov and his many students in the 1940s, 1950s, and 1960s, in particular
B.A. Sevastyanov. In the United States, the work and book of T.E. Harris led to
a major growth of the field. Not only discrete time, single-type processes were
considered but many extensions so as to include continuous-time and multiple types
of individuals that were introduced. Also, in the early 1970s, Japanese and Canadian
mathematicians introduced branching processes with movement over space as well.
From the mid-1960s onwards, the subject exploded with important contributions
from many parts of the world. New books were written and results appeared on both
theory and applications.

Typically when a mathematical model for real-world phenomena is proposed and
a theory is developed, it flourishes for a while and slowly fades away. This is not the
case with branching processes. Over the last years, fundamental new contributions
have continued to appear. Several international conferences have been held, in Asia,
the United States, and in Europe, especially in Spain and Bulgaria.

Thus, the team of Dr. Inés M. del Puerto and her colleagues arranged a conference
in 2009, 2012, and again in April 2015 at the University of Extremadura in Badajoz,
Spain.
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vi Foreword

This volume presents papers from the latter event. As can be seen from the
contents, the subject stays alive and well and open to fresh ideas. Participants came
from all over the world.

Many thanks to the Extremadura team for arranging this conference and for their
hospitality to the participants.

Bangalore, India Krishna B. Athreya
Melbourne, Australia Peter Jagers
January 2016



Preface

The Workshop on Branching Processes and their Applications (WBPA) was held
during 7–10 April 2015 in Badajoz, Spain. This conference gave continuity to such
important previous meetings organized with the aim to facilitate the exchange of
research ideas in this field and related processes. The First World Congress on
Branching Processes was held in Varna (Bulgaria) in 1993 to celebrate the first 150
years of branching processes. In the last ten years, it is worth mentioning those took
place in Gothenburg (Sweden) in 2005, in Luminy (France) in 2007 and 2011, in
Beijing (China) in 2011, and in Pomorie (Bulgaria) in 2012 and 2014.

The meeting was the third in the series of WBPAs promoted and organized by the
Branching Processes Research Group belonging to the Department of Mathematics
of the University of Extremadura, Spain. It was attended by 36 invited participants
from 13 countries from all over the world. The papers presented at the workshop
maintained a healthy balance between the theoretical and practical aspects of
branching process theory, showing it to be an area of active and interesting research.
The program and abstracts are available on the conference website (http://branching.
unex.es/wbpa15/index.htm).

The Proceedings consists of 19 papers. All of them have been thoroughly
reviewed. The topics covered by the workshop have been classified into the
following areas (articles are sorted in alphabetical order by author inside each
area):

1. Coalescent branching processes
2. Branching random walks
3. Population growth models in varying and random environments
4. Size-density-resource-dependent branching models
5. Age-dependent branching models
6. Special branching models
7. Applications in epidemiology
8. Applications in biology and genetics

The first part deals with coalescent branching processes. K.B. Athreya studies,
for Galton-Watson branching trees, the exact distribution of the generation number

vii
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viii Preface

of the last common ancestor of two individuals randomly chosen in generation n
(provided there exist at least two individuals in this generation). He also studies
its asymptotic behavior when n goes to infinity. He considers four cases: explosive
(mean infinity), supercritical, critical, and subcritical. R.C. Griffiths discusses multi-
type �-coalescent processes which arise naturally from �-Fleming-Viot processes
as dual processes back in time. He considers that mutation and selection may be
modeled as happening at random in the population or in families at birth.

Branching random walks are studied in Part II. E. Antonenko and E. Yarovaya
consider a continuous-time branching random walk on a multidimensional lattice
with finite variance of jumps and a finite set of the particle generation centers, i.e.,
branching sources. They focus on the study of the evolutionary operator for the mean
number of particles both at an arbitrary point and on the entire lattice. W. Hong
and H. Wang survey branching structures within random walks. As an example of
application, the stationary distribution of a birth-and-death process with bounded
jumps is calculated.

Part III is devoted to population growth models in varying and random environ-
ments. M. Ispány analyzes strongly critical branching processes with immigration in
varying environment, obtaining a diffusion approximation when either the offspring
or the immigration variances are strictly positive, and a fluctuation limit theorem
in the case of asymptotically vanishing offspring variances. V. Vatutin presents
a survey of some recent results on the asymptotics of the survival probability,
limit theorems conditioned on survival or attaining a high level of single-type
subcritical branching processes in independent and identically distributed random
environments.

Part IV deals with size-density-resource-dependent branching models. F.T. Bruss
uses resource-dependent branching processes to model the evolution of societies.
He analyzes the implications of his (and Duerinckx) Theorem of Envelopment of
Societies, which displays that every human population (modeled by this kind of
process) will be bound, in the long run, to fluctuate between extreme society forms,
for whatever way it distributes resources in different generations. He also attracts
interest to resource-dependent branching processes as a way to model complicated
growth processes. P. Jagers and F.C. Klebaner consider a general branching process
where, at any moment, the individual birth-and-death intensities as well as the
splitting distribution can be influenced by the size and composition of the whole
population. They present special cases of this process as models for populations
evolving in habitats with finite carrying capacity and, in the multitype case, for two-
sex populations.

Part V is devoted to age-dependent branching models. O. Hyrien et al. deal
with a Sevastyanov age-dependent branching process with immigration at times
given by a time-nonhomogeneous Poisson process. This model can be used to
describe the dynamics of cell populations arising from differentiating stem cells.
They provide results on the asymptotic behavior of these processes for various
classes of immigration rates in the supercritical case. P. Trayanov uses the Crump-
Mode-Jagers branching process to model the evolution of a population. He presents
a numerical approach for projecting a population age structure and solving the
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corresponding renewal equations that give us the expected future size of the
population.

Part VI deals with Special Branching Processes. M. González et al. focus their
attention on controlled branching processes. They develop the inferential theory
for these models from a Bayesian outlook, considering a nonparametric setting
for the offspring law and a parametric one for the control distributions. They use
Markov chain Monte Carlo methods when dealing with incomplete data schemes. G.
Kersting studies criteria for the recurrence and transience of a general multivariate
stochastic process fulfilling a nonlinear stochastic difference equation similar to
the one verified by near-critical branching processes. U. Roesler gives an overview
of research on the weighted branching process. This model has many applications
in genetics, computer science, and algorithms and includes as particular cases, for
example, Biggins branching random walks, Mandelbrot cascades, and the Quicksort
process. S. Sagitov and A. Lindo consider Galton-Watson branching processes
whose reproduction laws are an extension of the two-parameter linear-fractional
family to a four-parameter family. They study this especial class of branching
processes showing that in some explosive cases the time to explosion can be
approximated by the Gumbel distribution.

Part VII comprises some applications of the branching processes theory in
epidemiology. F. Ball et al. are concerned with the use of vaccination schemes
to control an epidemic in terms of the total number of infected individuals.
They establish monotonicity and continuity properties of total progeny of Crump-
Mode-Jagers branching processes depending on vaccination level and derive, from
them, optimal vaccination polices based on the mean and quantiles of the total
number of infected individuals. F. Ball and L. Shaw consider the problem of
estimating the within-household infection rate for a Markov susceptible-infective-
recovered epidemic among a population that is partitioned into households, from
observation of the early, exponentially growing phase of an epidemic. They use the
asymptotic theory of continuous-time Markov branching processes to approach this
problem and show, by simulations, that the proposed method is feasible for realistic
population sizes.

Part VIII focuses on applications in biology and genetics. M. González et al.
introduce a multitype two-sex branching process for describing the evolution of the
number of carries of the two alleles—recessive and dominant—of a gene linked to
X-chromosome. They consider recessive pernicious alleles (responsible for a dis-
order) and study their fate in the population. Moreover, they investigate conditions
for the fixation of the dominant alleles as well as for the coexistence of both types
of alleles. M. Molina et al. deal with the extinction/survival of populations modeled
by two-sex branching processes where mating and reproduction are affected by the
number of females and males in the population. M. Slavtchova-Bojkova considers
the problem of modeling the dynamics of the number of different types of cells,
which due to a small reproductive ratio are fated to become extinct but can mutate
during the reproduction process and become a new type of cells that may escape
extinction. This problem is usual in the cancer setting. She uses a continuous-time
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age-dependent branching process to model this situation and derives the numbers of
mutant cells of the escape type and their moments.

The organizers greatly appreciate the major response from the participants to
submit contributions to the Proceedings. We also like to acknowledge the reviewers
who helped improve the papers. They would also like to thank all the people
who actively participated in organizing the workshop and those entities which
provided financial and scientific support. The main funding came from the Junta
de Extremadura, Spanish Ministry of Economy and Competitiveness (Ministerio
de Economía y Competitividad), the University of Extremadura itself, and the
local administration. The Sociedad de Estadística e Investigación Operativa (SEIO)
and the Instituto de Computación Científica Avanzada de Extremadura (ICCAEx)
supported the meeting scientifically.

Also, our very special thanks go to Professors Krishna B. Athreya and Peter
Jagers for accepting the task of writing the foreword of this book. Finally, many
thanks to the editorial office of Springer Verlag for making it possible for this project
to see the light.

Badajoz, Spain Inés M. del Puerto
January 2016 On behalf of the Editors
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Coalescent Branching Processes



Chapter 1
Coalescence in Branching Processes

Krishna B. Athreya

Mathematics Subject Classification (2000): 60J80, 60F10

1.1 Introduction: The Problem of Coalescence in Trees

Let T be a rooted tree. Let fvn1; vn2; : : : ; vnZng be the set of vertices at the nth level.
Pick two of the vni’s by SRSWOR (simple random sampling without replacement)
(assuming Zn � 2) and trace their lines of descent back in time till they meet for the
first time. Call that generation Xn.

The problems are:

a) Find the distribution of Xn.
b) Study its limit as n ! 1.

Xn is called the coalescence time.

c) Do the same with choosing k vertices out of Zn.
d) Do the same with choosing all Zn vertices out of Zn.

Clearly, the answers depend on how T is generated.

K.B. Athreya (�)
Iowa state University, Ames, IA 50011, USA
e-mail: kbathreya@gmail.com

© Springer International Publishing Switzerland 2016
I.M. del Puerto et al. (eds.), Branching Processes and Their Applications, Lecture
Notes in Statistics 219, DOI 10.1007/978-3-319-31641-3_1
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4 K.B. Athreya

1.2 The Binary Tree Case

Consider a binary tree T starting with one vertex. The tree looks like

At level n, there are 2n vertices, n D 0; 1; 2; : : :. Pick two vertices at level n by
SRSWOR. Trace their lines back till they meet. Call that generation Xn. Then, for
k D 1; 2; : : : ; n, the probability that Xn < k is,

P.Xn < k/ D
�
2k

2

�
2n�k2n�k

�
2n

2

� D 2k.2k � 1/2n�k2n�k

2n.2n � 1/ D 1 � 2�k

1 � 2�n
:

So, lim
n!1 P.Xn < k/ D 1 � 2�k, k D 1; 2; : : :. Thus, Xn converges in distribution

to geometric distribution with parameter 1
2
. Similar result is true for any regular

b�nary tree, b � 2. This suggests that a similar result must be true for a growing
Galton–Watson tree.

1.3 Galton–Watson Trees

1.3.1 Definition and the Problem

Let f pjgj�0 be a probability distribution on N
C � f0; 1; 2; : : :g, f�n;i W i � 1; n � 0g

be i.i.d. with common probability distribution fpjgj�0, Z0 be a positive integer, and
for n � 0,

ZnC1 D

8
<̂

:̂

ZnX

iD1
�n;i; n � 0 if Zn > 0;

0 if Zn D 0:
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Then fZngn�0 is called a Galton-Watson branching process with initial population
Z0 and offspring distribution fpjgj�0, and �n;i is the number of offspring of the ith
individual of the nth generation.

Now, every individual in the nth generation, n � 1, can be identified by a finite
string

un � .i0; i1; i2; : : : ; in/

meaning that this individual is the inth offspring of the un�1 � .i0; i1; : : : ; in�1/ and
u0 D i0 is the number associated with the i0th member of the 0th generation.

Let An;2 � fZn � 2g and Bn � fZn > 1g be events defined on the space of family
trees.

Consider the following questions:

3.1 a) Conditioned on An;2, pick two individuals in the nth generation by SRSWOR
and trace their lines back till they meet. Call that generation Xn;2.

What is the distribution of Xn;2?
What happens to it as n ! 1?

3.1 b) Do the same thing with k choices (2 � k < 1) by SRSWOR from the nth
generation. Call the coalescence time Xn;k. Ask the same questions.

3.1 c) Do the same thing for the whole population. Call the coalescence time Yn.
Ask the same questions.

Note that there are two sources of randomness here: one, that of the tree T being
random and two, the sampling of vertices at the nth stage.

1.3.2 Basic Results for Galton-Watson Trees

We now state some known results on branching processes.

Theorem 1.1 (Supercritical Case) Let p0 D 0, 1 < m �
1X

jD1
jpj < 1. Then

a) P.Zn ! 1 j Z0 > 0/ D 1.

b)

�
Wn � Zn

mn
W n � 0

�
is a nonnegative martingale and hence

lim
n!1 Wn � W exists w.p.1.

c)
1X

jD1
. j log j/pj < 1 implies E.W j Z0 D 1/ D 1.
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Further, in this case W has an absolutely continuous distribution on .0;1/

with a positive density. Also
P1

jD1.j log j/pj D 1 implies P.W D 0 j Z0 D 1/ D
1.

d) There always exists a sequence fCngn�1 such that

CnC1
Cn

! m and
Zn

Cn
! W w.p.1; as n ! 1;

and P.0 < W < 1/ D 1.

For proofs of a) to d) above see Athreya and Ney [7].

Theorem 1.2 (Critical Case) Let m D 1, pj ¤ 1 for any j � 1 and 0 < �2 �P1
jD1 j2pj � 1 < 1. Then

a) P.Zn ! 0 j Z0 > 0/ D 1.

b) nP.Zn > 0/ ! �2

2
as n ! 1:

c) P

�
Zn

n
> x

ˇ
ˇ
ˇ̌ Zn > 0

�
! e� 2

�2
x
; as n ! 1; 0 < x < 1:

d) For 1 � k � n, let

Vn;k �
(

Z.k/n�k;i

n � k
I.Z.k/n�k;i > 0/ W 1 � i � Zk

)

on the event fZk > 0g, where fZ.k/j;i W j � 0g is the Galton–Watson process
initiated by the ith individual in the kth generation. Let k ! 1, n ! 1
such that k

n ! u, 0 < u < 1. Then the sequence of point processes fVn;kgn�1
conditioned on fZn � 1g converges weakly to the point process

V � f�j W j D 1; 2; : : : ;Nug;

where f�jgj�1 are i.i.d. exp.2=�2/, Nu is Geom.u/, i.e., P.Nu D k/ D .1�u/uk�1,
k � 1 and f�jgj�1 and Nu are independent.

For proofs of a), b) and c) above see Athreya and Ney [7]. For d) see Athreya [4].

Theorem 1.3 (Subcritical Case) Let 0 < m < 1. Then

a) For j � 1, lim
n!1 P.Zn D j j Zn > 0/ � bj exists,

1X

jD1
bj D 1 and B.s/ �

1X

jD1
bjs

j,

0 � s � 1, is the unique solution of the functional equation

B.f .s// D mB.s/C .1 � s/ ; 0 � s � 1;
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where f .s/ �
1X

jD0
pjs

j, in the class of all probability generating functions

vanishing at 0.

b)
1X

jD1
jbj < 1 iff

1X

jD1
.j log j/pj < 1.

c) lim
n!1

P.Zn > 0 j Z0 D 1/

mn
D 1

1P
jD1

jbj

.

Let Z0 be a random variable. Then

d) If EZ0 < 1, then

lim
n!1 P.Zn D j j Zn > 0/ D bj ; j � 1

and if, in addition,
1X

jD1
.j log j/pj < 1 then

1X

jD1
jbj < 1 and lim

n!1
P.Zn > 0/

mn
D EZ0

1P
jD1

jbj

:

For proofs of a) to d) above see Athreya and Ney [7].

1.4 Coalescence Results for Galton-Watson Trees

We now present some results on coalescence for Galton-Watson trees.

Theorem 1.4 (Supercritical Case) Let p0 D 0, 1 < m < 1. Then, for almost all
trees T ,

i) for all 1 � k < 1,

lim
n!1 P.Xn;2 < k j T / � �k;2.T / exists

and �k;2.T / " 1 as k " 1.
ii) for all j � 2 and for all 81 � k < 1,

lim
n!1 P.Xn;j < k j T / � �k;j.T / exists

and �k;j.T / " 1 as k " 1.
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iii) Let p1 > 0. Then, for almost all trees T ,

Yn ! N.T /

where N.T / D maxfj � 1 W Zj D 1g. Also,

lim
n!1 P.Yn D k/ D .1 � p1/pk

1 ; k � 0:

Theorem 1.5 (Critical Case) Let m D 1, p1 < 1 and �2 D
1X

jD1
j2pj � 1 < 1,

Then, for 0 < u < 1,

i) lim
n!1 P

�
Xn;2

n
< u

ˇ
ˇ
ˇ
ˇ Zn � 2

�
� H2.u/ exists and for 0 < u < 1,

H2.u/ � 1 � E'.Nu/

where Nu is a geometric random variable with distribution

P.Nu D k/ D .1� u/uk�1 ; k � 1;

and for j � 1,

'.j/ � E

0

B
B
B
@

jP

iD1
�2i

� jP

iD1
�i
�2

1

C
C
C
A

where f�igi�1 are i.i.d. exponential r.v. with E�1 D 1.
Further, H2.�/ is absolutely continuous on Œ0; 1�, H2.0C/ D 0, and

H2.1�/ D 1.
ii) For 0 < u < 1, 1 < k < 1,

lim
n!1 P

�
Xn;k

n
< u

ˇ
ˇ
ˇ
ˇ Zn � k

�
� Hk.u/ exists

and Hk.�/ is absolutely continuous function with Hk.0C/ D 0 and Hk.1�/ D 1.

iii) For 0 < u < 1, lim
n!1 P

�
Yn

n
< u

ˇ
ˇ
ˇ̌ Zn � 1

�
D u.
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Theorem 1.6 (Subcritical Case) Let 0 < m < 1. Then

i) For k � 1, lim
n!1 P.n � Xn > k j Zn � 2/ D E�k.Y/

E k.Y/
� �k, say, where

�k.j/ D E

0

B
B
B
B
@

jP

i1¤i2D1
Zk;i1Zk;i2

� jP

iD1
Zk;i
�� jP

iD1
Zk;i � 1

�
I

 
jX

iD1
Zk;i � 1

!
1

C
C
C
C
A

and

 k.j/ D P

� jX

iD1
Zk;i � 2

�

where fZr;i W r � 0g, i D 1; 2; : : :, are i.i.d. copies of a Galton-Watson branching
process fZr W r � 0g with Z0 D 1 and the given offspring distribution fpjgj�0
and Y is a random variable with distribution fbjgj�1 where

bj � lim
n!1 P.Zn D j j Zn > 0;Z0 D 1/ which exists.

Further, if
P1

jD1 j log jpj < 1, then lim
k"1

�k D 0 and hence n � Xn conditioned

on Zn � 2 converges to a proper distribution on f1; 2; : : :g.
ii) For k � 1, lim

n!1 P.n � Yn > k j Zn � 1/ � Q�k exists and equals

E

�
1 � qY

k

mk

�
� E

�
Yqk�1.1 � qk/

mk

�

where Y is a random variable with distribution

P.Y D j/ D bj D lim
n!1 P.Zn D j j Zn > 0;Z0 D 1/

and qk D P.Zk D 0 j Z0 D 1/.
Further, if

P1
jD1 j log jpj < 1, then lim

k!1 Q�k D 0. That is, n � Yn conditioned

on fZn > 0g converges in distribution as n ! 1 to a proper distribution on
f1; 2; : : :g.

For proofs of Theorems 1.4–1.6 see Athreya [3, 4]. In what follows
d�! means

convergence in distribution.
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Theorem 1.7 (Explosive Case) Let p0 D 0, m D 1, and for some 0 < ˛ < 1, and
a function L W .1;1/ ! .0;1/ slowly varying at 1, i.e., for all 0 < c < 1,

L.cx/

L.x/
! 1 as x ! 1:

Let
P

j>x
pj

x˛L.x/
! 1 as x ! 1:

Then

i) ˛n log Zn ! � w.p.1 and P.0 < � < 1/ D 1 and � has a continuous
distribution.

ii) Let fZ.1/n gn�1 and fZ.2/n gn�1 be two i.i.d. copies of a Galton–Watson branching
process with fpjgj�1 satisfying the above hypotheses. Then, w.p.1

Z.1/n

Z.2/n

!
�
0 with prob. 1

2

1 with prob. 1
2

iii) For almost all trees T and k D 1; 2; : : :, as n ! 1,

P.Xn;2 < k j T / ! 0

and

P.n � Xn;2 < k/ ! �2.k/ exists

and �2.k/ " 1 as k " 1.
iv) For any 1 < j < 1 and k D 1; 2; : : :

P.Xn;j < k j T / ! 0 as n ! 1

and P.n � Xn;j < k/ ! �j.k/ exists and �j.k/ " 1 as k " 1.

v) Yn
d���! N.T / � maxfj W Zj D 1g < 1 and

P.Yn D k/ ! .1 � p1/p
k�1
1 ; k � 1:

The proof of Theorem 1.7 needs the following results.
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Proposition 1.1 Let fZngn�0 be a Galton–Watson branching process with offspring
distribution fpjgj�0 2 D.˛/, (domain of attraction of a stable law of order ˛), 0 <
˛ < 1, and Z0 D 1. Then,

Zk 2 D.˛k/ for all 1 � k < 1:

Proposition 1.2 Let fXigi�1 be i.i.d. random variables such that P.0 < X1 < 1/ D
1 and X1 2 D.˛/, 0 < ˛ < 1. Then

a)

nP

iD1
X2i

�
nP

iD1
Xi

�2
d����! Y˛

where Y˛ is a continuous r.v. with P.0 < Y˛ < 1/ D 1.
b) EY˛ " 1 as ˛ # 0.
c) For any j D 2; 3; : : :,

nP

iD1
Xj

i

�
nP

iD1
Xi

�j

d����! Y˛;j

and EY˛;j " 1 as ˛ # 0.

For proofs of the results in Theorem 1.7 and Propositions 1.1 and 1.2, see Athreya
[3, 4]. Here is the basic calculation:

P.Xn � k j T / D

ZkP

iD1
�Z

.k/
n�k;i
2

�

�Zn
2

�

D

ZkP

iD1
Z.k/n�k;i

�
Z.k/n�k;i � 1

�

�
ZkP

iD1
Z.k/n�k;i

��
ZkP

iD1
Z.k/n�k;i � 1

�

a) 1 < m < 1
Fix k, by Seneta–Heyde, there exists a sequence fCngn�0 of constants such

that

Z.k/n�k;i

Cn�k
! Wk;i w.p.1
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and P.0 < Wk;i < 1/ D 1. So,

P.Xn � k j T / !

ZkP

iD1
W2

k;i

�
ZkP

iD1
Wk;i

�2 w.p.1

and this can be shown to converge to 0 as k ! 1 (see [3]).
b) m D 1, fpjg 2 D.˛/, 0 < ˛ < 1.

P.n � Xn � k/ D P.Xn � n � k/

D E

0

B
B
B
@

Zn�kP

iD1
Z.n�k/

k;i

�
Z.n�k/

k;i � 1
�

Zn.Zn � 1/

1

C
C
C
A
:

This can be shown to converge to �.k/ and �.k/ " 1 as k " 1 (see [3]).
c) Similar argument for m D 1 and 0 < m < 1 (need point process result for m D 1

and Theorem 1.3, a) for 0 < m < 1).

Summary:

a) 1 < m < 1:

Xn;2
d����! a proper distribution on N

C
b) m D 1, fpjgj�0 2 D.˛/, 0 < ˛ < 1:

n � Xn;2
d����! a proper distribution on N

C
c) m D 1, �2 < 1:

i)
Xn;2

n

ˇ
ˇ
ˇ Zn � 2

d����! absolutely continuous distribution on Œ0; 1�

ii)
Yn

n

ˇ
ˇ
ˇ Zn � 1

d����! uniform distribution on Œ0; 1�

d) 0 < m < 1:
�
n � Xn;2

� ˇˇ̌ Zn � 2
d����! a proper distribution on f1; 2; : : :g

i.e.,

a) 1 < m < 1: coalescence is near the beginning of the tree.
b) m D 1, fpjgj�0 2 D.˛/, 0 < ˛ < 1: coalescence is near the present.
c) m D 1, �2 < 1: Xn;2 is of order n.
d) 0 < m < 1: Xn;2 is near the present.
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1.5 Application of Coalescence Results to Branching
Random Walks

Let T be a Galton-Watson tree with Z0 D 1 and offspring distribution fpjgj�0.
Impose on this tree T the following movement structure:

If an individual is at x in R and has k children then these k children move to
x C Xk;j, j D 1; 2; : : : ; k, where Xk � .Xk;1;Xk;2; : : : ;Xk;k/ has a joint distribution
�k.�/ on R

k.
Also, assume that the random vector Xk is stochastically independent of the

history up to that generation as well as the movement of the other individuals of
that generation.

Let Zn be the number of individuals in the nth generation and 	n � fxn;i W 1 �
i � Zng be the positions of the Zn individuals of the nth generation.

A problem of interest is what happens to the point process 	n as n ! 1.
In what follows, let Zn.x/ be the number of Xn;i less than or equal to x, for 1 �

i � Zn, i.e., Zn.x/ � PZn
iD1 I.Xn;i � x/.

1.5.1 Supercritical Case

Theorem 1.8 (Athreya [2]) Let p0 D 0, 1 < m < 1 and �k be such that fXk;i W
i D 1; 2; : : : ; kgk�1 are identically distributed.

a) Let EXk;1 D 0 and EX2k;1 D �2 < 1. Then, for all y 2 R,

Zn.
p

n�y/

Zn
! ˚.y/ (the standard N.0; 1/ cdf)

in mean square.
b) If Xk;1 2 D.˛/, 0 < ˛ � 2, then there exist sequences fangn�1 and fbngn�1 such

that

Zn.an C bny/

Zn
! G˛.y/ in mean square,

where G˛.�/ is a standard stable law cdf (of order ˛).
c) In a), if Yn is the position of a randomly chosen individual from the nth generation

with uniform distribution, then, for all y 2 R,

P.Yn � p
n�y/ ! ˚.y/

and similarly for b).
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The proof depends on the fact when p0 D 0 and 1 < m < 1, the coalescence
time Xn;2 is way back in time and so the positions of two randomly chosen
individuals in the nth generation are essentially independent and have the marginal
distribution of a random walk at step n. For full proof see Athreya [2].

1.5.2 Explosive Case

Theorem 1.9 Let m D 1, fpjgj�0 2 D.˛/, 0 < ˛ < 1. Let fXk;i W 1 � i � kgk�1 be
identically distributed. Let EXk;1 D 0 and EX2k;1 D �2 < 1. Then, for each fixed y
in R,

Zn.
p

n�y/

Zn

d����! ıy

where ıy is Bernoulli.˚.y//, i.e.

ıy D
�
1; with prob. ˚.y/
0; with prob. 1 �˚.y/

The proof is based on the fact that

E

 
Zn.

p
n�y/

Zn

!k

! ˚.y/ for k D 1; 2:

This, in turn, is due to the fact that Xn;2, the coalescence time for any two individuals
chosen at random from the nth generation is such that n � Xn;k converges to a proper
distribution (Theorem 1.7) and hence their positions differ only by an amount that
converges in distribution.

This can be strengthened to joint convergence of the finite dimensional distribu-
tion of

�
Zn.

p
n�y/

Zn
; i D 1; 2; : : : ; k;�1 < y < 1

�
:

Theorem 1.10 Under the hypothesis of Theorem 1.9,

a) for any �1 < y1 < y2 < 1,

�
Zn.

p
n�y1/

Zn
;

Zn.
p

n�y2/

Zn

�
d����! �

ı1.˚.y1//; ı2.˚.y2//
�

which takes values .0; 0/, .0; 1/ and .1; 1/ with probabilities 1�˚.y2/, ˚.y2/�
˚.y1/ and ˚.y1/, respectively.
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b) for any �1 < y1 < y2 < : : : < yk < 1,

�
Zn.

p
n�yi/

Zn
W 1 � i � k

�
d����! �

ı1; : : : ; ık

�

where each ıi is 0 or 1 and further ıi D 1 ) ıj D 1 for j � i and

P.ı1 D 0; ı2 D 0; : : : ; ıj�1 D 0; ıj D 1; : : : ; ık D 1/

D P.ıj�1 D 0; ıj D 1/ D ˚.yj/� ˚.yj�1/:

For proofs of Theorems 1.9 and 1.10, see Athreya and Hong [5].

Theorem 1.11 If Yn is the position of a randomly chosen individual in the nth
generation, then in all cases (as long as p0 D 0), given the tree T , for all y 2 R,

P.Yn � p
n�y j T / d����! ıy � Bernoulli.˚.y//

This is so since

P.Yn � p
n�y j T / D Zn.

p
n�y/

Zn

and this in turn implies, for all y 2 R,

P.Yn � p
n�y/ ! ˚.y/:

Remark 1.1 Theorem 1.8 holds under the following weaker assumption about
�k, the distribution of .Xk;1;Xx;2; : : : ;Xk;k/, that does not require fXk;1gk�1 to be
identically distributed. It suffices to assume:

i) For k � 1, .Xk;1;Xx;2; : : : ;Xk;k/ has a distribution that is invariant under
permutation.

ii) If fpkgk�1 is the offspring distribution with

1X

kD1
pkEX2k;1 < 1; 1 < m D

1X

kD1
kpk < 1; p0 D 0:

Now let 
 D
1X

kD1
pkEXk;1 < 1, �2 D P1

kD1 pkEX2k;1 � 
2.
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Theorem 1.12 Let 	n � fxn;1; xn;2; : : : ; xn;Zn g be as in Theorem 1.8. Under the
above assumptions, the following holds: for y 2 R,

Zn.n
C y�
p

n/

Zn
� 1

Zn

ZnX

iD1
I.xn;i � n
C y�

p
n/

! ˚.y/ in mean square.

1.5.3 Application to Energy Cascades

Consider a particle that under goes fission. Assume each particle spits into a random
number of new particles with distribution fpkgk�1. Assume that the energy x of
the parent is split to fxYk;1; xYk;2; : : : ; xYk;kg for each of the offspring particle if the
parent splits into k offspring particles. Then the energy en;In of a particle In in the
nth generation can be represented as

x0Yu1Yu2 : : : Yun

where un, un�1,: : :, u1 are the addresses of the individual In and its ancestors and x0
is the energy of the ancestor 1.

Assume Yui ’s are independent. Clearly, the distribution of Yui depends on the
number of offspring of individual ui�1 and

n
log en;In ; In 2 nth generation

o

is a branching random walk.
So, from Theorem 1.12, one gets the following.

Theorem 1.13 Let fXk;i � log Yk;i W 1 � i � kgk�1 and fpkgk�1 satisfy the
conditions of Theorem 1.12. Then, for y 2 R, as n ! 1,

Zn.n
C y�
p

n/

Zn
� 1

Zn

ZnX

iD1
I.log en;i � n
C y�

p
n/

! ˚.y/ in mean square.
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1.6 Scaling Limits of Bellman-Harris Processes with Age
Dependent Markov Motion: Supercritical and Critical
Cases

Suppose we are given:

i) an offspring distribution fpjgj�1 on N
C,

ii) a lifetime distribution G.�/ on .0;1/ and non-lattice,
iii) a real-valued Markov process �.�/ on Œ0;1/ with �.0/ D 0.

First, generate a Bellman-Harris tree T with offspring distribution fpjgj�0 and
lifetime distribution G.�/ and an initial population at t D 0 of size Z0.

Now, suppose that the initial population is located at x0;i, i D 1; 2; : : : ;Z0 and
with ages a0;i, i D 1; 2; : : : ;Z0.

Assume each individual moves during its lifetime of length L according to
Markov process fx C �.t/ W 0 � t � Lg.

That is, if an individual is born at time � and at location x and has lifetime L, then
its movement

˚
X.t/ W � � t < � C L

�

is distributed as

˚
x C �.t � �/ W � � t < � C L

�

where f�.�/g is a real-valued Markov process on Œ0;1/ with �.0/ D 0.
Assume that, for each individual, the lifetime L, the number of offspring � and

the movement process �.�/ are independent and the triplets .L; �; �/ over all the
individuals in the tree are i.i.d.

Let Zt be the population size at time t and

Ct � ˚
.at;i; xt;i/ W 1 � i � Zt

�

be the age and position configuration of all the individuals alive at time t.
The object of study is the point process fCt W t � 0g.

Theorem 1.14 (Supercritical Case (Athreya et al. [8])) Let p0 D 0, 1 < m < 1.
Let E�.0/ � 0, v.t/ � E�2.t/ < 1, sup

0�s�t
v.s/ < 1 and

 ˛ �
Z

Œ0;1/

e�˛sv.s/dG.s/ < 1
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where 0 < ˛ < 1 is the Malthusian parameter defined by

m
Z

Œ0;1/

e�˛sdG.s/ D 1:

Let .at;Xt/ be the age and position of a randomly chosen individual at time t.
Then

a)

�
at;

Xtp
t

�
d����! .U;V/

where U and V are independent and U has pdf proportional to e�˛x
�
1 � G.x/

�

on .0;1/ and V is N

�
0;
 ˛


˛

�
where 
˛ D m

Z 1

0

xe�˛x
�
1 � G.x/

�
dx.

b) Let

Yy.A � B/ D 1

Zt

ZtX

iD1
IA�B

�
at;i;

xt;ip
t

�

be the scaled empirical measure of Ct � ˚
.at;i; xt;i/ W 1 � i � Zt

�
.

Then, Yt
d����! .U;V/, where U and V are as in a).

The proof of this depends on the following results of independent interest.

Proposition 1.3 Let Mt be the generation number of a randomly chosen individual
from Zt (those alive at time t). Let fLt;i W 1 � t � Mtg be the lifetimes of the ancestors
of this individual. Then

a) as t ! 1,

Mt

t
! 1


˛
w.p.1.

b) for any h W Œ0;1/ ! R Borel measurable and
Z

Œ0;1/

jh.x/je�˛xdG.x/ < 1,

0 < ˛ < 1,

P

�ˇˇ
ˇ
ˇ
1

Mt

MtX

iD1
h.Lt;i � c˛.h/

ˇ
ˇ
ˇ
ˇ > �

�
! 0 as t ! 1:

where c˛.h/ D m
Z

Œ0;1/

h.x/e�˛xdG.x/.
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Both these results depend on a size-biasing estimate of a large deviation result,
namely,

Proposition 1.4 Let fN.t/ W t � 0g be a renewal process generated by G. Let

1 < m < 1 and ˛ be the Malthusian parameter, i.e., m
Z

Œ0;1/

e�˛xdG.x/ D 1.

Then, for 8� > 0,

e�˛tE

�
mN.t/I

�ˇˇ
ˇ
ˇ
N.t/

t
� 1


˛

ˇ
ˇ
ˇ
ˇ > �

��
D 0

where 
˛ D m
Z 1

0

xe�˛xdG.x/.

Note that since

N.t/

t
! 1



w.p.1

where 
 D
Z

Œ0;1/

xdG.x/, the event

ˇ
ˇ̌
ˇ
N.t/

t
� 1


˛

ˇ
ˇ̌
ˇ > �

is an event of large deviation.

Theorem 1.15 (Critical Case) Let m D 1,
1X

jD1
j2pj < 1, E�.t/ � 0, v.t/ D

E�2.t/ < 1, sup
0�s�t

v.s/ < 1, 8t, and

 D
Z

Œ0;1/

v.s/dG.s/ < 1:

Let At � fZt > 0g. Then, conditioned on At, the random vector

�
at;

Xt

t

�

for a randomly chosen individual converges as t ! 1 in distribution to .U;V/

where U and V are independent with U having a pdf
1




�
1 � G.�/� on .0;1/ and

V � N
�
0;

 




�
.
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Theorem 1.16 Assume the hypothesis of Theorem 1.15. Then, conditioned on At �
fZt > 0g, the empirical measure

Yt.A � B/ � 1

Zt

ZtX

iD1
IA�B

�
at;i;

Xt;ip
t

�

converges as t ! 1 in distribution to a random measure 
 characterized by its
moment sequence

mk.'/ � E
�h
; 'i�k

where ' 2 CC
b .R

C � R/.

The mk.'/ can be expressed in terms of the coalescence times of k randomly
chosen individuals alive at time t.

The proof depends on the following results.

Proposition 1.5 Let m D 1,
1X

jD1
j2pj < 1, G.�/ non-lattice. Then

i) 8 � > 0

P

�ˇ
ˇ
ˇ
Mt

t
� 1




ˇ
ˇ
ˇ > �

ˇ
ˇ
ˇ
ˇZt > 0

�
! 0 as t ! 1:

ii) the coalescence time �2;t of two randomly chosen individuals from time t
(conditioned on Zt > 0) satisfies

lim
t!1 P

�
�2;t

t
� x j Zt > 0

�
D H.x/ exists

for all 0 � x � 1.
iii) A similar result for the convergence of coalescence of k individuals.

1.7 Some Extensions and Open Problems

The results in Sect. 1.4 are for the coalescence problem for discrete time single type
Galton-Watson processes. Some extension of these have been obtained by J-I Hong.
For the discrete time multitype branching processes, the coalescence problem has
been addressed in J-I Hong’s Ph.D. thesis in the mathematics department, Iowa State
University. Some of these results appear in Athreya and Hong [6] and Hong [11].
Some open problems are as follows.
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Problem 1 The problem is fully open in the multitype case when the means
of offspring in one generation are not finite. In particular, the explosive case
results of Athreya (Theorem 1.7) for the single type case need to be formulated
and established for the multitype case. First one has to establish an analog of
Theorem 1.7 i) and ii).

Problem 2 The problem of extending the results of Sect. 1.4 to the age dependent
supercritical and subcritical cases (i.e. Bellman-Harris-Sevastyanov processes) has
been addressed in the papers by Hong [10] and [12]. The critical and explosive cases
are open.

Problem 3 The problems of extending the results for branching random walks in
Athreya and Hong [5] to the multitype discrete time explosive case as well as single
type Bellman-Harris explosive case are open.

Problem 4 Athreya and Hong [5] have established the finite dimensional conver-
gence of the normalized position process in the discrete type single type both in the
supercritical and explosive cases. The week convergence in the Skorokhod space is
open. Only tightness needs to be established.

Problem 5 The corresponding problem (as in Problem 4) for the multitype and
Bellman-Harris explosive cases are also open.

Problem 6 Athreya et al. [8, 9], and Hong [12] have established some results for the
normalized position process for branching Markov processes for supercritical and
critical Bellman-Harris cases using same idea from coalescence. The corresponding
problem for the explosive case is fully open.

Some more open problems may be found in Lambert [14] and Legall [15]. Also
see the works presented at the workshop by Professors Abrahms and Delmas [1],
and Kersting (see http://branching.unex.es/wbpa15/index.htm) [13].
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Chapter 2
A Multi-Type �-Coalescent

Robert C. Griffiths

Mathematics Subject Classification (2000): 60J80, 60J75, 92D15

2.1 Introduction

The�-coalescent is a random tree back in time which has multiple merger rates for
a specific 2 � k � n edges coalescing while n edges in the tree of

�nk D
Z 1

0

xk.1 � x/n�k�.dx/

x2
; k � 2; (2.1)

where � is a non-negative measure on Œ0; 1�. After coalescence there are n � k C 1

edges in the tree. The form of the rates (2.1) is necessary for a consistency condition
that a subtree of m individuals chosen at random from a larger sample of individuals
is distributed as a �-coalescent tree with the same rates (2.1). The process is often
regarded as having a state space on the set of partitions˘1 of the positive integers.
The leaves of an infinite-leaf �-coalescent tree at time t D 0 are labelled with
singleton sets f1g; f2g; : : : and edges at time t are labelled by sets in ˘1.t/. The
number of blocks at time t is the number of sets in the partition ˘1.t/, denoted by
j˘1.t/j, which is the same as the number of edges in the tree at time t. If there are
n edges at time t, and k merge at tC, then a new partition is formed by taking the
union of the k partition blocks in the merger for the parent block at tC. This occurs
at rate �nk. The �-coalescent is said to come down from infinity if for all t > 0,

R.C. Griffiths (�)
University of Oxford, 1 South Parks Road, Oxford, UK
e-mail: griff@stats.ox.ac.uk

© Springer International Publishing Switzerland 2016
I.M. del Puerto et al. (eds.), Branching Processes and Their Applications, Lecture
Notes in Statistics 219, DOI 10.1007/978-3-319-31641-3_2

23

mailto:griff@stats.ox.ac.uk


24 R.C. Griffiths

P.j˘1.t/j < 1/ D 1, which is equivalent to an infinite-leaf �-coalescent tree
at t D 0 having a finite number of edges at any time t > 0 back with probability
1. The �-coalescent process was introduced in [5, 9, 11] and has been extensively
studied [1, 10]. Bertoin and Le Gall [2] showed that the �-coalescent comes down
from infinity under the same condition that the continuous state branching process
becomes extinct in finite time, that is when

Z 1

1

dq

 .q/
< 1;

where the Laplace exponent

 .q/ D
Z 1

0

�
e�qy � 1C qy

�
y�2�.dy/:

The coalescent process is a moment dual to the �-Fleming-Viot process. See for
example [6]. There is a distinction between an untyped coalescent process and a
typed process such as in [7].

The simplest form of a d-dimensional generator equation of a �-Fleming-Viot
process fX.t/gt�0 is

L�g.x/ D
Z

Œ0;1�

X

i2Œd�
xi .g.x.1 � y/C yei/ � g.x//

�.dy/

y2
(2.2)

where Œd� D f1; 2; : : : ; dg and g 2 C2.Œ0; 1�/. X.t/ is a vector of relative frequencies
of the d types at time t in a population. If � has no atom at zero then the process is
a jump process where, reading from the generator equation, an individual of type i
gives birth with probability xi, and has y offspring at rate �.dy/=y2. The total jump
rate

R
Œ0;1�

�.dy/=y2 may be finite or infinite. The frequencies are then rescaled to add
to 1. A general reference is [3]. If � has an atom of a at zero then fX.t/gt�0 has a
Wright-Fisher diffusive component with part of the generator

a

2

X

i;j2Œd�
xi.ıij � xj/

@2

@xi@xj
:

Griffiths [8] shows the following representation for the generator (2.2). Let � D F
be a probability measure, V be a uniform random variable on Œ0; 1�, U a random
variable on Œ0; 1�with density 2u; 0 < u < 1 and W D YU, where Y has distribution
F and V;U;Y are independent. Denote the first and second partial derivatives of a
function g.x/ in C2.�/, � D fx W xi � 0; x1 C � � � C xd D 1g, by gi.x/ and gij.x/,
i; j 2 Œd�. Then

LFg.x/ D 1

2

dX

i;jD1
xi.ıij � xj/E

h
gij
�
x.1 � W/C WVei

�i
;



2 A Multi-Type �-Coalescent 25

where expectationE is taken over V;W. The probabilistic connection with a Wright-
Fisher process is not clear. Mutation may be considered to occur at random in the
population. If mutation is parent independent with rates �i to type i, i 2 Œd�, then
a generator equation for the process is (2.2) with an additional term

P
i2Œd�.�i �

j�jxi/gi.x/ added. If mutation occurs within families on reproduction then a multi-
type process arises with different reproduction measures depending on the parents’
type. These measures are multi-type, instead of the single type measures in (2.2).
There are two different ways to approach adding selection as well, either within the
population independently of reproduction, or in families on reproduction.

This paper is a review paper containing a selection of material from [4, 7]
explaining multi-type Lambda–Fleming–Viot processes and their dual coalescent
processes with mutation and selection without detail of proofs.

2.2 Duality

The simplest duality between the Fleming–Viot process with generator L� and
the �-coalescent occurs considering the genealogy back in time of a sample of �
individuals of the same type. Duality in a typed sample is more complex because
in a model with no mutation coalescence can only occur between individuals of the
same type. The duality is weak duality via a generator equation. To see how this
works consider L� acting on x�1.

L�x�1

D
Z

Œ0;1�

	
x1
�
x1.1 � y/C y

�� C .1 � x1/
�
x1.1 � y/

�� � x�1


 �.dy/

y2

D
Z

Œ0;1�

0

@
�X

kD2

 
�

k

!

yk.1 � y/��kx��kC1
1 ��1 � .1 � y/� � �y.1 � y/��1

�
x�1

1

A�.dy/

y2

D L�x�1;

where L� is a generator acting on functions of � 2 ZC of a process f�.t/gt�0 back
in time which has rates

q�;��kC1 D
Z

Œ0;1�

 
�

k

!

yk.1 � y/��k�.dy/

y2
; k D 2; : : : ; �

q�;� D �
Z

Œ0;1�

�
1 � .1 � y/� � �y.1 � y/��1

��.dy/

y2
:
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These are the same rates as (2.1). The duality equation is

Ex1

�
X1.t/

�
� D E�

�
x�.t/1

�
;

with X1.0/ D x1, �.0/ D � and where expectation on the left is with respect to X1.t/
and on the right with respect to �.t/.

2.2.1 Duality with a Stationary Measure

If there is a stationary measure for a process then a particular technique can be used
to find a typed dual process. Let fX.t/gt�0 be a d-dimensional Markov process with
generator L such that E

�
Lf
�
X.t/

�� D 0, under a stationary measure, for all suitable
functions f in the domain of the generator. Let f�.x/ be test functions that will be
used to construct a dual. For example

f�.x/ D
Y

j2Œd�
x
�j

j ; � 2 Z
dC:

Scale by taking

g�.x/ D f�.x/

E
�
f�.X/

� ; (2.3)

where expectation is taken in the stationary distribution of X. Rearrange the
generator equation as

Lg�.x/ D
X

�

q.�;�/
�
g�.x/� g�.x/

�
(2.4)

so that q.�;�/ � 0, � ¤ �. Set q.�;�/ D �P�¤� q.�;�/, then Q is a rate
matrix of a dual process f�.t/gt�0. The scaling (2.3) is critical in allowing the
construction (2.4). The dual equation is

Ex
�
g�.X.t/

� D E�

�
g�.t/.x/

�

with expectation taken on the left forward in time with respect to X.t/, with X.0/ D
x and on the right backward in time with respect to �.t/, with �.0/ D �.
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For example consider the generator (2.2) with the addition of parent independent
mutation occurring independently from reproduction in the population. The gener-
ator is then specified by

Lg.x/ D
Z

Œ0;1�

X

i2Œd�
xi .g.x.1 � y/C yei/� g.x//

�.dy/

y2

C
X

i2Œd�
.�i � �xi/

@

@xi
g.x/;

where � D P
i2Œd� �i. A stationary measure exists although its form is unknown.

Denote x� D Q
i2Œd� x

�i
i . The sampling distribution in a stationary population will be

denoted by

M.�/ D E

" 
j�j
�

!

X�

#

:

Test functions for the dual process are

g�.x/ D x�

E
�
X�
� D

�j�j
�

�
x�

M.�/
:

Then

Lx� D
Z

Œ0;1�

X

i2Œd�
xi

 

.xi.1 � y/C y/�i.1 � y/j�j��i x��ei�i � x�

!
F.dy/

y2

C
X

i2Œd�
.�i � �xi/�ix��ei

D
Z

Œ0;1�

X

i2Œd�

X

l�2

 
�i

l

!

yl.1 � y/j�j�l F.dy/

y2
x��ei.l�1/ C

X

i2Œd�
�i�ix��ei

�
2

4
Z

Œ0;1�

X

i2Œd�

	
1 � .1 � y/j�j � j�jy.1� y/j�j�1


 F.dy/

y2
C � j�j

3

5 x�

(2.5)
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The dual system f�.t/gt�0 is read off from (2.5) as a multi-type death process with
rates for l � 2 of

q.�; � � ei.l � 1// D �i C 1 � l

j�j C 1 � l

Z

Œ0;1�

 
j�j
l

!

yl.1 � y/j�j�l F.dy/

y2

� M.� � ei.l � 1//
M.�/

;

q.�; � � ei/ D �ij�jM.� � ei/

M.�/
: (2.6)

Mutations occur at random on coalescent lines in the dual process.
Models with selection are more involved and lead to coalescing branching dual

processes back in time.

2.3 Multi-type Moran Model with Viability Selection

Sample path duality is easier to see in a Moran model where there is an explicit
construction. There is a fixed population of N individuals with a type space of
Œd�. Reproduction events occur at rate �. On reproduction a juvenile offspring are
produced with probability distribution fraga2ŒN�1�.

The distribution of the numbers of types B which survive to maturity from a
juvenile offspring of a type i parent is fQia.B/g. The probability that a type i parent
produces B mature offspring is then

pi.B/ D
N�1X

aDjBj
raQia.B/: (2.7)

jBj individuals are chosen to be killed, excluding the parent. This is viability
selection and mutation where offspring are thinned according to Qia.�/.

Two possible biological models which incorporate mutation and selection are the
following:

1. Mutation occurs independently to juvenile offspring according to a d � d type
transition matrix U. Mutation is followed by viability selection to form the
mature offspring B.

2. Selection occurs at the parental level, reducing the a juvenile offspring to b � a.
Mutation then occurs according to a type transition matrix U to form the mature
offspring B, with jBj D b.

An emphasis is given to the first model in this paper. The Moran model does not
know the internal mechanism of reproduction. It only sees multi-type reproduction
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described by pi.B/, so while viability selection is used as a mechanism here, other
mechanisms, such as fecundity selection, may give the same probabilities pi.B/. The
hypergeometric distribution of a sample � , with j�j fixed, taken at random without
replacement from a population configuration z, will be denoted by

H.� j z/ D
Q

j2Œd�
�zj
�j

�

� jzj
j�j
� :

The generator of the process fZ.t/gt�0 acting on a function f .z/; z 2 Z
dC; jzj D N is

Lf .z/ D �
X

R.i;B;�/

zi

N
pi.B/H.� j z � �/

�
f .z C B � �/� f .z/

�
;

with summation over the region

R.i;B;�/ D ˚
i 2 Œd�;B 2 �N�1;� 2 �N�1; j� j D jBj�;

where the notation�k D f� 2 Z
dC; j�j � kg, k 2 ZC, is used.

2.3.1 Dual Process in the Moran Model

Real and virtual births have to be taken into consideration to obtain a proper dual
process back in time. In a reproduction event:

a juvenile offspring �!
(

B mature offspring: real births

a � jBj juveniles killed: virtual births:

There is a rule for adding virtual lineages corresponding to branching in the
genealogy that a parental line should be added if the parent has no real offspring,
but at least one virtual offspring placed in ancestral lines. An example is shown in
Fig. 2.1.

There are two types in the diagram represented by N and 	. Time runs down
the diagram. The dual process genealogy of a sample of 5 N and 2 	 individuals
is followed back in time. Black lines of N type and dashed black lines of 	 type
belong to the genealogy of the sample. Gray lines are not part of the genealogy of the
sample. Black arrows represent births of N type, and dashed black arrows represent
births of 	 type. Virtual births are represented by dotted arrows. The first event
back in time is a birth event from a N parent which has a 	 birth not affecting the
sample genealogy, and a virtual birth which attempts to replace an individual in the
sample genealogy. The parent lineage then must be added to the sample genealogy.
The next event is a birth event from a 	 parent which has two births of type 	,
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Fig. 2.1 A dual �-branching-coalescing graph back in time

Fig. 2.2 Branching-coalescing graph

two births of type N and a virtual birth. Following which lines are replaced there
is a coalescence of three 	 lines and two N lines. Finally there are four type N and
one type 	 ancestors of the sample. A branching-coalescing graph back in time is
extracted from the ancestral lines, shown in Fig. 2.2.

Let Z.t/ be the number of individuals of the d types at time t � 0 in the Moran
model with viability selection. The dual process counting lineages of different types
is f�.t/gt�0. Assume a stationary distribution exists for Z.t/. This occurs if there is
recurrent mutation between types. Let H.�/ be the stationary sampling distribution

H.�/ D E

"�Z1
�1

� � � � �Zd
�d

�

� N
j�j
�

#

where expectation is over Z.
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Theorem 2.1 (Birkner et al. [4]) fZ.t/gt�0 is dual to the process f�.t/gt�0 in �N

with non-zero multi-type coalescence rates q.�; � C ei � l/ and branching rates
q.�; � C ei/.

The transition � ! � C ei � l occurs when forward in time a type i parent has l
real offspring in the ancestral lines. The parent can be inside or outside the ancestral
lines. The transition � ! �Cei occurs when at least one virtual, but no real offspring
are in the ancestral lineages. The transition rates are combinatorial but simplify in a
limit model. The rates in Theorem 2.1 are

q.�; � C ei � l/ D �

2

4
X

B2�N�1

pi.B/H.l j B C ei/

�j�j
jlj
�� N�j�j

jBjC1�jlj
�

� N
jBjC1

�

3

5

� H.i; � � l/
H.�/

;

q.�; � C ei/ D �

N
.N � j�j/p�

i;j�j � H.i; �/
H.�/

;

where 0 < l � �, l ¤ ei, jlj � 1.

H.i; �/ D �i C 1

j�j C 1
H.� C ei/

denotes the probability that the parent chosen in a reproduction event is of type
i and a sample of size j�j from the remaining individuals in the population has
configuration �. The dual equation is based on falling factorial moments. Denote
zŒn� D z.z � 1/ � � � .z � n C 1/ and take

g�.z/ D
Qd

jD1 ziŒ�i�

E
�Qd

jD1 ZiŒ�i�

� :

The duality equation is

EZ.0/

h
g�.0/

�
Z.t/

�i D E�.0/

h
g�.t/

�
Z.0/

�i
;

where the expectation on the left is with respect to the distribution of Z.t/ and on
the right is with respect to the distribution of �.t/. The probability that a type i
parent has no real, but at least one virtual offspring in � ancestral lines is p�

ij�j. These
probabilities depend on the details of viability selection. Let

p�
ij�jjBj D

X

k2ŒN�1�
rkvikjBj

( �N�1�j� j
jBj

�

�N�1
jBj
� �

�N�1�j� j
k

�

�N�1
k

�

)

I
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the probability that there are jBj offspring, of which no real offspring replace
individuals in ancestral lineages; then

p�
ij�j D

N�1X

jBjD0
p�

ij�jjBj;

where

vikjBj D
X

fB2�N�1;jBj fixedg
Qik.B/

is the probability, irrespective of offspring types, that k juvenile offspring from a
type i parent survive to jBj mature offspring. Then

pi.jBj/ D
X

k2ŒN�1�
rkvikjBj:

An identity is

p�
ij�j D

X

jBj2ŒN�1�

�
rjBj � pi.jBj/�

 

1 �
�N�1�j�j

jBj
�

�N�1
jBj
�

!

:

Rates in the dual process contain Bayes’ factors

� ! � � l C ei I H.i; � � l/=H.�/

� ! � C ei I H.i; �/=H.�/

because of typed lines and time progressing backward. The duality in Theorem 2.1
is a weak duality because it is argued by rearranging the generator acting on
factorial moments, however if virtual births are included in a forward model then
the duality is a strong duality in that given a path of f�.t/g the path of fZ.t/g
can be reconstructed as a line diagram up to permutations of the lines. The rates
in Theorem 2.1 can then be argued in a probabilistic way. Virtual births must be
included in the forward sample paths so there is a unique dual sample path back
in time for each forward sample path. The rate q.�; � C ei � l/ is � times the
probability that given a sample configuration �, that it arose through a reproduction
! mutation ! selection event that left a configuration of B mature offspring and
a total configuration of l from the parent and B mature offspring are in the sample.
Multiple mergers occur because a parent produces multiple offspring types. The
rate q.�; � C ei/ reflecting selection is � times the conditional probability, given a
sample with configuration �, that a type i parent was chosen, the parent lies outside
the sample, and at least one non-viable arrow head but no viable arrow head fell
within the sample. The parental line is then added as a virtual lineage.
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2.4 Multi-type �–Fleming–Viot Process with Mutation and
Selection

An analogy to the multi-type Moran model is a �–Fleming–Viot process where an
individual of type i is chosen to reproduce with probability xi and has a proportion of
multi-type offspring y with rate Gi.d y/=j yj2, where Gi are sub-stochastic measures.
The model includes mutation and selection in the measures Gi. The generator is
described for g 2 C2.�dı/ by

Lmtg.x/ D
Z

�d

X

i2Œd�
xi .g.x.1 � j yj/C y/ � g.x//

Gi.d y/
j yj2 ; (2.8)

where �d D f y 2 R
dCI j yj � 1g, �dı D fx 2 R

dCI jxj D 1g.
R
�d Gi.d y/=j yj < 1

is required for the generator to be well defined. A stationary distribution exists if
the multi-type offspring distribution is recurrent. An analogy to a viability structure
in the Moran model is to assume that there exists a probability measure F on Œ0; 1�
and sub-stochastic viability measures Vi.w; �/ supported on f y W y 2 �dI j yj � jwjg
such that

Gi.d y/
j yj2 D

Z

j yj<jwj<1
Vi.w; d y/

F.dw/
jwj2 : (2.9)

It is also assumed that

Ki.d y/ D F.d y/ � Gi.d y/
j yj (2.10)

defines a finite signed measure on �d. The interpretation of (2.9) is that multi-type
juvenile offspring from a type i individual are produced at rate F.dw/=jwj2, not
depending on the type of the parent, then thinned by viability selection according
to Vi.w; d y/. The model with generator (2.8) is valid as it stands, and also can be
obtained as a limit from the Moran model where it is assumed that

�.N/
X

B2�N�1

pi.B/f .B=N/ !
Z

�d
f . y/

Gi.d y/
j yj2

where f 2 C2.�d/ is such that j f . y/j=j yj2 is bounded as j yj ! 0. F and Vi.x; �/ are
analogous to ra and Qia.�/ in (2.7). In a Wright-Fisher diffusion process the strength
of selection is controlled by the selection parameters f�ig and the frequencies change
according to a term

X

j2Œd�
xj.�j �

X

k2Œd�
�kxk/

@

@xj
(2.11)
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in the generator. The measures fKig are analogous to the parameters f�ig however
their effect is much stronger on the sample paths than occurs with the deterministic
change governed by (2.11).

In [7] a�–Fleming–Viot process with viability selection has a generator equation

L�g.x/ D
Z

Œ0;1�

X

i2Œd�
xi .g.x.1 � y/C yei/� g.x//

G1i.dy/

y2
;

where G1i are one-dimensional sub-stochastic measures, and g 2 C2.Œ0; 1�/. This
is a particular case of (2.8) where the measures Gi have mass concentrated on yi,
with G1i.dy/ D Gi.eidy/. Parents of type i give rise to type i offspring in this model.
There is a similar definition for the one-dimensional measures Ki as in (2.10). If
Ki.�/ D ��iı�.�/ then as � ! 0 the corresponding sequence of generators converges
to

L�g.x/ D
Z

Œ0;1�

X

i2Œd�
xi .g.x.1 � y/C yei/ � g.x//

F.dy/

y2

C
X

j2Œd�
xj.�j �

X

k2Œd�
�kxk/

@

@xj
g.x/:

If there is no selection in the models (2.8) or (2.9) then Gi D F and Ki are null
measures, i 2 Œd�.
Example 2.1 If there is no selection and mutation is parent independent with a
mutation rate of �j,

P
i¤j �i � 1, j 2 Œd� the generator equation (2.8) becomes

Lmtg.x/ D
Z

Œ0;1�

X

i2Œd�
xi

 

g
�
x.1 � j yj/C jyj.1� j�j C �i/ei C j yj

X

j¤i

�jej
�

� g.x/

!
F.dj yj/

j yj2 : (2.12)

If j�j D 1 the outcome of a jump does not depend on the type of the reproducing
individual. Then the stationary distribution is the constant vector �.

Example 2.2 If d D 2 in (2.12) then the generator for the frequency of the first type
is specified by

Lmtg.x/ D
Z

Œ0;1�

h
x
�
g
�
x.1 � y/C .1 � �2/y

�� g.x/
�

C .1 � x/
�
g
�
x.1 � y/C �1y

�� g.x/
�iF.dy/

y2
:
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Example 2.3 A two-type model with Beta measures and no mutation. The generator
for X1 acting on g.x/ is

x
Z 1

0

Œg..1 � y/x C y/� g.x/�
B2��1;�1.dy/

y2

C .1� x/
Z 1

0

Œg..1 � y/x/ � g.x/�
B2��2;�2 .dy/

y2

This model arises naturally from a continuous time Schweinsberg differential rates
fecundity birth model or from a model with viability selection for the two types.
The parameters �1; �2 2 .0; 1/. The measures Gi.dy/ D B2��i;�i.dy/, i D 1; 2. Take
F D G1, so then there is no thinning of type 1 individuals. A classical thinning
identity is to take Yi � Gi, i D 1; 2 and U � B2��2;�2 independent of Y1 such that
for �2 > �1, Y2 DD Y1U. Let f .y2 j y1/ be the density of Y2 j Y1 D y1, then

B2��2;�2 .dy2/ D
Z 1

y2

f .y2 j y1/dy2B2��1;�1 .dy1/

This example also shows that the same process can be obtained by either fecundity
selection, or viability selection.

There is a similar dual process to that of Theorem 2.1 in the Moran model, with
a simpler form for the rates. The dual process f�.t/gt�0 is again a branching
coalescing graph back in time following the genealogy of a sample of individuals
back in time. It is assumed that there is a stationary distribution for fX.t/gt�0 with
sampling distribution M.�/. The probability that a parent chosen in a reproduction
event is of type i, and a sample configuration of an additional j�j individuals has
configuration � is

M.i;�/ D �i C 1

j�j C 1
M.� C ei/; � 2 Z

dC:

Theorem 2.2 ([4]) The multi-type Fleming–Viot process with generator (2.8) is
dual to the system of branching and coalescing lineages f�.t/gt�0 which takes values
in Z

dC and for which the transition rates are, for 0 � l � �, l ¤ ei, jlj � 1.

q.�; � � l C ei/ D
Z

�d

2

4

 
j�j
jlj

! 
jlj
l

!
Y

j2Œd�
y

lj
j � .1 � j yj/j�j�jlj

3

5 Gi.d y/
j yj2

� M.i; � � l/
M.�/

;

q.�; � C ei/ D
Z

Œ0;1�

	
1 � .1 � j yj/j�j
 Ki.dj yj/

j yj
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� M.i; �/

M.�/
;

q.�; �/ D �
"Z

�d

	
1 � .1 � j yj/j�j


F.dj yj/
j yj2

�
X

i2Œd�
�iyi.1 � j yj/j�j�1Gi.d y/

j yj2
#

The duality equation is

EX.0/

"�j�.0/j
�.0/

�
X.t/�.0/

M
�
�.0/

�

#

D E�.0/

"�j�.t/j
�.t/

�
X.0/�.t/

M
�
�.t/

�

#

;

where the expectation on the left hand side is with respect to the distribution of the
forwards in time Fleming–Viot process fX.t/gt�0 and that on the right is with respect
to the backwards in time dual process f�.t/gt�0.

Example 2.4 In the model of Example 2.2 the dual rates (2.6) for 0 � l � �, l ¤ ei,
i D 1; 2, jlj � 1 become

q.�; � � l C e1/ D
 

jlj
l

! 
j�j
jlj

!

.1 � �2/
l1�

l2
2

Z

Œ0;1�

yjlj.1 � y/j�j�jlj F.dy/

y2

� M.1; � � l/
M.�/

q.�; � � l C e2/ D
 

jlj
l

! 
j�j
jlj

!

�
l1
1 .1 � �1/

l2

Z

Œ0;1�

yjlj.1 � y/j�j�jlj F.dy/

y2

� M.2; � � l/
M.�/

:

Mutation occurs in families in this example, in contrast to mutation occurring at
random along lines in the dual process with rates (2.6).

2.5 Conclusion

This paper discusses multi-type �-coalescent processes which arise naturally from
�-Fleming-Viot processes as dual processes back in time. A general problem is
to see if there is an analogue of these population-coalescent pairs of processes in
branching processes theory.
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Branching Random Walks



Chapter 3
On the Number of Positive Eigenvalues of the
Evolutionary Operator of Branching Random
Walk

Ekaterina Antonenko and Elena Yarovaya
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3.1 Introduction

Let Zd, called in what follows the d-dimensional integer lattice, be a set of vectors
.n1; n2; : : : ; nd/ with the integer coordinates ni. Continuous-time branching random
walks (BRWs) on Z

d have been widely discussed in a series see, for example, [1, 2,
9–12, 14].

Until recently, BRWs with one branching source, i.e. the source of reproduction
and death of particles, have been the main object of interest in investigations of
such models. Various methods have been applied for analyses of this case, and
an approach based on representation of the evolutionary equations for moments of
numbers of particles as equations in Banach spaces [1, 2, 12, 14] has found to be
rather productive.

The BRW with one branching source was investigated in [3, 12], where the
conditions for exponential growth of the numbers of particles were obtained for
an arbitrary point as well as for the entire lattice. Such a character of growth of the
number of particles is determined by the existence of an isolated positive eigenvalue
in the spectrum of the operator of the mean number of particles. In this model,
the evolutionary operator can be represented as the sum of a bounded self-adjoint
operator and a completely continuous one, which gives opportunity to obtain the
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necessary and sufficient conditions for existence of an isolated positive eigenvalue
in the spectrum of the evolutionary operator.

We consider the model of continuous-time BRW on Z
d with the finite number N

of the branching sources located at some lattice points x1; x2; : : : ; xN . It is assumed
that the particles evolve independently of each other and of the prehistory. Each
particle walks on the lattice until it reaches a branching source where its behavior
changes. We assume that death and reproduction of a particle happen without
breaking the symmetry of the underlying random walk. In this case the behaviour of
the mean number of particles can be described in terms of the evolutionary operator
of a special type [15], which is a perturbation of the generator A of a symmetric
random walk. In the case of equal intensities of sources this operator has the form

Hˇ D A C ˇ

NX

iD1
ıxiı

T
xi
; xi 2 Z

d; (3.1)

where A W lp.Zd/ ! lp.Zd/, p 2 Œ1;1�, is a symmetric operator and ıx D ıx.�/
denotes a column vector on the lattice taking the value one at the point x and zero
otherwise. General analysis of this operator was first done in [15].

In [16] it is shown how the operators of type (3.1) appear in BRW models
and is demonstrated that the structure of its spectrum determines the asymptotic
behaviour of the numbers of particles. For the analysis of the evolutionary equations
for the mean number of particles, in [16] there was used the technique of differential
equations in Banach spaces. In [15] it is shown that Hˇ is a linear bounded operator
in every space lp.Zd/, p 2 Œ1;1�. All points of its spectrum outside the circle
C D fz 2 C W jz � a.0/j � ja.0/jg with a.0/ D ıT

0A ı0 may be only eigenvalues of
finite multiplicity. This statement allowed to propose a general method for obtaining
a finite set of equations defining conditions of the existence of isolated positive
eigenvalues in the spectrum of the operator Hˇ lying outside C. Corresponding
conditions for BRWs with two sources of branching were obtained in explicit form
in [15].

In [15] it is shown, in particular, that the perturbation of the form ˇ
PN

iD1 ıxiı
T
xi

of the operator A may result in the emergence of positive eigenvalues of the
operator Hˇ and the multiplicity of each of them does not exceed N. However,
the number of arising eigenvalues of Hˇ in [15] was not found. In the present
paper we strengthen this result by showing in Theorem 3.3 that the maximum
eigenvalue of the operator Hˇ is of unit multiplicity, that is simple, and the general
multiplicity of all eigenvalues does not exceed N. This implies, in particular, that in
fact the multiplicity of each eigenvalue of the operator Hˇ does not exceed N � 1.
Example 3.1 demonstrates that the greatest possible multiplicity N � 1 of a positive
eigenvalue of the operator Hˇ can actually be reached when N > 1.

The structure of the present paper is as follows. In Sect. 3.2 a formal description
of BRW with N sources is reminded. In Sect. 3.3 the main results are formulated and
the example about influence of “symmetry” of the sources disposition on appearance
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of coinciding eigenvalues in the spectrum of operator (3.1) is given. Section 3.4
contains proofs of the formulated theorems.

3.2 BRW with Several Sources

The evolution of the system of particles in BRW on Z
d is defined by the number of

particles 
t.y/ at moment t at each point y 2 Z
d assuming that the system contains

only one particle disposed at some point x 2 Z
d at t D 0, i.e. 
0.y/ D ıx.y/. Thus,

the total number of particles on Z
d satisfies the equation 
t D P

y2Zd 
t.y/. The
transition probability of the random walk in the BRW is denoted by p.t; x; y/. Let
Ex be the expectation of the total number of particles on the condition that 
0.�/ D
ıx.�/. Then, the moments obey mn.t; x; y/ WD Ex


n
t .y/ and mn.t; x/ WD Ex


n
t , n 2 N.

Random walk is specified by a matrix A D .a.x; y//x;y2Zd of transition intensities,
where a.x; y/ D a.0; x �y/ D a.x �y/ for all x and y. Thus, the transition intensities
are spatially homogeneous and the matrix A is symmetric. The law of walk is
described in terms of the function a.z/, z 2 Z

d, where a.0/ < 0, a.z/ � 0 when
z ¤ 0 and a.z/ � a.�z/. We assume that

P
z2Zd a.z/ D 0 and

X

z2Zd

jzj2a.z/ < 1; (3.2)

where jzj is the Euclidian norm of the vector z. We also assume that the matrix A is
irreducible, i.e. for all z 2 Z

d there exists a set of vectors z1; z2; : : : ; zk 2 Z
d such

that z D
kP

iD1
zi and a.zi/ ¤ 0 for i D 1; 2; : : : ; k.

By p.t; x; y/ we denote the transition probability of a random walk. This function
is implicitly determined by the transition intensities a.x; y/ (see, for example, [6,
12]). Then, Green’s function of the operator A can be represented as a Laplace
transform of the transition probability p.t; x; y/:

G�.x; y/ WD
1Z

0

e��tp.t; x; y/ dt; � � 0:

The analysis of BRWs essentially depends on whether the value G0 D G0.0; 0/

is finite or not. If the condition (3.2) (finiteness of the variance of jumps) is satisfied
then G0 D 1 when d D 1; 2, and G0 < 1 when d � 3 (see, for example [12]).

We use the function bn, n � 0, where bn � 0 for n ¤ 1, b1 � 0, and
P

n bn D 0,
to describe branching at a source. Branching occurs at a finite number of sources,
x1; : : : ; xN , and is given by the infinitesimal generating function f .u/ D P1

nD0 bnun

such that ˇr D f .r/.1/ < 1 for all r 2 N. The quantity ˇ1 D f 0.1/ characterizes the
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intensity of a source and is denoted further by ˇ. The sojourn time of a particle at
every source is distributed exponentially with the parameter �.a.0/C b1/, see [13].

The analysis of the BRW model with one branching source in [2, 3, 12, 14]
showed that the asymptotic behaviour of the mean number of particles at arbitrary
point as well as on the entire lattice is determined by the structure of the spectrum
of the linear operator (3.1) when N D 1. Here the bounded self-adjoint operator
A in Hilbert space l2.Zd/ is a generator of random walk, and ˇ�x1 specifies
the mechanism of branching at the source x1. Let us note that the operator A is
generated by the matrix A of transition intensities. This model has been generalized
in [15], in particular to the case of N sources.

The transition probability p.t; �; y/ is treated as a function p.t/ in l2.Zd/ depend-
ing on time t and the parameter y. Then according to [12, 15] we can rewrite the
evolution equation as the following differential equation in space l2.Zd/:

dp

dt
D A p; p.0/ D ıy:

Here the operator A acts as

.Au/.z/ WD
X

z02Zd

a.z � z0/u.z0/:

In the same way we can obtain the differential equation in space l2.Zd/ for the
expectation m1.t; �; y/ which can be considered as a function m1.t/ in l2.Zd/:

dm1

dt
D Hˇm1; m1.0/ D ıy: (3.3)

Formally, this equation holds for m1.t/ D m1.t; �/ on the condition that m1.0/ D 1

in space l1.Zd/.
It follows from the general theory of linear differential equations in Banach

spaces (see, for example, [4]) that the investigation of behaviour of solutions of the
Eq. (3.3) can be reduced to the analysis of the spectrum of the linear operators in the
right-hand sides of the corresponding equations. Spectral analysis of the operator
Hˇ of type (3.1) was done in [15].

3.3 Spatial Configuration of Sources of Branching

We denote by ˇc the value of intensity of sources uniquely defined by the condition
that the spectrum of the operator Hˇ contains positive eigenvalues if ˇ > ˇc.

Let us formulate the main results to be proved below.

Theorem 3.1 If d D 1 or d D 2, then ˇc D 0; if d � 3, then ˇc D .G0/
�1 in the

case N D 1, and 0 < ˇc < .G0/
�1 in the case N � 2.
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Definition 3.1 If there exists "0 > 0 such that the operatorHˇ has a simple positive
eigenvalue �.ˇ/ when ˇ 2 .ˇc; ˇc C "0/ and this eigenvalue satisfies a condition
�.ˇ/ ! 0 as ˇ # ˇc, then we call supercritical BRW weakly supercritical when ˇ
is close to ˇc.

From the definition above, the question arises whether or not every supercritical
BRW is weakly supercritical. The following theorem gives the affirmative answer to
this question.

Theorem 3.2 Every supercritical BRW is weakly supercritical as ˇ # ˇc.

This theorem follows from the following stronger statement.

Theorem 3.3 Let N � 2, then the operator Hˇ may have no more than N positive
eigenvalues �i.ˇ/ of finite multiplicity when ˇ > ˇc, and

�0.ˇ/ > �1.ˇ/ � � � � � �N�1.ˇ/ > 0:

Here the principal eigenvalue �0.ˇ/ has unit multiplicity. Besides there is a value
ˇc1 such that for ˇ 2 .ˇc; ˇc1 / the operator Hˇ has a single positive eigenvalue,
�0.ˇ/.

Corollary 3.1 Under the conditions of Theorem 3.3 the multiplicity of each of the
eigenvalues �1.ˇ/; : : : ; �N�1.ˇ/ does not exceed N � 1.

We can use the following theorem, which was established in different terms in
[15, Theorem 6], for estimating the eigenvalues

�0.ˇ/; �1.ˇ/; : : : ; �N�1.ˇ/:

Theorem 3.4 The eigenvalue � belongs to the discrete spectrum of the operator
Hˇ in the only case when the system of linear equations

Vi � ˇ

NX

jD1
G�.xi � xj/Vj D 0; i D 1; : : : ;N (3.4)

in variables fVigN
iD1 has a non-trivial solution.

According to Theorem 3.3 the principal eigenvalue�0.ˇ/ is always simple. Some
of the eigenvalues �1.ˇ/; : : : ; �N�1.ˇ/ of the operator Hˇ may actually coincide
(i.e. they may have the multiplicity greater than one) and this situation is possible
even in the case of an arbitrary finite number of sources (of equal intensity). As is
shown in the following Example 3.1 this situation may occur if there is a certain
“symmetry” of the spatial configuration of the sources x1; x2; : : : ; xN .

In Example 3.1 we assume that the function of transition probabilities is
symmetric that is its values do not change at any permutation of arguments. In
particular, a function of a vector variable z is symmetric if its values are the same
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at any permutation of coordinates of vector z. Let us present a statement to be use
further for “integrable” models, where critical values ˇci , i � 2, and equations for
estimating �i from Theorem 3.3 can be found explicitly.

Theorem 3.5 If the function of transition probabilities a.z/ is symmetric, then the
function G�.z/ is also symmetric.

Example 3.1 Let x1; : : : ; xN , when N � 2, be the vertices of a regular simplex (i.e.
lengths of the simplex edges are equal). For example,

x1 D f1; 0; : : : ; 0g; x2 D f0; 1; : : : 0g; : : : ; xN D f0; 0; : : : ; 1g:

The existence of a non-trivial solution of the linear equation (3.4) for some ˇ is
equivalent to the resolvability of the equation

det
	
� .�/� 1

ˇ
I



D 0; (3.5)

where

� .�/ D Œ�ij.�/� (3.6)

is the matrix with elements �ij.�/ D G�.xi; xj/.
Since the random walk by assumption is symmetric and homogeneous then

G�.xi; xj/ D G�.0; xi � xj/ D G�.0; xj � xi/ D G�.xj � xi/:

From the definition of the function G�.u; v/ � G�.u � v/ it follows that all the
values G�.xj �xi/ coincide with each other when i ¤ j and hence they coincide with
G�.x1 � x2/ D G�.z�/ (for simplicity we denote z� D x1 � x2). So,

G�.xj � xi/ � G�.x1 � x2/ D G�.z�/ for all i ¤ j: (3.7)

For the values G�.xi; xi/ we have

G�.xi; xi/ � G�.xi � xi/ D G�.0/ D G�:

Thus we can rewrite Eq. (3.5) as

det

2

6
6
6
4

G� � 1
ˇ

� � � G�.z�/
G�.z�/ � � � G�.z�/

� � � � � � � � �
G�.z�/ � � � G� � 1

ˇ

3

7
7
7
5

D 0:
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Using standard linear transforms we rewrite the last determinantal equation as

�
G� � G�.z�/ � 1

ˇ

�N�1
det

2

6
6
6
4

G� � 1
ˇ

C .N � 1/G�.z�/ � � � G�.z�/
0 � � � 0

� � � � � � � � �
0 � � � �1

3

7
7
7
5

D 0:

This is equivalent to the equation

�
G� C .N � 1/G�.z�/� 1

ˇ

��
G� � G�.z�/ � 1

ˇ

�N�1
D 0:

From this last equation it is seen that ˇc and ˇc1 can be calculated explicitly:

ˇc D .G0 C .N � 1/G0.z�//�1; ˇc1 D .G0 � G0.z�//�1: (3.8)

Remark 3.1 Under the conditions of Example 3.1 according to (3.7) and (3.8)
the quantity ˇc1 depends on the norm jz�j of the vector z� (i.e. on the distance
between the sources) and does not depend on the number of the sources N, that
is ˇc1 D ˇc.jz�j/ > 0. At the same time the quantity ˇc depends not only on
the distance between the sources but also on the number of the sources N, that is
ˇc D ˇc.jz�j;N/, and in such a way that ˇc.jz�j;N/ ! 0 as N ! 1 when z� is
fixed. Moreover, ˇc.jz�j;N/ � 0 when d D 1 and d D 2.

3.4 Proofs of Theorems

To prove Theorems 3.1 and 3.2 we will use the following lemmas.

Lemma 3.1 The quantity � > 0 is an eigenvalue of the operator Hˇ if and only if
at least one of the equations

�i.�/ˇ D 1; i D 0; : : : ;N � 1; (3.9)

holds, where �i.�/ are eigenvalues of the matrix � .�/ given by the Eq. (3.6).

Proof The quantity � > 0 is an eigenvalue of the operator Hˇ D A CˇPN
iD1 ıxiı

T
xi

if and only if the following equation holds for some vector h ¤ 0:

A h C ˇ

NX

iD1
ıxiı

T
xi

h D �h:
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Let R� D .A � �I/�1 be the resolvent of the operator A . By applying R� to both
sides of the last equation we obtain

h C ˇ

NX

iD1
R�ıxiı

T
xi

h D 0:

Since ıxı
T
x h D ıx.ıx; h/, then

h C ˇ

NX

iD1
.ıxi ; h/R�ıxi D 0:

Let us scalar left-multiply the last equation by ıxk :

.ıxk ; h/C
nX

iD1
ˇ.ıxi ; h/.ıxk ;R�ıxi/ D 0; k D 1; : : : ; n:

By denoting Uk D .ıxk ; h/ we then obtain

Uk C
nX

iD1
ˇUi.ıxk ;R�ıxi/ D 0; k D 1; : : : ; n: (3.10)

Thus, the initial equation has a nonzero solution h if and only if the determinant of
the matrix of the obtained linear system is equal to zero. Now we notice that

.ıy;R�ıx/ D � 1

.2�/d

Z

Œ��;��d
ei.�;y�x/

� � �.�/d�;

where �.�/ D P
z2Zd a.z/ei.�;z/ with � 2 Œ��; ��d is the Fourier transform of the

function of transition probabilities a.z/. The right-hand side of the equation can be
represented [12] in terms of Green’s function:

G�.x; y/ WD
Z 1

0

e��tp.t; x; y/dt D 1

.2�/d

Z

Œ��;��d
ei.�;y�x/

� � �.�/d�: (3.11)

Hence .ıy;R�ıx/ D �G�.x; y/: It implies that the condition of vanishing of the
determinant of the linear system (3.10) can be rewritten as det .ˇ� .�/� I/ D 0;

which is equivalent to Eq. (3.5) when ˇ ¤ 0.
Recalling that the eigenvalues of the matrix � .�/ are denoted by �i.�/, where

i D 0; : : : ;N � 1, we obtain that (3.5) holds for some ˇ and � if and only if (3.9) is
true. The lemma is proved. ut
Lemma 3.2 Each of the functions �i.�/ is strictly decreasing when � � 0.
Moreover, the total number of solutions �i.ˇ/ of the equations �i.�/ˇ D 1,
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i D 0; : : : ;N � 1, does not exceed N, that is the number of eigenvalues of the
operator (3.1) does not exceed N.

We need the following auxiliary statement to prove Lemma 3.2.

Lemma 3.3 Let Q D .qij/ be a matrix with elements

qij D 1

.2�/d

Z

Œ��;��d
q.�/ei.�;xi�xj/d�;

where x1; x2; : : : ; xN is a set of linearly independent vectors, and q.�/ � q� > 0 is
an even function summable on Œ��; ��d . Then Q is a real, symmetric and positive-
definite matrix satisfying .Qz; z/ � q�.z; z/.

Proof The matrix Q is real and symmetric since the function q.�/ is even and then

qij D 1

.2�/d

Z

Œ��;��d
q.�/ cos.�; xi � xj/d�:

Thus, we need to prove only that the matrix Q is positive-definite. By definition,
.Qz; z/ D PN

i;jD1 qijzizj; where z D .z1; z2; : : : ; zN/. Then

.Qz; z/ D 1

.2�/d

NX

i;jD1

Z

Œ��;��d
q.�/ei.�;xi�xj/zizjd�

D 1

.2�/d

NX

iD1

NX

jD1

Z

Œ��;��d
q.�/

�
ei.�;xi/zi

� �
e�i.�;xj/zj

�
d�

D 1

.2�/d

Z

Œ��;��d
q.�/

NX

iD1

NX

jD1

�
ei.�;xi/zi

� �
e�i.�;xj/zj

�
d�

D 1

.2�/d

Z

Œ��;��d
q.�/

ˇ
ˇei.�;x1/z1 C � � � C ei.�;xN /zN

ˇ
ˇ2 d� � 0:

Since q.�/ � q�, then

.Qz; z/ � q�
.2�/d

Z

Œ��;��d
ˇ
ˇei.�;x1/z1 C � � � C ei.�;xN /zN

ˇ
ˇ2 d�

D q�
.2�/d

Z

Œ��;��d

0

@z21 C � � � C z2N C
X

i¤j

�
ei.�;xi/zi

� �
e�i.�;xj/zj

�
1

A d�:

The integral of the summands
�
ei.�;xi/zi

� �
e�i.�;xj/zj

�
vanishes since xi ¤ xj when

i ¤ j. It implies that the integral in the right-hand side of the equation can be found
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explicitly and is equal to q�.z21 C : : : C z2N/. So, .Qz; z/ � q�.z; z/. The lemma is
proved. ut
Proof of Lemma 3.2 Let the eigenvalues �i.�/ of the matrix (3.6) be arranged in
decreasing order:

0 � �N�1.�/ � : : : � �2.�/ < �0.�/:

Let us consider a matrix

� .�1; �2/ WD � .�1/ � � .�2/:

Taking

q.�/ D 1

� � �.�/

we obtain for � > 0 that

q.�/ � 1

�C s
> 0;

where s D max�2Œ��;��d f��.�/g > 0. Hence, by Lemma 3.3 for each � > 0 the
matrix � .�/ defined by (3.6) and (3.11) is real, symmetric and positive-definite.

From (3.6) and (3.11) we obtain also that the elements of the matrix � .�1; �2/
are as follows

�ij.�1; �2/ D .�2 � �1/ 1

.2�/d

Z

Œ��;��d
ei.�;xi�xj/

.�1 � �.�//.�2 � �.�//d�:

For the continuous function

q.�/ D 1

.�1 � �.�//.�2 � �.�//
we have the lower bound

q.�/ � q�.�1; �2/ WD 1

.�1 C s/.�2 C s/
> 0:

Hence, again by Lemma 3.3 the matrix � .�1; �2/ is self-adjoint and positive-
definite when �2 > �1. In this case the Lidskii theorem [8, Theorem 6.10] implies,
for all i D 0; : : : ;N � 1, the inequalities

�i.�1/ � �i.�2/ � q�.�1; �2/ > 0;
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since the minimal eigenvalue of the matrix � .�1; �2/ has the lower bound equal to
q�.�1; �2/. So, �i.�1/ > �i.�2/ when �2 > �1, that is the function �i.�/ is strictly
decreasing with respect to �.

Since the functions �i.�/ are strictly decreasing then each of the equations
�i.�/ˇ D 1, where i D 0; : : : ;N � 1, for each ˇ has no more than one solution
(the eigenvalue of the operator Hˇ). So, the total amount of the eigenvalues of the
operator Hˇ does not exceed N. The lemma is proved. ut
Proof of Theorem 3.1 In the integral representation (3.11), the function �.�/ satis-
fies ck�k2 6 j�.�/j 6 Ck�k2 for some nonzero real constants c and C [12]. Hence
the convergence of the integral in the integral representation of the Green’s function
G�.x; y/ as � ! 0 is equivalent [12] to the convergence of the integral

Z
rd�1

r2
dr

in a neighbourhood of 0. This last integral converges when d > 3 and diverges when
d D 1 and d D 2. If G�.x; y/ ! 1 as � ! 0 then k� .�/k ! 1 and the principal
eigenvalue of matrix � .�/ tends to infinity as � ! 0, �0.�/ ! 1. Hence in this
case for all ˇ > 0 the equation �0.�/ˇ D 1 has a solution (with respect to �) and
by definition of ˇc we have that ˇc D 0.

Let now G0.0; 0/ < 1, then G0.x; y/ < 1 for all x and y. So, in this case
k� .0/k < 1 and, moreover, � .�/ ! � .0/ as � ! 0. Then there exists �� < 1
such that �0.�/ � �� < 1 for all �. In this case the equation �0.�/ˇ D 1 does not
have solutions (with respect to �) as ˇ ! 0. By Lemma 3.1 in this case the operator
Hˇ does not have eigenvalues when ˇ is small, i.e. ˇc > 0.

Let us prove the upper bound for ˇc when d > 3. Let ˇ be an arbitrary value
of the parameter such that the operator Hˇ has a positive eigenvalue �. Then by
Lemma 3.1 we have �0.�/ˇ D 1; and hence

ˇ D 1

�0.�/
: (3.12)

The Perron–Frobenius theorem [5] implies that the principal eigenvalue �0.�/ of
the matrix � .�/ has a corresponding eigenvector x.�/ with all positive coordinates.
The matrix � .�/ can be represented as

� .�/ D G�.0; 0/I C B.�/;

where B.�/ D � .�/ � G�.0; 0/I. All elements of the matrix B.�/ are non-negative
while its off-diagonal elements are positive when N � 2. In this case by definition
of the eigenvector x.�/ the following equalities hold:

0 D � .�/x.�/� �0.�/x.�/ D .G�.0; 0/� �0.�//x.�/C B.�/x.�/:
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Hence, when � D 0,

0 D � .0/x.0/� �0.0/x.0/ D .G0.0; 0/� �0.0//x.0/C B.0/x.0/:

The vector x.0/ has positive coordinates and therefore the vector B.0/x.0/ also has
positive coordinates. So, the last equation holds only if G0.0; 0/��0.0/ < 0:Hence,
by (3.12) we have

ˇc D 1

�0.0/
<

1

G0.0; 0/
D 1

G0

:

For N D 1 the critical value ˇc can be found from the equation ˇcG0 D 1 and
equals ˇc D 1

G0
. ut

Proof of Theorem 3.3 By Lemma 3.1 the eigenvalues of the operator Hˇ satisfy the
Eqs. (3.9). The quantities �i.�/ are the eigenvalues of the positive and symmetric
matrix � .�/, and (as is shown in [9] and also follows from Lemma 3.3) this matrix
is the Gramian matrix for some appropriate scalar product and hence is positive-
definite. In this case all eigenvalues �i.�/ are real and non-negative (and can be
arranged in ascending order):

0 � �N�1.�/ � : : : � �1.�/ � �0.�/: (3.13)

From (3.11) it follows that elements of the matrix � .�/ tend to zero as � ! 1 and
so �i.�/ ! 0 as � ! 1 for all i D 0; 1; : : : ;N �1. By Rellich theorem [8, Chap. 2,
Theorem 6.8] all functions �i.�/ are piecewise smooth when � � 0.

Using the representation (3.11) we notice that elements of the matrix � .�/ are
strictly positive when � > 0 and then by the Perron–Frobenius theorem [5] we have
that the principal eigenvalue �0.�/ of the matrix � .�/ has the unit multiplicity and
strictly exceeds other eigenvalues, i.e. the last of the inequalities (3.13) is strict:

0 � �N�1.�/ � : : : � �1.�/ < �0.�/: (3.14)

From the representations (3.11) it follows that the matrix � .�/ is continuous for
all values � > 0. Behaviour of this matrix can differ as � ! 0 and further proof of
the theorem depends on this behaviour.

The matrix � .�/ may tend to some finite limit matrix � .0/ with strictly positive
elements as � ! 0. In this case the eigenvalues �i.�/ behave as it is shown on
Fig. 3.1 and the difference between the values �0.0/ D 1

ˇc
and �1.0/ D 1

ˇc1
can be

estimated by, for example, the Hopf theorem [7, p. 592]. This is true for d � 3.
Another case is when at least one element of the matrix � .�/ has infinite limit

as � ! 0. This is possible only when d D 1 or d D 2. In this case k� .�/k ! 1
as � ! 0 and hence �0.�/ ! 1 as � ! 0. This happens only for ˇc D 0. We
can suppose that �1.�/ ! 1 as � ! 0, i.e. ˇc1 D 0. However, it follows from the
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Fig. 3.1 Plots of the
functions �i.�/ when
lim
�!1

�0.�/ < 1

Fig. 3.2 Plots of the
functions �i.�/ when
lim
�!1

�0.�/ D 1, but

lim
�!1

�1.�/ < 1

Theorem 2.1.1 from [12] that this situation is impossible and �1.�/ always has finite
limit as � ! 0, i.e. ˇc1 > 0. This situation is illustrated on Fig. 3.2.

By Lemma 3.1 the eigenvalues �i of the operator Hˇ are solutions of the
Eqs. (3.9), see Fig. 3.1. However, since by Lemma 3.2 every function �i.�/ is strictly
decreasing when � � 0, then the total number of the solutions �i.ˇ/ of these
equations does not exceed N.

From inequalities (3.14) it follows that if the operator Hˇ has positive eigenval-
ues for some fixed ˇ, then the maximal of them is �0 D �0.ˇ/ which is a solution
of the equation

�0.�0/ D 1

ˇ
; (3.15)
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is simple and strictly exceeds others. The minimum value of the solution �0 of
Eq. (3.15) is �0 D 0. The corresponding valueˇc of the parameterˇ is critical. Since
the function �0.�/ is strictly decreasing then the eigenvalue �0 D �0.ˇ/ increases
with the increase of parameter ˇ. The theorem is proved. ut
Proof of Theorem 3.5 Let us recall that Green’s function G�.z/ can be represented
[12] in the form (3.11), where �.�/ is the Fourier transform of the function of
transition probabilities a.z/ and is defined by �.�/ D P

z2Zd a.z/ei.�;z/, � 2
Œ��; ��d . To prove the theorem it suffices to demonstrate that G�.z/ D G�.Rz/
for every permutation matrix R (i.e. all rows and columns of this matrix have the
only one nonzero element equal to one). So,

�.R�/ D
X

z2Zd

a.z/ei.R�;z/ D
X

z2Zd

a.z/ei.�;R�z/

D
X

z02Zd

a..R�/�1z0/ei.�;z0/ D
X

z02Zd

a.z0/ei.�;z0/ D �.�/;

where the equality a..R�/�1z0/ D a.z0/ holds for all z0 2 Z
d since the function a.z/

is symmetric. Hence the function �.�/ is also symmetric. Further,

G�.Rz/ D 1

.2�/d

Z

Œ��;��d
ei.�;Rz/

� � �.�/d� D 1

.2�/d

Z

Œ��;��d
ei.R��;z/

� � �.�/d�

D 1

.2�/d

Z

Œ��;��d
ei.�;z/

� � �..R�/�1�/
d� D G�.z/

for every permutation matrix R, where the equality �.�/ D �..R�/�1�/ again holds
for all � 2 Œ��; ��d since the function �.�/ is symmetric. Thus, the function G�.z/
is also symmetric. ut

Acknowledgements This study was performed at Lomonosov Moscow state University and at
Steklov Mathematical Institute, Russian Academy of Sciences. The work was supported by the
Russian Science Foundation, project no. 14-21-00162.

References

1. Albeverio, S., Bogachev, L.: Branching random walk in a catalytic medium. Basic Equ. (2000).
doi:10.1023/A:1009818620550

2. Albeverio, S., Bogachev, L., Yarovaya, E.: Asymptotics of branching symmetric random walk
on the lattice with a single source. C. R. Acad. Sci. Paris Sér. I Math. (1998). doi:10.1016/
S0764-4442(98)80125-0

3. Bogachev, L., Yarovaya, E.: A limit theorem for a supercritical branching random walk on Z
d

with a single source. Russ. Math. Surv. 53(5), 1086–1088 (1998)

10.1023/A:1009818620550
10.1016/S0764-4442(98)80125-0
10.1016/S0764-4442(98)80125-0


3 On the Number of Positive Eigenvalues of the Evolutionary Operator 55

4. Daleckii, J., Krein, M.: Stability of Solutions of Differential Equations in Banach Space. AMS,
Providence (1974)

5. Gantmacher, F.: Theory of Matrices. AMS Chelsea Publishing, New York (1959)
6. Gikhman, I., Skorokhod, A.: Theory of Stochastic Processes. Springer, New York (2004–2007)
7. Horn, R., Johnson, C.: Matrix Analysis. Cambridge University Press, New York (1985)
8. Kato, T.: Perturbation Theory for Linear Operators. Springer, New York (1966)
9. Molchanov, S., Yarovaya, E.: The population structure inside the propagation front of a

branching random walk with a finite number of particle generation centers. Dokl. Math. 86(3),
787–790 (2012)

10. Vatutin, V., Topchiı̆, V.: Limit theorem for critical catalytic branching random walks. Theory
Probab. Appl. 49(3), 498–518 (2005)

11. Vatutin, V., Topchiı̆, V., Yarovaya, E.: Catalytic branching random walks and queueing systems
with a random number of independent servers. Theory Probab. Math. Stat. 69, 1–15 (2004)

12. Yarovaya, E.: Branching Random Walks in an Inhomogeneous Medium. Center of Applied
Investigations of the Faculty of Mechanics and Mathematics of the Moscow State University,
Moscow (2007) [in Russian]

13. Yarovaya, E.: About the investigation of branching random walks on multidimensional lattices.
Sovrem. Probl. Mat. Mech. Mosc. 4, 119–136 (2009) [in Russian]

14. Yarovaya, E.: Criteria of exponential growth for the numbers of particles in models of
branching random walks. Theory Probab. Appl. 55(4), 661–682 (2011)

15. Yarovaya, E.: Spectral properties of evolutionary operators in branching random walk models.
Math. Notes 92(1), 124–140 (2012)

16. Yarovaya, E.: Branching random walks with several sources. Math. Popul. Stud. 20(1), 14–26
(2013)



Chapter 4
Branching Structures Within Random Walks
and Their Applications

Wenming Hong and Huaming Wang
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4.1 Introduction

In 1975, Kesten, Kozlov and Spitzer published the famous paper [18] in which they
proved a nice limit theorem for the nearest neighbor Random Walk in Random
Environment (RWRE hereafter). They observed that the nearest neighbor RWRE,
upon being properly centered and scaled, converges to the domain of attraction
of certain stable distribution. The theorem that they proved will be called stable
limit theorem throughout the paper. Its proof was based on the fact that there exists
some branching structure within the path of the random walk. Roughly speaking,
for the walk transient to the right, 1 D Un;Un�1;Un�2; : : : form a single-type
branching process with exactly one immigrant in each of the first n generations,
where for k � n � 1; Uk counts the number of steps by the walk from k to k � 1

before it hits n. Then, by studying the limit behaviours of the single-type branching
process with immigration in random environment, the limit theorem of RWRE could
be studied. This approach was proved to be very useful for studying the nearest
neighbor random walk in random or non-random environment. We provide here
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some references. In Rogers [21] it is shown that, being properly scaled, the local
time of the nearest neighbor random walk converges to Brownian local time. In
[8], Gantert and Shi observed that, in transient case, the nearest neighbor RWRE
spends, with a positive probability, a linear proportion of time at a single site. In
[25], Zeitouni found the explicit density of the invariant equivalent measure related
to the so-called “environment viewed from particles”. Afanasyev strengthened in
[1] Ritter’s theorem to a functional setting and in the paper [2] he also proved a
conditional Ritter’s theorem. Note that all the results mentioned above highly rely
on the branching structure hidden in the path of the nearest neighbor random walk.

It is attractive to generalize these results to some more general settings, for
example, to random walks with bounded jumps. In this paper, the notation “(L,R)
random walk” always denotes random walk with bounded jumps which in each
step jumps at most a distance L to the left and at most a distance R to the
right. The notation “(L,R) RWRE” could be understood similarly. In [19], Key
studied the regeneration time for multitype branching process with immigration in
random environment. Key indicated that the general argument for finding limiting
distribution for X.t/ (He meant to generalize the stable limit theorem in [18] to (L,1)
RWRE.) seems to go through, except now Z.t/ is multitype. Actually, it was true.
One could generalize the stable limit theorem in [18] to (L,1) RWRE by studying a
multitype branching process with immigration in random environment. However,
the first obstacle that one has to overcome is to reveal the multitype branching
process hidden in the path of (L,1) RWRE. For random walk with bounded jumps,
things are very different from the nearest neighbor setting. Indeed, in [19], the author
did not give the construction of the branching structure for (L,1) random walk.

In [11, 12, 14], we revealed the multitype branching process with immigration
which is hidden in the path of random walk with bounded jumps, so that we could set
up the connection between these two stochastic processes. The branching structure
for (L,R) random walk is also proved to be powerful in applications of studying the
limit behaviors for (L,R) random walk in random or non-random environment. We
refer the readers to [10, 13, 16, 17, 22, 24] for the details of these applications.

The remainder parts of the paper are organized as follows. We devote Sect. 4.2 to
a survey of the literatures related to the branching structure for (1,1) random walk.
Then in Sect. 4.3, we list our results about the branching structures for random walks
with bounded jumps set up in [11, 12]. After that, a birth-and-death process with
bounded jumps will be considered in Sect. 4.4. Using the branching structure, we
calculate the stationary distribution of the birth-and-death process explicitly. Finally,
some concluding remarks will be given in Sect. 4.5.
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4.2 Branching Structure for (1,1) Random Walk

Let us consider firstly the nearest neighbor random walk on Z. Suppose that pk; k 2
Z, is a sequence of Œ0; 1�-valued numbers. Let fSngn�0 be a Markov chain with S0 D
0 and

P.SnC1 D k C 1jSn D k/ D pk D 1 � P.SnC1 D k � 1jSn D k/:

We call fSng the “(1,1) random walk”. In the literatures that we are aware of, the
history of the branching structure for (1,1) random walk could date back to Harris
[9]. Harris found that there are some correspondences between random walks and
trees. Putting p0 D 1, he studied random walk on the lattice of the positive half-line.
He illustrated that an excursion of the walk between time 0 and the first return time
of the initial state corresponds to a tree. In [18], Kesten, Kozlov and Spitzer set up
the immigration structures for (1,1) RWRE. They revealed the single-type branching
process with immigration in random environment which is hidden in the path of
(1,1) RWRE. Then, by applying the branching structure, they proved a stable limit
theorem for (1,1) RWRE. In [7] the branching structure for (1,1) random walk with
homogeneous transition probabilities was studied, that is, for all k, pk � p 2 .0; 1/.
For a � 0 let

N.a/ WD #fsteps by the walk from a C 1 to ag:

Here and throughout, the notation “#f g” denotes the number of elements in set “f g”.
Dwass proved that if 0 < p < 1

2
; N.0/;N.1/; : : : form a Galton–Watson process;

if 1
2
< p < 1; N.0/;N.1/; : : : evolve as a Galton–Watson process with certain

immigration. We refer the readers to [7] for more details.
Next we quote the branching structure set up in [18] which influences us a lot.

Suppose that lim supn!1 Sn D 1. For n � 1, define

Tn D inffk W Sk D ng;

which is the first hitting time of site n of the walk. Clearly Tn < 1 for all n > 0.
Let Un

n D 0 and for k � n � 1 set

Un
k WD #f steps by the walk from k to k � 1 before Tng:

The connection between the branching process with immigration and the (1,1)
random walk in [18] reads as follows:

Suppose that lim supn!1

Sn D 1. Then Un
n ;U

n
n�1;U

n
n�2; : : : form a single type branching

process with exactly 1 immigrant in each of the first n generations and no immigration in
the remaining generations. The offspring distribution at k C 1 is

P.Un
k D mjUn

kC1 D 1/ D .1� pk/
mpk;m � 0:
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Furthermore,

Tn D n C 2
X

i�n

Un
i : (4.1)

Note that in (4.1), the hitting time Tn is written as the functional of the branching
process fUn

k gk�n. In [18], the authors considered the (1,1) RWRE. In this case,
fUn

k gk�n forms a branching process with immigration in random environment. The
stable limit theorem of the (1,1) RWRE was proved by studying the limit behaviour
of fUn

k gk�n. In [18] the authors explained why the above claims hold. The idea is
very clear, but it is tedious to present a rigorous mathematical proof. We refer the
readers to [11] for a rigorous proof in a more general setting.

4.3 Branching Structure for Random Walk
with Bounded Jumps

In this section we introduce the branching structure within the path of random
walk with bounded jumps. To define the model, let L;R � 1 and denote � D
f�L; : : : ;Rg n f0g. For i 2 Z, let !i D .!i.l//l2� be a probability measure on i C�.
Set ! D f!igi2Z, which serves as the transition probabilities of the random walk.
Let fXngn�0 be a Markov chain with initial value X0 D x and transition probabilities

P!.XnC1 D i C j
ˇ
ˇXn D i/ D !i. j/; j 2 �:

fXng is called the (L,R) random walk with non-homogeneous transition probabilities
((L,R) random walk). Throughout this section, we use Px

! to denote the probability
distribution induced by the random walk fXng and Ex

! the corresponding integration
operator. Except otherwise stated, we always assume that the walk fXng starts at 0.
The notations P0! and E0! will be written as P! and E! , respectively, for simplicity.

In [12], we set up the branching structure for (2,2) random walk. For a general
(L,R) random walk, the idea is the same, but the notations are much heavier. The
branching structure for (L,1) random walk and (1,R) random walk were set up in
[11] and [14], respectively. Here we emphasize that the branching structure for
(L,1) random walk is almost as nice as that of (1,1) random walk in the sense that
the offspring distributions of the individuals at i depend only on the transitional
probabilities of the random walk at i (See (4.2) and (4.3) below). Therefore many
related results of (1,1) random walk in random or non-random environment could
be possibly generalized to the (L,1) setting.
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4.3.1 (L,1) Random Walk

Letting R D 1, we consider (L,1) random walk fXng. For n � 0, define the hitting
time of site n by the walk by

Tn D infŒk � 0 W Xk D n�:

In general, it is hard to find the exact distribution of Tn. In Theorem 4.1 we will
see that Tn could be expressed in terms of a multitype branching process with
immigration in varying environment.

For �1 < i < n; 1 � l � L, define

Un
i;l D #f0 < k < Tn W Xk�1 > i;Xk D i � l C 1g;

and set

Un
i WD .Un

i;1;U
n
i;2; � � � ;Un

i;L/:

Throughout the paper, for i � 1; ei denotes the row vector whose ith component
equals 1 and all other components equal 0.

Theorem 4.1 Suppose that lim supn!1 Xn D 1. Then for n > 0,

(1) Tn D n CPn�1
iD�1 Un

i x0; where x0 D .2; 1; : : : ; 1/tI
(2) the process fUn

i gi<n evolves as an L-type branching process with immigration.
The immigration satisfies the following properties: with probability 1, a type-1
particle immigrates at k for 0 � k � n � 1, and there is no immigration at k
for k � n and k < 0. Furthermore, the offspring distributions of the multitype
branching process fUn

i gi<n are as follows: for .u1; : : : ; uL/ 2 Z
LC,

P!.U
n
i�1 D .u1; : : : ; uL/

ˇ
ˇUn

i D e1/

D .u1 C : : :C uL/Š

u1Š � � � uLŠ
!i.�1/u1 � � �!i.�L/uL!i.1/; (4.2)

P!
�
Un

i�1 D el�1 C .u1; : : : ; uL/
ˇ
ˇUn

i D el
�

D .u1 C : : :C uL/Š

u1Š � � � uLŠ
!i.�1/u1 � � �!i.�L/uL!i.1/; 2 � l � L:

(4.3)

We see from (4.2) and (4.3) that the offspring distributions of individuals at i
only depend on !i. This fact is very important for applications. Indeed, if f!ig is
an i.i.d. sequence under some probability measure P, then fUigi�n forms an L-type
branching process with immigration in i.i.d. random environment. Consequently, we
could use directly the limit theorems of the later one to study the limit behaviours
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of (L,1) RWRE. In [22], we studied the tail behaviours of the total progenies of a
multitype branching process with immigration in i.i.d. random environment before
the regenerating time, and proved a stable limit theorem for (L,1) RWRE, which
generalized the stable limit theorem for (1,1) RWRE derived in [18]. Here we
also introduce some other applications. In [10], Hong and Sun proved a renewal
theorem for (L,1) RWRE. In [16, 17] the stationary distributions of (L,1) random
walk and (1,R) random walk were studied respectively. Hong and Yang [13] showed
that the local time of (1,L) random walk converges to Brownian local time. All
these applications highly rely on the branching structure for (L,1) random walk.
In Sect. 4.4, we will also discuss the stationary distribution for a birth-and-death
process with one-side bounded jumps in details to illustrate further application of
the branching structure for (L,1) random walk.

4.3.2 (2,2) Random Walk

Fixing L D R D 2, we consider the (2,2) random walk. Define

T1 D infŒn � 0 W Xn > 0�;

which is of special interest in the study of random walk with bounded jumps in
random environment.

In order to count exactly all the steps of the walk before T1, we define three types
of excursions.

Definition 4.1

a) We call excursions of the form fXk D i;XkC1 D i � 1;XkC2 � i � 1; : : : ;XkCl �
i �1;XkClC1 � ig type-A excursions at i. We classify type-A excursions at i into
three sub-types Ai;1; Ai;2 and Ai;3, corresponding to the possible three kinds of
last step of type-A excursions at i, say, fi�1 ! ig, fi�2 ! ig and fi�1 ! iC1g.

b) We call excursions of the form fXk D i;XkC1 D i � 2;XkC2 � i � 1; : : : ;XkCl �
i � 1;XkClC1 � ig type-B excursions at i. We classify type-B excursions at i into
three sub-types Bi;1; Bi;2 and Bi;3, corresponding to the possible three kinds of
last step of type-B excursions at i, say, fi�1 ! ig, fi�2 ! ig and fi�1 ! iC1g.

c) We call excursions of the form fXk D i C 1;XkC1 D i � 1;XkC2 � i �
1; : : : ;XkCl � i � 1;XkClC1 � ig type-C excursions at i. We classify type-
C excursions at i into three sub-types Ci;1; Ci;2 and Ci;3, corresponding to the
possible three kinds of last step of type-C excursions at i, say, fi � 1 ! ig,
fi � 2 ! ig and fi � 1 ! i C 1g (Fig. 4.1).
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i− 3

i− 2

i− 1

i

i+ 1

Ai, 1Ai, 2 Ai, 3 Bi, 1 Bi, 2 Bi, 3 Ci, 1 Ci, 2 Ci, 3

Fig. 4.1 The figure illustrates type A;B and C excursions at i. We only draw the first step and the
last step. All other steps below i � 1 are omitted

For i � 0 and j D 1; 2; 3, define

Ai;j D #fAi;j excursions before T1g;
Bi;j D #fBi;j excursions before T1g;
Ci;j D #fCi;j excursions before T1g:

To count all the steps of the walk before T1, let

Ui D .Ai;1;Ai;2;Ai;3;Bi;1;Bi;2;Bi;3;Ci;1;Ci;2;Ci;3/ (4.4)

denote the total numbers of different excursions at i before time T1. Then, we have
the following fact.

Theorem 4.2 Suppose that lim supn!1 Xn D 1. Then

T1 D 1C
X

i�0
Ui.2; 2; 1; 1; 1; 0; 2; 2; 1/

t: (4.5)

Remark 4.1 Since the (2,2) random walk is non-nearest neighbor, one can not
provide the exact distribution of T1 in general; but the process fUigi�0 defined
in (4.4) will be proved to be a non-homogeneous multitype branching process. This
fact together with (4.5) enables us to study T1 by the properties of the branching
process.

In order to prove that fUigi�0 forms a multitype branching process, we need to
formulate an ancestor. Note that the walk starts from 0, but before T1, there is no
step downward from some site above 0 to 0. Therefore we can assume that there is
a step of the walk from 1 to 0 before it starts from 0 (We can also assume that this
step is from 2 to 0, but it makes no difference.), that is, set X�1 D 1. Adding such an
imaginary step, the path fX�1 D 1;X0 D 0;X1; : : : ;XT1g forms a type-A excursion
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at 1 such that with probability 1,

A1;1 C A1;2 C A1;3 D 1:

Then U1 could be defined as in (4.4). But since there is no B1;j and C1;j; j D 1; 2; 3,
excursion, U1 has only three possible values, that is, U1 D e1; U1 D e2 or U1 D e3.

We can treat U1 as some particle which immigrates into the system and call it
immigration. To reveal the immigration law, for k � i and j 2 fi C 1; i C 2g, we
define the escaping probabilities

fk.i; j/ D Pk
!.the walk hits .i;1/ at j/;

which could be explicitly calculated by some standard procedure. In [12], we
showed that

P0!.U1 D e1/ D !0.1/

1 � !0.�1/f�1.�1; 0/� !0.�2/f�2.�1; 0/ ; (4.6)

P0!.U1 D e2/ D !0.2/

1 � !0.�1/f�1.�1; 0/� !0.�2/f�2.�1; 0/ ; (4.7)

P0!.U1 D e3/ D 1 � !0.1/� !0.2/� !0.�1/f�1.�1; 0/ � !0.�2/f�2.�1; 0/
1 � !0.�1/f�1.�1; 0/� !0.�2/f�2.�1; 0/ :

(4.8)

Theorem 4.3 Suppose that lim supn!1 Xn D 1. Then fUigi�1 forms a 9-type
non-homogeneous branching process whose immigration distributions are given
by (4.6), (4.7) and (4.8).

We did not present the exact offspring distributions of the multitype branching
process in Theorem 4.3 because they are very complicated. To formulate the
offspring distributions, we need to define an index for each one of the nine types of
excursions. These indices are functionals of the escaping probabilities. With the help
of these indices, the offspring distribution of each one of the nine types of excursions
could be formulated. We refer the readers to [12] for the proofs of Theorems 4.2
and 4.3.

The branching structure for (L,R) random walk is also proved to be useful. We
provide here some examples. We also look forward for some other applications.

(i) To formulate the explicit velocity for the law of large numbers of the random
walk with bounded jumps in random environment. For (L,1) RWRE, it’s always
possible to find the explicit velocity for the law of large numbers, see Brémont
[4]. However, for (L,R) RWRE, though Brémont also proved a law of large
numbers in [5], no explicit velocity is available any longer. In [12], by using
the branching structure for (L,R) random walk, we could formulate the explicit
invariant density for the measure of the so-called “environment viewed from
particles”, which is equivalent to the original measure of the environment.
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Consequently, we could prove the law of large number for (L,R) RWRE and
formulate its velocity explicitly. Similar method also applies to birth-and-death
process with bounded jumps in random environment. For details, see [24].

(ii) To provide the explicit stationary distribution for the random walk with
nonhomogeneous transition probabilities on the lattice of the positive half-line.
The idea is as follows. Consider an excursion of the walk between time 0 and
the first return time of site 0. Using the branching structure, the first return time
of site 0 and the occupation time at some location i of the walk could be written
as the functionals of a multitype branching process, consequently one could
calculate their means. The stationary distribution could be formulated taking
into account that the proportion of the mean occupation time at i with respect
to the mean of the first return time of site 0 is just the mass of the stationary
distribution at i.

4.4 Stationary Distribution for a Birth-and-Death Process
with One-Side Bounded Jumps

In this section, to illustrate the application of the branching structure for (R,1)
random walk introduced in Sect. 4.3.1, we formulate the stationary distribution for
a birth-and-death process with one-side bounded jumps. To introduce the model, fix
1 � R 2 Z and let .
i; �

1
i ; : : : ; �

R
i /i�0 be a sequence of nonnegative R

RC1-valued
vectors, where
0 D 0. Let fNtgt�0 be a continuous time Markov chain, with waiting
time at the state n exponentially distributed with parameter 
n CPR

rD1 �r
n. Once it

leaves state n, it jumps to n C i with probability �i
n=.
n CPR

rD1 �r
n/; i D 1; : : : ;R

or to n � 1 with probability 
n=.
n C PR
rD1 �r

n/. The process fNtgt�0 is called a
nonhomogeneous birth-and-death process with one-side bounded jumps.

The process fNtg defined above is the continuous time analogue of the so-called
(1,R) random walk which was studied in Hong and Zhou [14]. The stationary
distribution of the walk is also provided in the aforementioned paper.

First we present some sufficient conditions for recurrence and positive recur-
rence. Then, for the positive recurrent case, we formulate the explicit stationary
distribution of fNtg. The idea to formulate the stationary distribution is to look
only at the discontinuities of fNtg in order to get its embedded process fXng,
whose stationary distribution �k; k � 0 could be formulated by mean of the
branching structure introduced in Sect. 4.3.1. Since f�k=.
k CPR

rD1 �r
k/gk�0 defines

an invariant measure for the process fNtg, the stationary distribution of the process
could be formulated. The following condition is needed.
(C) There are � > 0 and K < 1 such that for all n > 0; � < 
n < K and for
n � 0; � <

PR
rD1 �r

n < K.
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Remark 4.2 Let Q D .qij/i;j�0 be a matrix with

qij D

8
ˆ̂
<

ˆ̂
:


i; if j D i � 1I
�r

i ; if j D i C r; r D 1; : : : ;RI
��
i CPR

rD1 �r
i /; if j D iI

0; else.

Then, from condition (C), it follows that the matrix Q is a conservative Q-
matrix bounded from above. Hence the process fNtg exists (see Anderson [3,
Proposition 2.9, Chap. 2].). Some weaker condition can also imply its existence (see
Wang [23]).

For each i � 1, define ak
i D

PR
lDk �

l
i


i
; k D 1; : : : ;R,

Mi D

0

B
B
B
@

a1i � � � aR�1
i aR

i

1 � � � 0 0
:::
: : :

:::
:::

0 � � � 1 0

1

C
C
C
A
;

and

Pt.i; j/ D P.Nt D jjN0 D i/:

The following theorem is the main result of this section.

Theorem 4.4 Under condition (C), the following statements hold.

(a) If limn!1 e1M1M2 � � � Mn�1et
1 D 0, then fNtg is recurrent.

(b) If
P1

nD1 1

n

e1M1M2 � � � Mn�1et
1 < 1, then fNtg is positive recurrent and the

limits

 0 WD lim
t!1 Pt.i; 0/ D .

PR
rD1 �r

0/
�1

.
PR

rD1 �r
0/

�1 CP1
nD1 1


n
e1M1M2 � � � Mn�1et

1

; (4.9)

 k WD lim
t!1 Pt.i; k/ D

1

k

e1M1M2 � � � Mk�1et
1

.
PR

rD1 �r
0/

�1 CP1
nD1 1


n
e1M1M2 � � � Mn�1et

1

;

(4.10)

define a stationary distribution for fNtg in the sense that for all t > 0,

 k D
1X

nD0
 nPt.n; k/; k � 0:
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Remark 4.3 Previously to the proof of the theorem, recall the meaning of recurrence
and positive recurrence of a continuous time Markov chain fNtg. Let � D infft >
0 W Nt ¤ N0g and define � D infft > � W Nt D N0g. By definition, � is the time when
fNtg leaves the starting state and � is the time when fNtg returns to the starting state
for the first time after having left it. If P.� < 1/ D 1, we say that fNtg is recurrent;
if E� < 1, we say that fNtg is positive recurrent.

Proof Note that under condition (C), fNtg exists. Let �0 D 0 and define recursively
for n � 1,

�n D infft � �n�1 W Nt ¤ N�n�1g;

with the convention that inf� D 1. For n � 0, set Xn D N�n . Then, fXngn�0 is
a discrete time Markov chain on the lattice of the positive half-line with transition
probabilities

rij D

8
ˆ̂
<

ˆ̂
:


i


iCPR
lD1 �

l
i
; j D i � 1

�k
i


iCPR
lD1 �

l
i
; j D i C k; k D 1; ::;R

0; else.

The process fXng is also known as the embedded process of fNtg.
Denote by

T D inffk > 0 W Xk D X0g

the time when fXng returns to X0 for the first time, and by

� D infft > �1 W Nt D N0g

the time when fNtg returns to N0 for the first time after having left N0.
To prove part (a) of the theorem, it suffices to show that fXng is recurrent

whenever limn!1 e1M1M2 � � � Mn�1et
1 D 0. For this purpose, define for 0 � a <

k < b,

Pk.a; b;C/ WD P.starting from k; fXng exits Œa C 1; b � 1� from above/:

From Markov properties it follows that

Pk.a; b;C/ D
Pk

jDaC1 e1MjMjC1 � � � Mb�1et
1

Pb
jDaC1 e1MjMjC1 � � � Mb�1et

1

;
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where the empty product is the identity. Thus we have that for b > k,

Pk.fXng hits k � 1 before it hits Œb;1// D 1 � e1MkMkC1 � � � Mb�1et
1

1CPb�1
jDk e1MjMjC1 � � � Mb�1et

1

:

Since limn!1 e1M1M2 � � � Mn�1et
1 D 0, from the condition (C), it follows that

Pk.fXng hits k � 1 for some n � 0/ D 1:

Thus, P.T < 1/ D 1. Consequently, fXng is recurrent and so is fNtg.
To prove part (b) of the theorem, suppose that

P1
nD1 1


n
e1M1M2 � � � Mn�1et

1 < 1.

Since 
�1
n ; n � 1 are uniformly bounded away from zero, we have that

lim
n!1 e1M1M2 � � � Mn�1et

1 D 0:

Consequently, it follows from part (a) of the theorem that both fXng and fNtg are
recurrent. Therefore, P.� < 1/ D P.T < 1/ D 1.

To show that fNtg is positive recurrent, it is sufficient to prove E.�/ < 1. Since
fNtg is recurrent, without loss of generality, we can assume that N0 D 0. Let U1 D
e1, and for each i � 2, define

Ui;r D #f0 < k < T W Xk�1 < i;Xk D i C r � 1g; r D 1; : : : ;R;

and let

Ui WD .Ui;1;Ui;2; � � � ;Ui;R/:

It follows from Theorem 4.1 in Sect. 4.3.1 that .Un/n�1 forms an R-type branching
process with offspring distributions

P.UiC1 D .u1; : : : ; uR/
ˇ
ˇUi D e1/

D .u1 C : : :C uR/Š

u1Š � � � uRŠ

 
�1i


i CPR
kD1 �

k
i

!u1

� � �
 

�R
i


i CPR
kD1 �

k
i

!uR
 


i


i CPR
kD1 �

k
i

!

;

(4.11)

and for 2 � l � R,

P
�
UiC1 D el�1 C .u1; : : : ; uR/

ˇ
ˇUi D el

�

D .u1 C : : :C uR/Š

u1Š � � � uRŠ

 
�1i


i CPR
kD1 �

k
i

!u1

� � �
 

�R
i


i CPR
kD1 �

k
i

!uR
 


i


i CPR
kD1 �

k
i

!

:

(4.12)
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By some careful calculation, from (4.11) and (4.12), one has that

E.Ui/ D e1A1A2 � � � Ai�1; (4.13)

where

Ai D

0

B
B
B
@

b1i : : : bR�1
i bR

i

1C b1i : : : bR�1
i bR

i
:::

: : :
:::

:::

b1i : : : 1C bR�1
i bR

i

1

C
C
C
A
;

with br
i D �r

i

i
; r D 1; : : : ;R.

Considering the occupation time of fXng before T, one has that
PT�1

kD0 1XkD0 D 1

and for i � 1,

T�1X

kD0
1XkDi D Ui;1 C UiC11; (4.14)

where here and throughout 1 WD .e1 C : : :C eR/
t.

Considering the occupation time of fNtg before �, one has
R �
0
1NtD0dt D �0;1 and

for i � 1,

Z �

0

1NtDidt D
Ui;1CUiC11X

kD1
�i;k; (4.15)

where �i;k; i � 0; k � 1 are mutually independent random variables, which are also

independent of Ui, and such that P.�i;k > t/ D e�t.
iCPR
rD1 �

r
i /; t � 0. For the proof

of (4.14) and (4.15), we refer the reader to Wang [23].
By Ward’s equation (see Theorem 4.1.5, in Durrett [6]), from (4.13) and (4.15),

it follows that

E.�/ D
1X

nD0
E
	 Z �

0

1NtDndt



D E�0;1 C
1X

nD1
E.Un;1 C UnC11/E�n;1

D
	 RX

rD1
�r
0


�1 C
1X

nD1

1


n CPR
rD1 �r

n

.e1A1A2 � � � An�1et
1 C e1A1A2 � � � An1/

D
	 RX

rD1
�r
0


�1 C
1X

nD1

1


n
e1A1A2 � � � An�11

D
	 RX

rD1
�r
0


�1 C
1X

nD1

1


n
e1M1M2 � � � Mn�1et

1 < 1:

Therefore, fNtg is positive recurrent.
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The existence of the limits  k in (4.9) and (4.10) follows from Theorem 1.6 of
Chap. 5 in Anderson [3]. In the same theorem, it is also proved that if . k/k�0 is a
probability distribution, then it is the unique probability distribution such that for all
t > 0,

 k D
1X

nD0
 nPt.n; k/; k � 0: (4.16)

On the other hand, in Theorem 3.5.1 of Norris [20], it is shown that
	

�k


kCPR
rD1 �

r
k




k�0
satisfies (4.16), where .�k/k�0 is the stationary distribution of the embedded process
fXng. Next we calculate .�k/k�0. For the (1,R) random walk which could stay at its
site, .�k/k�0 was studied in Hong and Zhou [14]. Since the calculation is not too
long and the notations here are a bit different from those in [14], we repeat the
calculation of .�k/k�0.

Note that by (4.13) and (4.14), E.
PT�1

kD0 1XkD0/ D 1 and for n � 1,

E
	 T�1X

kD0
1XkDn



D E.Un;1 C UnC11/

D e1.A1A2 � � � An�1et
1 C A1A2 � � � An1/

D 
n CPR
rD1 �r

n


n
e1A1A2 � � � An�11

D 
n CPR
rD1 �r

n


n
e1M1M2 � � � Mn�1et

1:

One also has

ET D 1C
1X

nD1
E.Un;1 C UnC11/

D 1C
1X

nD1


n CPR
rD1 �r

n


n
e1M1M2 � � � Mn�1et

1:

Let �0 D 1

1CP1

nD1


nC

PR
rD1 �

r
n


n
e1M1M2���Mn�1et

1

and for k � 1 let

�k D

kCPR

rD1 �
r
k


k
e1M1M2 � � � Mk�1et

1

1CP1
nD1


nCPR
rD1 �

r
n


n
e1M1M2 � � � Mn�1et

1

:
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Then, one has that .�k/k�0 defines a stationary distribution for fXng (see Durrett [6]).
Set 
k D �k=.
k CPR

rD1 �r
k/, for k � 0. Then, .
k/k�0 satisfies (4.16). Normalizing


k by setting  k D 
k=.
P1

kD0 
k/ one obtains (4.9) and (4.10). We conclude that
 k; k � 0, is the stationary distribution of fNtg and hence the theorem is proved. ut

4.5 Concluding Remarks

(a) We do not present the branching structure for (1,R) random walk constructed
in [14] in detail since it is a special case of (L,R) random walk. However, it is
important to mention that our construction of the branching structure for (L,R)
random walk was strongly influenced by [14]. Some more general model has
been considered as well. In [15], Hong and Zhang established the branching
structure for the nearest neighbor random walk on a strip.

(b) The branching structure for (L,1) random walk could be generalized to a class
of random walk with unbounded jumps, which could jump a distance of any
size downwards or a distance 1 upwards in each step. Precisely, for i 2 Z, let
. pi; qi1; qi2; : : :/ be an infinite vector with pi; qij � 0; j 2 Z and pi CP1

jD1 qij D
1, and consider random walk fXng with X0 D 0 and transition probabilities

P.XnC1 D jjXn D i/ D
�

pi; j D i C 1

qik; j D i � k; k D 1; 2; : : : :

Let T D inffn > 0 W Xn D 1g and for i < 0; k � 1, define

Ui;k D #f0 < n < T W Xn�1 > i;Xn D i � k C 1g:

Let U0 D .1; 0; 0; : : :/ and for i < 0, denote

Ui D .Ui;1;Ui;2;Ui;3; : : :/:

Then, one has the following result:

Suppose that maxn�0 Xn > 0. Then T D 1 C P
i<0 Ui.2; 1; 1; : : :/

t. Further-
more U0;U�1;U�2; : : : form a countable-type branching process whose off-
spring distributions are as follows: for .u1; u2; u3 : : :/ 2 Z

NC with
P1

kD1 ui <

1,

P.Ui�1 D .u1; u2; u3 : : :/jUi D e1/ D .u1 C u2 C : : :/Š

u1Šu2Šu3Š � � � pi

1Y

jD1
q

uj

ij ;

P.Ui�1 D ek�1 C .u1; u2; u3 : : :/jUi D ek/ D .u1 C u2 C : : :/Š

u1Šu2Šu3Š � � � pi

1Y

jD1
q

uj

ij ; k � 2:
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The proof of this result is similar to that of Theorem 4.1 (we refer the reader to
[11]).
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Chapter 5
Some Asymptotic Results for Strongly Critical
Branching Processes with Immigration
in Varying Environment

Márton Ispány

Mathematics Subject Classification (2000): 60J80, 60F17

5.1 Introduction

In the paper, ZC, N, R, and RC denote the set of non-negative integers, positive
integers, real numbers, and non-negative real numbers, respectively. Every random
variable will be defined on a fixed probability space .˝;A;P/.

Let f�k;j; "k W k; j 2 Ng be independent, non-negative, integer-valued random
variables such that f�k;j W j 2 Ng are identically distributed for each k 2 N. Define
recursively

Xk D
Xk�1X

jD1
�k;j C "k for k 2 N ; X0 D 0 : (5.1)

We can interpret Xk as the size of the kth generation of a population, where �k;j is the
number of offsprings of the jth individual in the .k � 1/st generation and "k is the
number of immigrants contributing to the kth generation. We suppose that either the
reproduction, or the immigration mechanism, or both need not stay the same from
generation to generation. Assume that, for all k 2 N, the moments mk WD E.�k;1/,
�k WD E."k/, �2k WD Var.�k;1/, and b2k WD Var."k/ are finite. The sequence .Xk/k2Z

C

is called a branching process with immigration in varying environment (BPIVE) or
a time-varying branching process with immigration.

M. Ispány (�)
Faculty of Informatics, University of Debrecen, Pf. 12, H-4010 Debrecen, Hungary
e-mail: ispany.marton@inf.unideb.hu

© Springer International Publishing Switzerland 2016
I.M. del Puerto et al. (eds.), Branching Processes and Their Applications, Lecture
Notes in Statistics 219, DOI 10.1007/978-3-319-31641-3_5

77

mailto:ispany.marton@inf.unideb.hu


78 M. Ispány

The theory of branching stochastic models is widely applied in different fields
of sciences, see, e.g., the survey Haccou et al. [5]. Most of the classical models
have been studied in varying environment as well. See, e.g., the papers by Fearn [2],
Jagers [8], Keiding and Nielsen [10] for the case of branching processes without
immigration. The case of branching processes with immigration was considered,
e.g., by Rahimov [12, Chap. III] and [13], Mitov and Omey [11].

For critical BPI in non-varying environment, i.e., when mk D 1, �k D �, �2k D
�2 > 0, and b2k D b2 for all k 2 N, Wei and Winnicki [15] proved a functional

limit theorem Xn L�! X as n ! 1, where Xn
t WD n�1Xbntc for t 2 RC, n 2 N,

where bxc denotes the lower integer-part of x 2 R, and .Xt/t2R
C

is a (nonnegative)
diffusion process with initial value X0 D 0 defined as the unique strong solution to
the stochastic differential equation (SDE)

dXt D � dt C
q
�2XC

t dWt ; t 2 RC ; (5.2)

where .Wt/t2R
C

is a standard Wiener process, and xC denotes the positive part of
x 2 R. If the offspring variance �2 equals to 0 then a fluctuation limit theorem
eXn L�! bW as n ! 1 was proved, where eXn

t WD n�1=2.Xbntc � E.Xbntc// for
t 2 RC, n 2 N, and .Wt/t2R

C

is a standard Wiener process, see Ispány et al. [7,
Theorem 2.2] in a more general setup where sequences of nearly critical BPI’s were
considered.

This paper presents an attempt to generalize the above mentioned limit theorems
to varying environment when the parameters of the environment converge in
some sense. To cover the most important cases, e.g., the periodically varying
environment, we suppose that the parameters of BPIVE converge in the Cesaro
sense. In Theorem 5.1 it is proved that .Xn/n2N converges weakly to a diffusion
process (5.3), which is similar to (5.2), where the diffusion coefficient is a linear
combination of state and time values. For the fluctuation process .eXn/n2N the
invariance principle remains hold, see Theorem 5.2. Note that Rahimov [13]
derived various time changed Brownian motions as limit distributions in the case
of fixed critical offspring distribution and regularly varying immigration processes.
Finally, we recall that a branching process with immigration can be considered
as a particular case of controlled branching processes (CBP), see, e.g., González
and del Puerto [3, Remark 3(2)]. In [3] diffusion approximation was proved for
an array of controlled branching processes under the conditions that the offspring
and control means tend to be critical. Controlled branching processes in varying
environment (CBPVE) were also investigated, see [3, Theorem 2], in the critical
case, and see González et al. [4], in the uniformly sub- and supercritical cases,
respectively. However, in these papers, only the offspring distribution may vary
from one generation to another while the control distribution is supposed to be fixed
in time. In present paper, time-varying immigration and thus time-varying control
distribution, see Remark 5.3, is also allowed.
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The paper is organized as follows. The main results together with the basic
assumptions are stated in Sect. 5.2. Asymptotic formulas are derived for the first
two moments in Sect. 5.3. The two limit theorems are proved in Sect. 5.4.

5.2 Main Results

Throughout the paper, we consider environments which converge in the Cesaro
sense. Recall that a real sequence .�k/k2N converges in the Cesaro sense if there
exists � 2 R such that, for the averages �n WD n�1Pn

kD1 �k, n 2 N, we have
�n ! � as n ! 1. We denote the Cesaro convergence by �k Ý �. Clearly, the
convergence �k ! � implies the Cesaro convergence �k Ý �. A BPIVE is called
asymptotically critical if mn ! 1 as n ! 1. We suppose that the following stronger
assumption A holds:

1X

kD1
jmk � 1j < C1 and �n Ý � as n ! 1 :

If a BPIVE satisfies the first part of this assumption, i.e., the convergence of
the time-varying offspring mean to 1 is fast enough, then it is called strongly
critical. Moreover, we introduce the following assumption B for the variances of
the offspring and immigration distributions:

�2n Ý �2 � 0 and n�1b2n Ý b2 � 0 as n ! 1 :

Plainly, by the Toeplitz theorem, if b2n Ý b2 then n�1b2n Ý 0 as n ! 1.

Example 5.1 A BPIVE possesses periodically varying immigration if there exists a
period s 2 N such that �kCs D �k and b2kCs D b2k for all k 2 N. This clearly holds,
e.g., if L."kCs/ D L."k/ for all k 2 N, where L."/ denotes the distribution of a
random variable ". Then, the second parts of assumptions A and B are fulfilled.

Example 5.2 Suppose that the offspring distributions follow a zero-modified geo-
metric law such that � D �	 where L.�/ is a Bernoulli distribution with mean p and
L.	/ is a geometric distribution with parameter p, where p 2 .0; 1/. Then, E.�/ D 1

and Var.�/ D 2.1� p/=p, i.e., the process is critical and if p varies from generation
to generation then the environment is varying. Such offspring distributions are
investigated in [10, 11].

Let fUn
k W k 2 In; n 2 Ng be a triangular system of random variables, where In is

an index set for each n 2 N. Recall that fUn
k W k 2 In; n 2 Ng satisfies the Lindeberg
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condition if

X

k2In

E
��

Un
k � E.Un

k /
�2
�fjUn

k �E.Un
k /j>�g

� ! 0

as n ! 1 for all � > 0.
A function f W RC ! R is called càdlàg if it is right continuous with left limits.

Let D.RC;R/ denote the space of all real-valued càdlàg functions on RC. Let D1
denote the Borel �-field in D.RC;R/ for the metric defined in (16.4) in Billingsley
[1] (with this metric D.RC;R/ is a complete and separable metric space). For
stochastic processes .Ut/t2R

C

and .Un
t /t2RC

, n 2 N, with càdlàg paths we write

Un L�! U if the distribution of Un on the space .D.RC;R/;D1/ converges
weakly to the distribution of U on the space .D.RC;R/;D1/ as n ! 1.

The first main theorem of the paper is the following analogue of the result of Wei
and Winnicki.

Theorem 5.1 Let .Xk/k2Z
C

be a BPIVE. Suppose that assumptions A and B hold,
and the triangular systems fn�1�k;j W k; j D 1; : : : ; n; n 2 Ng and fn�1"k W k D
1; : : : ; n; n 2 Ng satisfy the Lindeberg condition. For each n 2 N, introduce the
random step function Xn

t WD n�1Xbntc, t 2 RC. Then, weakly in the Skorokhod space
D.RC;R/,

Xn L�! X as n ! 1 ;

where .Xt/t2R
C

is the unique strong solution to the SDE

dXt D � dt C
q
�2XC

t C b2t dWt ; t 2 RC ; (5.3)

with initial value X0 D 0, where .Wt/t2R
C

is a standard Wiener process.

Remark 5.1 The SDE (5.3) has a unique strong solution .Xx
t /t2RC

for all initial

values Xx
0 D x 2 R. Indeed, since jp�2x C b2t � p

�2y C b2tj � �
pjx � yj for

all x; y; t 2 RC, the coefficient functions RC � R 3 .t; x/ 7! � and RC � R 3
.t; x/ 7! p

�2xC C b2t satisfy conditions of part (ii) of Theorem 3.5 in Chap. IX in
Revuz and Yor [14] or the conditions of Proposition 5.2.13 in Karatzas and Shreve
[9]. Further, by the comparison theorem (see, e.g., Revuz and Yor [14, Theorem 3.7,
Chap. IX]), if the initial value Xx

0 D x is non-negative, then Xx
t is nonnegative for all

t 2 RC with probability one. Hence, XC
t may be replaced by Xt under the square

root in (5.3).

Remark 5.2 In the case of �2 > 0 and b2 D 0 the SDE (5.3) is simplified to the
SDE (5.2) and the unique strong solution of the SDE (5.2) is known as a squared
Bessel process, a squared-root process, or a Cox-Ingersoll-Ross (CIR) process. In
the case of �2 D 0 and b2 > 0 the unique strong solution of the SDE (5.3) is given
by Xt D �t C R t

0

p
b2s dWs, t 2 RC. We remark that .Xt/t2R

C

is a continuous
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Gaussian process with independent (but not stationary) increments. Its mean and
covariance functions have the forms E.Xt/ D �t, t 2 RC, and Cov.Xt;Xs/ D
T.t ^ s/, t; s 2 RC, where T.t/ WD 2�1.bt/2, t 2 RC.

Remark 5.3 Define the random variables Zk WD Xk �"k, k 2 N, and �k.`/ WD `C"k,
` 2 ZC, k 2 N. Then, the sequence .Zk/k2N satisfies the recursion

ZkC1 D
�k.Zk/X

jD1
�kC1;j for k 2 N ; Z1 D 0 ;

and thus the stochastic process .Zk/k2N is a CBP with random control functions
.�k/k2N, see, e.g., [3, 4]. If the first two moments of the immigration distributions
are time-homogeneous, i.e., �k D � and b2k D b2 for all k 2 N, then the process
.Zk/k2N satisfies the assumptions of [3, Theorem 2] with the choice m D 1, ˛ D 0

and � D �. It is easy to see that the asymptotic behaviors of .Xk/k2N and .Zk/k2N
coincide, they converge (under the same normalization) to the same limit process
defined by (5.2). Hence, both Theorem 5.1 and [3, Theorem 2] hold equally for a
same wide class of branching processes, although the methods of their proofs are
different: a martingale limit theorem is applied in the proof of Theorem 5.1, while
an operator semigroup convergence theorem is used in [3]. However, [3, Theorem 2]
does not cover the case of time-varying control which occurs when a time-varying
immigration is involved to the model, while Theorem 5.1 of this paper is capable
to handle this case as well. The extension of the results of this paper to the case of
CBP with time-varying random control remains a task for the future.

If �2 D b2 D 0 in assumption B then the limit in Theorem 5.1 will be the
deterministic process Xt D �t, t 2 RC. In this case, let us introduce the following
assumption C for the variances of the offspring and immigration distributions:

n�2n Ý �2 � 0 and b2n Ý b2 � 0 as n ! 1 :

Clearly, this assumption implies assumption B with �2 D b2 D 0. The second
main result of the paper, which is an extension of [7, Theorem 2.2] for varying
environment, is the following fluctuation limit theorem.

Theorem 5.2 Let .Xk/k2Z
C

be a BPIVE. Suppose that assumptions A and C hold,
and the triangular systems fn�1=2�k;j W k; j D 1; : : : ; n; n 2 Ng and fn�1=2"k W k D
1; : : : ; n; n 2 Ng satisfy the Lindeberg condition. For each n 2 N, introduce the
random step function eXn

t WD n�1=2eXbntc, t 2 RC, whereeXk WD Xk � E.Xk/, k 2 ZC.
Then, weakly in the Skorokhod space D.RC;R/,

eXn L�! Q�W as n ! 1 ; (5.4)

where Q�2 WD �2�C b2 and .Wt/t2R
C

is a standard Wiener process.
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In the proofs of the main theorems and propositions we often apply the associated
martingale differences and some basic regression equations. For k 2 ZC, let Fk

denote the �-algebra generated by X0;X1; : : : ;Xk. Then, by (5.1), we have the
conditional expectation

E.Xk jFk�1/ D mkXk�1 C �k ; k 2 N : (5.5)

Clearly,

Mk WD Xk � E.Xk jFk�1/ D Xk � mkXk�1 � �k ; k 2 N ; (5.6)

defines a martingale difference sequence .Mk/k2N with respect to the filtration
.Fk/k2Z

C

. Moreover, we have the recursion (regression equation)

Xk D mkXk�1 C Mk C �k for k 2 N ; X0 D 0 : (5.7)

For the centered process .eXk/k2N, by (5.5) and (5.7), we have the recursion

eXk D mkeXk�1 C Mk for k 2 N ; eX0 D 0 : (5.8)

5.3 Estimations of Moments

First, we need formulas for the martingale difference sequence .Mk/k2N.

Lemma 5.1 For all k 2 N, the decomposition

Mk D
Xk�1X

jD1
.�k;j � mk/C ."k � �k/ DW 	1k C 	2k (5.9)

holds which implies E.Mk jFk�1/ D 0 and E.M2
k jFk�1/ D �2k Xk�1 C b2k .

Proof By (5.1) and (5.6) we have (5.9). The second part of the lemma follows from
the fact that the random variables f�k;j � mk; "k � �k W j 2 Ng are independent of
each others, independent of Fk�1, and have zero mean. ut

In the next proposition we describe the asymptotic behavior of the first two
moments of the process .Xk/k2Z

C

. In the proof of the proposition we apply the
following simple lemma on Toeplitz summation. In the sequel, C denotes various
constants that depend on the context.

Lemma 5.2 Let fan;k W k D 1; : : : ; n; n 2 Ng be a real kernel such that
an;k ! 0 as n ! 1 for each k 2 N,

Pn
kD1 an;k ! a 2 R as n ! 1, and

supn2N
Pn

kD1 kjan;kC1 � an;kj < C1, where an;nC1 WD 0. Moreover, let .�k/k2N be a
real sequence such that �k Ý � as k ! 1. Then

Pn
kD1 an;k�k ! a� as n ! 1.
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Proof Let �n WD Pn
kD1 �k D n�n, n 2 N. By summation by parts we have

nX

kD1
an;k�k D an;n�n �

n�1X

kD1
.an;kC1 � an;k/�k D

nX

kD1
bn;k�k ;

where bn;k WD k.an;k �an;kC1/, k D 1; : : : ; n�1, bn;n WD nan;n, n 2 N. Since bn;k ! 0

as n ! 1 for each k 2 N and
Pn

kD1 bn;k D Pn
kD1 an;k ! a as n ! 1, the Toeplitz

theorem implies the statement of the lemma. ut
Proposition 5.1 Let .Xk/k2Z

C

be a BPIVE and suppose that assumption A holds.
(i) Then n�1E.Xn/ ! � as n ! 1. (ii) Suppose, in addition, that assumption B
holds. Then n�2Var.Xn/ ! .�2�C b2/=2 as n ! 1. (iii) Finally, if assumption C
holds also then n�1Var.Xn/ ! �2�C b2 as n ! 1.

Proof

(i) Introduce the non-negative sequence xk WD E.Xk/, k 2 ZC. Then, by (5.7),
we have the recursion xk D mkxk�1 C �k, k 2 N, with initial value x0 D
0. Clearly, for the recursion yk D yk�1 C �k, k 2 N, with initial value
y0 WD 0, we obtain that n�1yn D n�1Pn

kD1 �k ! � as n ! 1. On the
other hand, for the real sequence zk WD xk � yk, k 2 ZC, the recursion
zk D mkzk�1 C .mk � 1/yk�1, k 2 N, can be derived with initial value z0 D 0.
Hence, we have zk D Pk

jD1
Qk

iDjC1 mi.mj � 1/yj�1, k 2 N. Since
Q`

iDk mi �
exp

nP`
iDk jmi � 1j

o
� exp

˚P1
iD1 jmi � 1j� < C1 for all 0 < k � ` by

assumption A and fn�1yngn2N is a bounded sequence, we have

n�1jznj � n�1
nX

jD1

nY

iDjC1
mijmj � 1jyj�1 � Cn�1

nX

jD1
jjmj � 1j ! 0 (5.10)

as n ! 1 by Kronecker’s lemma. Thus, jn�1xn��j � jn�1yn��jCn�1jznj !
0 as n ! 1 which proves (i).

(ii) Introduce the non-negative sequence Qxk WD E.eX2k/ D Var.Xk/, k 2 ZC. Then,
by (5.8), we have the recursion Qxk D m2

k Qxk�1 C E.M2
k /, k 2 N, with initial

value Qx0 D 0. Define the recursion Qyk D Qyk�1 C E.M2
k /, k 2 N, with Qy0 WD

0. Consider the sequence  k WD k�1E.M2
k /, k 2 N. Then, by Lemma 5.1,

 k D �2k k�1E.Xk�1/C k�1b2k . Assumption B and (i) of Proposition 5.1, by the
Toeplitz theorem, imply that  n Ý �2� C b2 as n ! 1. The kernel fan;k W
k D 1; : : : ; n; n 2 Ng defined by an;k WD n�2k satisfies the assumptions of
Lemma 5.2 with

Pn
kD1 an;k ! 1=2 as n ! 1. Thus, by Lemma 5.2, we have

n�2 Qyn D n�2
nX

jD1
E.M2

j / D
nX

jD1
an;j j ! 1

2
.�2�C b2/ (5.11)
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as n ! 1. For the sequence Qzk WD Qxk � Qyk, k 2 ZC, we obtain the recursion
Qzk D m2

k Qzk�1 C .m2
k � 1/Qyk�1, k 2 N, with Qz0 D 0. Thus, similarly to (5.10),

n�2jQznj � n�2
nX

jD1

nY

iDjC1
m2

i jm2
j � 1jQyj�1 � Cn�2

nX

jD1
j2jm2

j � 1j ! 0

as n ! 1 by Kronecker’s lemma, since
P1

kD1 jm2
k � 1j is finite by assumption

A. We have the assertion (ii) by jn�2 Qxn � .�2� C b2/=2j � jn�2Qyn � .�2� C
b2/=2j C n�2jQznj ! 0 as n ! 1.

(iii) Consider the sequences .Qxk/k2Z
C

, .Qyk/k2Z
C

defined in the proof of (ii). By
Lemma 5.1 and the Toeplitz theorem we have

n�1 Qyn D n�1
nX

kD1
E.M2

k / D n�1
nX

kD1

�
k�2k .k

�1E.Xk�1/C b2k
� ! �2�C b2

(5.12)

as n ! 1, since fn�1k�2k W k D 1; : : : ; n; n 2 Ng is a Toeplitz kernel such that,
as n ! 1, n�1Pn

kD1 k�2k ! �2 by assumption C. Then, (iii) can be proved
by similar arguments to the proofs of (i) and (ii).

ut
Proposition 5.1 implies the following good bounds for the first two moments

of the process .Xk/k2Z
C

. Under assumption A we have E.Xn/ D O.n/, under
assumptions A and B we have Var.Xn/ D O.n2/, finally, under assumptions A
and C we have Var.Xn/ D O.n/. In the following proposition, we prove that these
bounds hold uniformly as well.

Proposition 5.2 Let .Xk/k2Z
C

be a BPIVE. For all n 2 N, define Vn WD
max1�k�n Xk and Wn WD max1�k�n.Xk � E.Xk//

2. (i) If assumptions A and B hold
then E.Vn/ D O.n/ and E.Wn/ D O.n2/. (ii) If assumptions A and C hold then
E.Vn/ D O.n/ and E.Wn/ D O.n/.

Proof

(i) Define the random variables eYk WD Pk
jD1 Mj, k 2 N. Then, .eYk/k2N is a

martingale with respect to the filtration .Fk/k2Z
C

. By Doob’s inequality we
have

E
	

max
1�k�n

eY2k



� 4E
	 nX

jD1
Mj


2 D 4

nX

jD1
E
�
M2

j

�
(5.13)

and (5.11) implies that E.max1�k�neY2k/ D O.n2/. Clearly, eYk D eYk�1 C Mk,
k 2 N, with initial valueeY0 D 0. Thus, for the random sequenceeZk WD eXk �eYk,
k 2 N, by (5.8) we obtain the recursioneZk D mkeZk�1 C .mk � 1/eYk�1, k 2 N,
with eZ0 D 0. Hence, similarly to (5.10), assumption A implies that, for all
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k D 1; : : : ; n,

jeZkj D
ˇ
ˇ
ˇ̌
ˇ
ˇ

kX

jD1

kY

iDjC1
mi.mj � 1/eYj�1

ˇ
ˇ
ˇ̌
ˇ
ˇ

� C max
1�k�n

jeYkj :

By inequality eX2k � 2.eY2k CeZ2k/, we have E.max1�k�neX2k/ D O.n2/ which is
the second statement of (i). Moreover, this implies E.max1�k�n jeXkj/ D O.n/
by Lyapunov’s inequality. Since E.Vn/ � max1�k�n E.Xk/CE.max1�k�n jeXkj/,
by (i) of Proposition 5.1, we have the first statement of (i).

(ii) The proof is similar to part (i) bearing in mind that in inequality (5.13) we have
E.max1�k�neY2k/ D O.n/ by (5.12).

ut

5.4 Proofs of the Main Theorems

In the proofs of the main theorems we apply the following two lemmas of calculus
several times.

Lemma 5.3 Let fn W RC ! R, n 2 N, be a sequence of non-decreasing functions
converging pointwise to the continuous function f W RC ! R. Then, for all T > 0,
supt2Œ0;T� jfn.t/ � f .t/j ! 0 as n ! 1.

Lemma 5.4 Let .ak/k2N and .bk/k2N be two Cesaro convergent sequences of non-
negative real numbers. Then n�2Pn

kD1 akbk ! 0 as n ! 1.

Proof of Theorem 5.1 We apply Theorem 5.3 (see Appendix) with the choice Un
k WD

n�1.Xk � Xk�1/, k; n 2 N, F n
k WD Fk, k 2 ZC; n 2 N, and ˇ.t; x/ WD �, �.t; x/ WD

.�2x C b2t/1=2, t; x 2 RC. Then Un D Xn, n 2 N, and U D X with U0 D 0, where

.Xt/t2R
C

is defined by (5.3). We have to prove for all T > 0 that

sup
t2Œ0;T�

ˇ
ˇ
ˇ̌
ˇ
ˇ

bntcX

kD1
E
�
Un

k jFk�1
� � �t

ˇ
ˇ
ˇ̌
ˇ
ˇ

P�! 0 ; (5.14)

sup
t2Œ0;T�

ˇ
ˇ
ˇ̌
ˇ
ˇ

bntcX

kD1
Var

�
Un

k jFk�1
� �

Z t

0

�
�2Xn

s C b2s
�

ds

ˇ
ˇ
ˇ̌
ˇ
ˇ

P�! 0 (5.15)

as n ! 1, where
P�! denotes convergence in probability, and (5.40) holds for the

pair .Un
k /k2N, .Fk/k2Z

C

, n 2 N.
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Since E.Un
k jFk�1/ D n�1..mk � 1/Xk�1 C�k/, k; n 2 N, in order to prove (5.14)

we have to show that

sup
t2Œ0;T�

ˇ
ˇ
ˇ̌
ˇ
ˇ
n�1

bntcX

kD1
�k � �t

ˇ
ˇ
ˇ̌
ˇ
ˇ

! 0 ; n�1
bnTcX

kD1
jmk � 1jXk�1

P�! 0 (5.16)

as n ! 1. Clearly, the first statement of (5.16) follows from assumption A by
Lemma 5.3. One can see that it is enough to prove the second statement of (5.16)
for T D 1. By Markov’s inequality and (i) of Proposition 5.1, it is enough to see that

n�1
nX

kD1
jmk � 1jE.Xk�1/ � Cn�1

nX

kD1
kjmk � 1j ! 0

as n ! 1 which follows by Kronecker’s lemma.
By Lemma 5.1 we obtain Var.Un

k jFk�1/ D n�2E.M2
k jFk�1/ D n�2.�2k Xk�1 C

b2k/, k; n 2 N. Moreover, for t 2 RC, n 2 N,

Z t

0

Xn
s ds D n�2

bntcX

kD1
Xk�1 C n�2.nt � bntc/Xbntc :

Thus, in order to prove (5.15) it is enough to show that

sup
t2Œ0;T�

n�2
ˇ
ˇ̌
ˇ
ˇ

bntcP
kD1

�2k Xk�1 � �2
bntcP
kD1

Xk�1

ˇ
ˇ̌
ˇ
ˇ

P�! 0 ; (5.17)

n�2VbnTc
P�! 0 ; sup

t2Œ0;T�

ˇ
ˇ
ˇn�2Pbntc

kD1 b2k � 2�1b2t2
ˇ
ˇ
ˇ ! 0 (5.18)

as n ! 1. Recall that for any real sequence .ak/k2N with partial sum An WDPn
kD1 ak, n 2 N, we have, by summation by parts,

nX

kD1
akXk�1 D AnXn �

nX

kD1
Ak.Xk � Xk�1/ ;

since X0 D 0. Using this formula for the sequences .�2k /k2N and .1/k2N, since
by (5.7)

Xk � Xk�1 D .mk � 1/Xk�1 C �k C Mk ; k 2 N ; (5.19)
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we have
ˇ
ˇ̌
ˇ
ˇ

nX

kD1
.�2k � �2/Xk�1

ˇ
ˇ̌
ˇ
ˇ

� jdnjXn C jSnj C
nX

kD1
jmk � 1jjdkjXk�1 C

nX

kD1
jdkj�k ;

where dn WD Pn
kD1 �2k � n�2 and Sn WD Pn

kD1 dkMk, n 2 N. Hence, since it is
enough to prove (5.17) for T D 1, we have to show that, as n ! 1,

n�2 max
1�k�n

jdkjXk
P�! 0 ; n�2 max

1�k�n
jSkj P�! 0 ; (5.20)

n�2
nX

kD1
jmk � 1jjdkjXk�1

P�! 0 ; n�2
nX

kD1
jdkj�k ! 0 : (5.21)

By assumption B there exists D 2 RC such that jdnj < Dn for all n 2 N, and
for all � > 0 there exists N� 2 N such that jdnj < �n if n > N� . Thus, by (i) of
Proposition 5.2, if n > N� then we have

lim
n!1 E

�
n�2 max

1�k�n
jdkjXk

�
� lim

n!1
�
n�1DE .VN� /C �n�1E .Vn/

� � C� ;

where C is a constant which does not depend on �. Then, letting � ! 0, we obtain
the first assertion of (5.20) by Markov’s inequality. In order to prove the second
assertion of (5.20) we apply the Doob inequality for the martingale .Sn/n2N (with
respect to the filtration .Fn/n2Z

C

) and we have

E
	

max
1�k�n

S2k



� 4E

	 nX

kD1
dkMk


2 D 4

nX

kD1
d2k E

�
M2

k

�
:

Thus, by (5.11), if n > N� then we obtain

lim
n!1

E
	

n�4 max
1�k�n

S2k



� lim
n!1

	4D2

n2

N�X

kD1

E
�
M2

k

�C 4"2

n2

nX

kD1

E
�
M2

k

�
 D 2"2.�2�C b2/

and letting � ! 0 we obtain the second assertion of (5.20) by Markov’s and
Lyapunov’s inequalities. The first assertion of (5.21) follows by Markov’s inequality
and (i) of Proposition 5.1 since

n�2
nX

kD1
jmk � 1jjdkjE.Xk�1/ � Cn�2

nX

kD1
k2jmk � 1j ! 0
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as n ! 1 by the Kronecker lemma. Finally, the second assertion of (5.21) follows
by letting � ! 0 in the inequality

lim
n!1

	
n�2

nX

kD1
jdkj�k



� lim

n!1
	D

n

N�X

kD1
�k C �

n

nX

kD1
�k



D �� ;

where we used assumption A. Clearly, the first assertion of (5.18) follows from (i)
of Proposition 5.2 by Markov’s inequality. Since, for all t 2 RC,

n�2
bntcX

kD1
b2k D bntc2

n2

bntcX

kD1
abntc;kk�1b2k ! 2�1b2t2

as n ! 1, where the kernel fan;k W k D 1; : : : ; n; n 2 Ng is defined in the proof of
Proposition 5.1 (ii), by assumption B and the Toeplitz theorem, Lemma 5.3 implies
the second assertion of (5.18).

In order to prove (5.40) for the pair .Un
k /k2N; .Fk/k2Z

C

, n 2 N, we note that
.Un

k /
2 � 3n�2..mk � 1/2X2k�1 C �2k C M2

k / by (5.19). Thus, it is enough to show that

n�2
bnTcX

kD1
.mk � 1/2X2k�1

P�! 0 ; n�2
bnTcX

kD1
�2k ! 0 ; (5.22)

n�2
bnTcX

kD1
E
�
M2

k�fjUn
k j>�g

ˇ
ˇFk�1

� P�! 0 for all � > 0 (5.23)

as n ! 1. Clearly, for (5.22), one can suppose that T D 1. By Markov’s inequality
we have the first statement of (5.22) since the Kronecker lemma implies

n�2
nX

kD1
.mk � 1/2E

�
X2k�1

� � Cn�2
nX

kD1
k2.mk � 1/2 ! 0

as n ! 1, where we applied Proposition 5.1 and
P1

kD1.mk � 1/2 < C1.
Lemma 5.4 implies the second statement of (5.22) from assumption A. In order
to prove (5.23) we note that

�fjYCZj>�g � �fjYj>�=2g C �fjZj>�=2g (5.24)

for any pair of random variables Y and Z. Hence, it is enough to show that

n�2
bnTcX

kD1
E
�
M2

k�fj.mk�1/Xk�1j>�ng
ˇ
ˇFk�1

� P�! 0 ; (5.25)
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n�2
bnTcX

kD1
E
�
M2

k�fj�k j>�ng
ˇ
ˇFk�1

� P�! 0 ; (5.26)

n�2
bnTcX

kD1
E
�
M2

k�fjMk j>�ng
ˇ
ˇFk�1

� P�! 0 (5.27)

as n ! 1 for all � > 0. Clearly, one can also suppose that T D 1, and let � > 0 be
fixed. Since, by Lemma 5.1,

E
�
M2

k�fj.mk�1/Xk�1j>�ng
ˇ̌
Fk�1

� � .�n/�1jmk � 1j ��2k X2k�1 C b2kXk�1
�

in order to prove (5.25), by Markov’s inequality, it is enough to show that

n�3
nX

kD1
jmk �1j ��2k E

�
X2k�1

�C b2kE.Xk�1/
� � Cn�1

nX

kD1
jmk �1j ��2k C k�1b2k

� ! 0

as n ! 1, where we applied (i) and (ii) of Proposition 5.1. This follows from
the Toeplitz theorem since fn�1�2k W k D 1; : : : ; n; n 2 Ng and f.nk/�1b2k W k D
1; : : : ; n; n 2 Ng are Toeplitz kernels by assumption B and jmk � 1j ! 0 as k ! 1
by assumption A. Similarly, in order to prove (5.26) it is enough to show that

n�3
nX

kD1
�k
�
�2k E.Xk�1/C b2k

� � Cn�2
nX

kD1
�k
�
�2k C k�1b2k

� ! 0

as n ! 1 which follows from assumptions A and B by Lemma 5.4. Finally, to
prove (5.27) we apply the decomposition (5.9) and the inequality (5.24). Thus, it is
enough to show that

Li;j
n WD n�2

nX

kD1
E
�
.	 i

k/
2
�fj	j

k j>�ng
ˇ
ˇFk�1

� P�! 0

as n ! 1 for i; j D 1; 2, where 	 i
k is defined by (5.9). Define the random variables

	1k;j WD 	1k � .�k;j � mk/, j D 1; : : : ;Xk�1, k 2 N. In the case of i D j D 1 we have
E.L1;1n / � Fn C Gn C Hn, n 2 N, where

Fn WD n�2
nX

kD1
E

0

@
Xk�1X

jD1
j�k;j � mkj2�fj�k;j�mkj>�n=2g

1

A ;

Gn WD n�2
nX

kD1
E

0

@
Xk�1X

jD1
j�k;j � mkj2�fj	1k;jj>�n=2g

1

A ;
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Hn WD 2n�2
nX

kD1
E
	
jSkj�fj	1k j>�ng



; Sk WD

Xk�1X

iD2

i�1X

jD1
.�k;i � mk/.�k;j � mk/ :

Since f�k;j W j 2 Ng are identically distributed for each k 2 N, by (i) of
Proposition 5.1, we have

Fn � Cn�1
nX

kD1
E
�j�k;1 � mkj2�fj�k;1�mk j>�n=2g

�
; (5.28)

where the right hand side tends to 0 since the Lindeberg condition holds for fn�1�k;j W
k; j D 1; : : : ; n; n 2 Ng. Since �k;j � mk and 	1k;j are independent for all k; j 2 N, by
Proposition 5.1, assumption B and Lemma 5.4 we have

Gn � n�2
nX

kD1
E

0

@
Xk�1X

jD1
j�k;j � mkj24.�n/�2.	1k;j/2

1

A

D 4��2n�4
nX

kD1
�4k E.Xk�1.Xk�1 � 1// � Cn�2

nX

kD1
�4k ! 0

as n ! 1. Since E.S2k/ D 2�1�4k E.Xk�1.Xk�1 � 1// and E..	1k /
2/ D �2k E.Xk�1/,

k 2 N, by the Cauchy-Schwarz and Markov inequalities and Proposition 5.1, we
have

Hn � 2n�2
nX

kD1

�
E.S2k/P.j	1k j > �n/

�1=2 � Cn�3
nX

kD1

�
E.S2k/E.	

1
k /
2
�1=2

D Cn�3
nX

kD1
�3k .E.Xk�1.Xk�1 � 1//E.Xk�1//1=2 � Cn�3=2

 
nX

kD1
�4k

nX

kD1
�2k

!1=2
:

Here, the right hand side tends to 0 by assumption B and Lemma 5.4. In the case of
i D 1, j D 2 we have by the Markov inequality that

E
�
.	1k /

2
�fj	2k j>�ng

ˇ
ˇFk�1

� D �2k Xk�1P .j"k � �kj > �n/ � .�n/�2�2k Xk�1b2k :

Thus, to prove L1;2n
P�! 0 as n ! 1, by Markov’s inequality and (i) of

Proposition 5.1, it is enough to see that

n�4
nX

kD1
�2k b2kE.Xk�1/ � Cn�2

nX

kD1
�2k
�
k�1b2k

� ! 0 (5.29)
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as n ! 1 which follows from assumption B by Lemma 5.4. In the case of i D 2,
j D 1 we have

E
�
.	2k /

2
�fj	1k j>�ng

ˇ
ˇFk�1

� � .�n/�2E
�
.	1k 	

2
k /
2
ˇ
ˇFk�1

� D .�n/�2�2k Xk�1b2k :

Hence, by (5.29), we have E.L2;1n / ! 0 which implies L2;1n
P�! 0 as n ! 1.

Finally, in the case of i D j D 2 we have

L2;2n D n�2
nX

kD1
E
�j"k � �kj2�fj"k��k j>�ng

� ! 0

as n ! 1 because the Lindeberg condition holds for fn�1"k W k D 1; : : : ; n; n 2 Ng.
Thus, we finished the proof. ut
Proof of Theorem 5.2 We apply Theorem 5.3 (see Appendix) with the choice Un

k WD
n�1=2.eXk �eXk�1/, k; n 2 N, F n

k WD Fk, k 2 ZC; n 2 N, and ˇ.t; x/ WD 0, �.t; x/ WD
Q� , t 2 RC; x 2 R. (Clearly, .Un

k /k2N is not a sequence of martingale differences,
hence the standard martingale central limit theorem cannot be applied immediately.)
Then Un D eXn, n 2 N, and U D Q�W, where .Wt/t2R

C

is a standard Wiener
process. We have to prove for all T > 0 that

sup
t2Œ0;T�

ˇ̌
ˇ
ˇ
ˇ
ˇ

bntcX

kD1
E
	

Un
k jFk�1



ˇ̌
ˇ
ˇ
ˇ
ˇ

P�! 0 ; (5.30)

sup
t2Œ0;T�

ˇ̌
ˇ
ˇ
ˇ
ˇ

bntcX

kD1
Var

	
Un

k jFk�1



� Q�2t
ˇ̌
ˇ
ˇ
ˇ
ˇ

P�! 0 (5.31)

as n ! 1 and (5.40) holds for the pair .Un
k /k2N; .Fk/k2Z

C

, n 2 N.
We have E.Un

k jFk�1/ D n�1=2.mk � 1/eXk�1, k; n 2 N. In order to prove (5.30)
we can suppose that T D 1 and, by Markov’s inequality, it is enough to show that

n�1=2
nX

kD1
jmk � 1jEjeXk�1j � Cn�1=2

nX

kD1
k1=2jmk � 1j ! 0

as n ! 1 which follows by Kronecker’s lemma. Note that we applied the Lyapunov
inequality EjeXnj � .Var.Xn//

1=2 D O.n1=2/ together with (iii) of Proposition 5.1.
By Lemma 5.1 we obtain Var.Un

k jFk�1/ D n�1E.M2
k jFk�1/ D n�1.�2k Xk�1 C

b2k/, k; n 2 N. Thus, in order to prove (5.31) it is enough to show that

sup
t2Œ0;T�

ˇ
ˇ
ˇ
ˇ
ˇ̌n

�1
bntcX

kD1
�2k
eXk�1

ˇ
ˇ
ˇ
ˇ
ˇ̌

P�! 0 ; (5.32)
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sup
t2Œ0;T�

ˇ
ˇ
ˇ̌
ˇ
ˇ
n�1

bntcX

kD1
�2k E.Xk�1/ � �2�t

ˇ
ˇ
ˇ̌
ˇ
ˇ

! 0 ; (5.33)

sup
t2Œ0;T�

ˇ
ˇ
ˇ̌
ˇ
ˇ
n�1

bntcX

kD1
b2k � b2t

ˇ
ˇ
ˇ̌
ˇ
ˇ

! 0 (5.34)

as n ! 1. To prove (5.32) we can also suppose that T D 1 and, by Lyapunov’s and
Markov’s inequalities together with (iii) of Proposition 5.1, it is enough to show that

n�1
nX

kD1
�2k EjeXk�1j � n�1

nX

kD1
�2k .Var.Xk�1//1=2 � Cn�1

nX

kD1
�2k k1=2 ! 0

as n ! 1. This follows from the Toeplitz theorem since fn�1k�2k W
k D 1; : : : ; n; n 2 Ng is a Toeplitz kernel by assumption C. Since
n�1Pn

kD1 �2k E.Xk�1/ ! �2� as n ! 1 by assumption C, (i) of Proposition 5.1,
and the Toeplitz theorem, Lemma 5.3 implies (5.33). Finally, Lemma 5.3 also
implies (5.34) by assumption C.

The conditional Lindeberg condition (5.40) for the pair .Un
k /k2N; .Fk/k2Z

C

, n 2
N, can be proved similarly as in the proof of Theorem 5.1. Since eXk � eXk�1 D
.mk � 1/eXk�1 C Mk, k 2 N, it is enough to prove, for all � > 0, that

n�1
bnTcX

kD1
.mk � 1/2eX2k�1

P�! 0 ; (5.35)

n�1
bnTcX

kD1
E
�
M2

k�fj.mk�1/eXk�1j>�n1=2g
ˇ̌
Fk�1

� P�! 0 ; (5.36)

n�1
bnTcX

kD1
E
�
M2

k�fjMk j>�n1=2g
ˇ
ˇFk�1

� P�! 0 (5.37)

as n ! 1. Clearly, it is again enough to consider the case when T D 1. Using (iii)
of Proposition 5.1 and

P1
kD1.mk � 1/2 < C1, the Kronecker lemma implies

n�1
nX

kD1
.mk � 1/2E

�
eX2k�1

� � Cn�1
nX

kD1
k.mk � 1/2 ! 0

as n ! 1. Thus, by Markov’s inequality, we obtain (5.35). By Lemma 5.1 we have

E
�
M2

k�fj.mk�1/eXk�1j>�n1=2g
ˇ̌
Fk�1

� � ��1n�1=2jmk � 1jjeXk�1j.�2k Xk�1 C b2k/ :
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Moreover, E.jeXnjXn/ � .Var.Xn/E.X2n//
1=2 D O.n3=2/ and EjeXnj � .Var.Xn//

1=2 D
O.n1=2/ by the Cauchy-Schwarz and Lyapunov inequalities and Proposition 5.1.
Thus, again by Markov’s inequality, to prove (5.36) it is enough to show that

n�3=2
nX

kD1
�2k jmk � 1jE.jeXk�1jXk�1/ � Cn�1

nX

kD1
k�2k jmk � 1j ! 0 ;

n�3=2
nX

kD1
b2k jmk � 1jEjeXk�1j � Cn�1

nX

kD1
b2k jmk � 1j ! 0

as n ! 1 which follows from the Toeplitz theorem since fn�1k�2k W k D
1; : : : ; n; n 2 Ng and fn�1b2k W k D 1; : : : ; n; n 2 Ng are Toeplitz kernels by
assumption C and jmk�1j ! 0 as k ! 1 by assumption A. Finally, we prove (5.37)
similarly to the proof of (5.27). For each n 2 N, defineeLi;j

n , i; j D 1; 2, andeFn;eGn;eHn

similarly to Li;j
n , i; j D 1; 2, and Fn;Gn;Hn, by replacing the normalizing factor n�2

with n�1 and n with n1=2 in the indicator functions, respectively. It remains to prove
eLi;j

n
P�! 0 as n ! 1 for i; j D 1; 2. Similarly to (5.28), we have

eFn � C
nX

kD1
E
	
j�k;1 � mkj2�fj�k;1�mk j>�n1=2=2g



! 0

as n ! 1 since the Lindeberg condition holds for fn�1=2�k;j W k; j D 1; : : : ; n; n 2
Ng. Moreover, we have

eGn � 4��2n�2
nX

kD1
�4k E.Xk�1.Xk�1 � 1// � Cn�2

nX

kD1

�
k�2k

�2 ! 0

as n ! 1 by Lemma 5.4 and assumption C. By the Cauchy-Schwarz inequality we
have

eHn � Cn�3=2
nX

kD1
�3k k3=2 � Cn�3=2

 
nX

kD1
k�2k

nX

kD1

�
k�2k

�2
!1=2

;

where the right hand side tends to 0 as n ! 1 by assumption C and Lemma 5.4.

Thus, we provedeL1;1n
P�! 0 as n ! 1. Since

E
�
.	1k /

2
�fj	2k j>�n1=2g

ˇ̌
Fk�1

� D �2k Xk�1P
�j"k � �kj > �n1=2

� � ��2n�1�2k Xk�1b2k
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in order to prove the case i D 1, j D 2 it is enough to show that

n�2
nX

kD1
�2k b2kE.Xk�1/ � Cn�2

nX

kD1
.k�2k /b

2
k ! 0 (5.38)

as n ! 1 which follows from assumption C by Lemma 5.4. In the case of i D 2,
j D 1 we have

E
�
.	2k /

2
�fj	1k j>�n1=2g

ˇ̌
Fk�1

� � ��2n�1E
�
.	1k 	

2
k /
2
ˇ̌
Fk�1

� D ��2n�1�2k Xk�1b2k :

Thus,eL2;1n
P�! 0 as n ! 1 follows from (5.38) by Markov’s inequality. Finally,

eL2;2n D n�1
nX

kD1
E
�j"k � �kj2�fj"k��k j>�n1=2g

� ! 0

as n ! 1 since the Lindeberg condition holds for fn�1=2"k W k D 1; : : : ; n; n 2 Ng.
ut
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Appendix

In the proofs we need the following result about convergence of random step
processes towards a diffusion process, see Ispány and Pap [6, Corollary 2.2].

Theorem 5.3 Let ˇ W RC �R ! R and � W RC �R ! R be continuous functions.
Assume that uniqueness in the sense of probability law holds for the SDE

dUt D ˇ.t;Ut/ dt C �.t;Ut/ dWt ; t 2 RC ; (5.39)

with initial value U0 D u0 for all u0 2 R, where .Wt/t2R
C

is a standard Wiener
process. Let .Ut/t2R

C

be a solution of (5.39) with initial value U0 D 0.
For each n 2 N, let .Un

k /k2N be a sequence of random variables adapted to a

filtration .F n
k /k2Z

C

. Let Un
t WD Pbntc

kD1 Un
k , t 2 RC; n 2 N. Suppose E

�jUn
k j2� < 1
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for all n; k 2 N. Suppose that, for each T > 0,

sup
t2Œ0;T�

ˇ
ˇ
ˇ̌
ˇ
ˇ

bntcX

kD1
E
�
Un

k jF n
k�1
� �

Z t

0

ˇ.s;Un
s /ds

ˇ
ˇ
ˇ̌
ˇ
ˇ

P�! 0 ;

sup
t2Œ0;T�

ˇ
ˇ
ˇ̌
ˇ
ˇ

bntcX

kD1
Var

�
Un

k jF n
k�1
� �

Z t

0

�
�.s;Un

s /
�2

ds

ˇ
ˇ
ˇ̌
ˇ
ˇ

P�! 0 ;

bnTcP

kD1
E
�jUn

k j2�fjUn
k j>�g

ˇ
ˇF n

k�1
� P�! 0 for all � > 0 : (5.40)

Then Un L�! U as n ! 1.
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Chapter 6
Subcritical Branching Processes in Random
Environment

Vladimir Vatutin
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6.1 Introduction

For the first time the model of a branching process in random environment (BPRE)
was considered by Smith and Wilkinson [20] in 1969 who dealt with the case of
i.i.d. random environments. Then Athreya and Karlin [10, 11] in 1971 have studied
BPRE’s evolving in a more general environment. Since then a great number of
articles have been published investigating the behavior of branching processes in
random environment (see, for instance, surveys [13, 24, 25]). The present survey,
having certain intersections with [25] is devoted to a description of the most recent
results for subcritical branching processes in random environment obtained mainly
by the author in collaboration with other scientists.

There are two possibilities to study stochastic processes in random environment:
the quenched and annealed approaches. Under the quenched approach character-
istics of a BPRE such as the survival probability at moment n or the distribution
of the number of particles at this moment are treated as random variables or
random measures where the source of randomness is due to uncertainty in possible
realizations of the environment. Under the annealed approach the aim is to
investigate the mean values of the mentioned characteristics using the averaging
over possible realizations of the environment.

Now we give the formal definition of the BPRE’s.
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Let N be the space of probability measures on N0 D f0; 1; 2; : : :g. Equipped with
the metric of total variation N becomes a Polish space. Let � be a random variable
taking values in N. An infinite sequence ˘ D .�1; �2; : : :/ of i.i.d. copies of � is
said to form a random environment. A sequence of N0-valued random variables
Z0;Z1; : : : is called a branching process in the random environment ˘ , if Z0 is
independent of ˘ and, given ˘ , the process Z D .Z0;Z1; : : :/ is a Markov chain
with

L .Zn j Zn�1 D zn�1;˘ D .�1; �2; : : :// D L .�n1 C � � � C �nzn�1 / (6.1)

for every n � 1; zn�1 2 N0 and �1; �2; : : : 2 N, where �n1; �n2; : : : are i.i.d. random
variables with distribution �n. Thus,

Zn D
Zn�1X

iD1
�ni (6.2)

and, given the environment, Z is an ordinary inhomogeneous Galton-Watson
process. We will denote the corresponding probability measure and expectation on
the underlying probability space by P and E, respectively.

Let

f .s/ D f .�I s/ D
1X

kD0
� .fkg/ sk;

fn.s/ D fn .�nI s/ D
1X

kD0
�n .fkg/ sk; n D 1; 2; : : :

be a tuple of random probability generating functions. Denote

X D log f 0.1/; Xn D log f 0
n.1/; n D 1; 2; : : : ;

and introduce the so-called associated random walk (ARW) S D fSn; n D 0; 1; : : :g
specified by the formulas

S0 D 0; Sn D X1 C � � � C Xn; n � 1:

Throughout we will denote the probability and expectation conditioned on the
environment by

P.�/ D P .� j f1; f2; : : :/ ; E Œ�� D E Œ� j f1; f2; : : :� :

Clearly,

E ŒZn� D eSn :
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This representation leads to the following classification of branching processes
in random environment: a BPRE is called

1. supercritical if limn!1 Sn D C1 with probability 1;
2. subcritical if limn!1 Sn D �1 with probability 1;
3. non-degenerate critical if lim supn!1 Sn D C1 and lim infn!1 Sn D �1

both with probability 1;
4. degenerate critical if Sn D 0 for all n.

This classification, due to [6], is based on the crucial fact that any random walk
with i.i.d. increments can be attributed to one of these four classes. Since

P .Zn > 0/ D min
1�k�n

P.Zk > 0/ � min
1�k�n

E ŒZk� D emin.S1;:::;Sn/

it follows that the extinction probability of subcritical and non-degenerate critical
BPRE’s equals 1 a.s.

In many situations we may express the classification above in terms of the
moment generating function

'.t/ D E
�
etX
� D E

h�
f 0.�I 1/�t

i
; t 2 .�1;C1/:

Clearly, ' 0.0/ D E ŒX� if both of the quantities exist. If this is the case we say that a
BPRE is

• supercritical if ' 0.0/ D EŒX� D E Œlog f 0.1/� > 0,
• critical if ' 0.0/ D EŒX� D E Œlog f 0.1/� D 0,
• subcritical if ' 0.0/ D EŒX� D E Œlog f 0.1/� D �a < 0.

Subcritical BPRE’s admit an additional classification which is based on the
properties of '.t/. Namely, let

�C D sup ft � 0 W '.t/ < 1g and �� D inf ft W '.t/ < 1g

and let ˇ be the point where '.t/ attains its minimal value on the interval

Œ0; �C ^ 1� 
 Œ��; �C� :

Then a subcritical BPRE is called

• weakly subcritical if ˇ 2 .0; �C ^ 1/,
• intermediately subcritical if ˇ D �C ^ 1 > 0 and ' 0.ˇ�/ D 0,
• strongly subcritical if ˇ D �C ^ 1 > �� and ' 0.ˇ�/ < 0,
• boundary subcritical if ˇ D �� D �C D 0.
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For these subcritical BPRE’s we give a survey of some recent results concerning
the following problems under the annealed approach:

• the asymptotic behavior of the survival probabilities P.Zn > 0/ as n ! 1;
• the form of the environments providing the survival, i.e. we list a number of

theorems for the conditional distributions P.Sm 2 dxjZn > 0/, as n and m tend to
infinity in an appropriate way;

• conditional limit theorems of the form P.Zn 2 dx jZn > 0/ as n ! 1;
• functional conditional limit theorems of the form P.Znt 2 dx; 0 � t � 1jZn > 0/

as n ! 1I
• conditional limit theorems of the form P.Tx 2 dy jTx < 1/ as x ! 1, where

Tx D min fk � 1 W Zk > xg.

Setting

� D EŒeˇX � (6.3)

and observing that E
�
eˇSn

� D �n we introduce the following auxiliary measure
P with expectation E. For any n 2 N and any measurable, bounded function  W
�n � N

nC1
0 ! R, the measure P is given by

EŒ .�1; : : : ; �nI Z0; : : : ;Zn/� D ��n
E
�
 .�1; : : : ; �nI Z0; : : : ;Zn/e

ˇSn
�
:

Notice that if EŒX� D 0 then S is a recurrent random walk under P.

Condition 6.1 The distribution of X with respect to P is non-lattice, has zero mean
and belongs to the domain of attraction of a stable law with index ˛ 2 .1; 2�.

Under Condition 6.1 there exists an increasing sequence of positive numbers an

regularly varying at infinity

an D n1=˛l.n/ (6.4)

such that the scaled ARW a�1
n Snt P-weakly converges to a strictly stable Lévy

process L D .L.t/; t � 0/ with parameter ˛. Here and elsewhere in the expressions
like Snt the index nt is understood as its integer part.

Denote

Ln D min .S1; : : : ; Sn/ :

One of the main ideas in finding the asymptotic behavior of the survival
probability of subcritical BPRE’s within the framework of the annealed approach
is to show that under natural conditions

P .Zn > 0/ � � P .Ln � 0/ ; n ! 1; (6.5)
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where � > 0. This is done by splitting trajectories of the ARW at the point of global
minimum on the interval Œ0; n�. For the annealed approach the trajectory splitting
method was first used for the critical BPRE’s by Dyakonova et al. [16] and then
further developed by Afanasyev et al. [6].

6.1.1 Weakly Subcritical Case

Let � D �.�/ be the offspring number of a particle evolving in the environment � .
By definition

EŒs� � D EŒ f .s/�:

To state the known results for the weakly subcritical case we need to impose
a higher moment assumption on the environment in terms of the standardized
truncated second moment of �

	.a/ D E
�
�21f��ag

�

.E Œ��/2
: (6.6)

Condition 6.2 For some positive " and a

EŒ.lnC 	.a//˛C"� < 1:

It was proved by Afanasyev et al. [8] for the weakly subcritical BPRE’s that
under Conditions 6.1 and 6.2 there exist numbers 0 < �; � 0 < 1 such that

P .Zn > 0/ � � P .Ln � 0/ � � 0 �n

nan
;

where � is from (6.3) and an are from (6.4). In addition, it was established under the
same assumptions that the conditional laws

L.Zn j Zn > 0/; n � 1;

converge weakly to some probability law with the support on the set of positive
integers and the sequence EŒZ#n j Zn > 0� is bounded for any # < ˇ. The last implies
convergence of the prelimiting moments of orders # < ˇ to the corresponding
moments of the limit distribution.

For integers 0 � r � n let

Xr;n
t D ZrC.n�r/t � e�SrC.n�r/t ; t 2 Œ0; 1� ; (6.7)
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be the rescaled generation size process. It was shown in [8] that under Conditions 6.1
and 6.2, as n ! 1

L
�
Xrn;n

t ; t 2 Œ0; 1� ˇˇ Zn > 0
� H) L

�
Wt; t 2 Œ0; 1��;

where the symbol H) means weak convergence in the space DŒ0; 1� endowed with
Skorokhod topology, and r1; r2; : : : are natural numbers such that rn < n=2 and
rn ! 1. Here Wt D W a.s. for all t 2 Œ0; 1� and P .0 < W < 1/ D 1. Earlier
versions of these results can be found in [1, 17].

6.1.2 Intermediately Subcritical Case

Afanasyev et al. [9] proved that given ˇ D 1 and Conditions 6.1, 6.2 there are a
constant 0 < � < 1 and a sequence l.n/; n D 1; 2; : : : slowly varying at infinity
such that

P .Zn > 0/ � ��n P .Sn < min.S1; : : : ; Sn�1// � �nl.n/

n1�1=˛
; n ! 1;

and that the unscaled population size Zn conditioned on fZn > 0g converges in
distribution, as n ! 1 to a proper random variable.

These results were first obtained by Vatutin in [21] under slightly different
assumptions.

Consider the ˛-stable Lévy process L on the interval 0 � t � 1 and let Lc D
.Lc.t/; 0 � t � 1/ be the corresponding Lévy process conditioned on having its
minimum at time t D 1. For the precise definition of such a process, we refer to
[9]. Let e1; e2; : : : denote the excursion intervals of Lc between consecutive local
minima and put j .t/ D i for t 2 ei. It was shown in [9] that Conditions 6.1 and 6.2
imply for 0 < t1 < t2 < : : : < tk < 1 and n ! 1 W

L
�

Znt1

exp .Snt1 � mink�nt1 Sk/
; : : : ;

Zntk

exp .Sntk � mink�ntk Sk/

ˇ
ˇ Zn > 0

�

d! L
�
Vj.t1/; : : : ;Vj.tk/

�
; (6.8)

where V1;V2; : : : are i.i.d. copes of some strictly positive random variable V . This
means that if ti and tk belong to one and the same excursion, then j .ti/ and j .tk/
coincide, i.e. Vj.ti/ D Vj.tk/ with probability 1. Notice that here

j.t1/ � j.t2/ � : : : � j.tn/:

For the fractional-linear case this result was earlier obtained by Afanasyev in [2].
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Define the process Lr D .Lr.t/; 0 � t � 1/, which is the process Lc reflected at
its current minimum and given by

Lr.t/ D Lc.t/ � min
s�t

Lc.s/ :

The next theorem, established in [14] refines the properties of the trajectories of
the intermediately subcritical process Z given its survival up to a distant moment n:

Theorem 6.3 Under Conditions 6.1, 6.2, as n ! 1

L
	 log Znt

an
; 0 � t � 1

ˇ
ˇ Zn > 0



H) L.Lr.t/; 0 � t � 1/:

Let

� .nt/ D minfi 2 Œ0; nt� W Si D min .0;Lnt/g

be the left–most point at which the ARW attains its minimal value on the time-
interval Œ0; nt�. It was demonstrated in [9] that at the times of consecutive ARW
minima the population sizes have discrete limit distributions

L
� �

Z�.nt1/; : : : ;Z�.ntk/
� ˇˇ Zn > 0

� d! L
�
Yj.t1/; : : : ;Yj.tk/

�
;

where Y1;Y2; : : : are i.i.d. copies of a random variable Y taking values in N.
This, combined with (6.8) shows that the population of the intermediate subcritical
process survived up to a distant moment n had passed through a number of
bottlenecks when the size of the population dropped down to a small number of
individuals while between the bottlenecks the population size has an exponential
order (with the parameter of exponentiality proportional to

p
n).

6.1.3 Strongly Subcritical Case

6.1.3.1 The Case ˇ D 1

Guivarc’h and Liu in [18] have shown for strongly subcritical processes with ˇ D 1

and satisfying

E
�
� lnC �

�
< 1 (6.9)

that for some c 2 .0; 1�

P .Zn > 0/ Ï c .E Œ��/n ; n ! 1: (6.10)
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This asymptotic formula was originally established by D’Souza and Hambly in
[15] under an extra moment assumption. For the fractional-linear case (6.10) was
obtained in [1].

Geiger et al. [17] studied the strongly subcritical BPRE’s under condition (6.9)
and proved that

lim
n!1P

�
Zn D z

ˇ
ˇ Zn > 0

� D rz; z 2 N;

where

1X

zD1
rz D 1 and mr D

1X

zD1
zrz < 1:

Let

� D f 00 .1/
.f 0 .1//2

D E Œ�.� � 1/�

.E Œ��/2
: (6.11)

Afanasyev et al. [7] have introduced the following condition in the strongly
subcritical case.

Condition 6.4 Suppose that

E
�
eX lnC �

�
< 1:

Since E
�
eX
�
< 1 for the strongly subcritical case with ˇ D 1, Condition 6.4

holds, in particular, if the random offspring distribution � has a uniformly bounded
support. It also holds if � is a Poisson distribution with random mean, so that � D 1

a.s., or if � is a geometric distribution on N0 where � D 2 a.s.
It was shown in [7] that given

0 D in;0 < in;1 < in;2 < : : : < in;k < in;kC1 D n

the following weak convergence holds

L
� �

Zj
�
0�j�m

;
�
Zin;1Cj

�
0�j�m

; : : : ;
�
Zin;kCj

�
0�j�m

;
�
Zn�j

�
0�j�m

ˇ
ˇ Zn > 0

�

d! Lı1

� �
Yj
�
0�j�m

�˝ LOr
� �

Yj
�
0�j�m

�˝k ˝ Lr
�
.eYj/0�j�m

�
;

for every k;m 2 N0 as min0�l�k .in;lC1 � in;l/ ! 1 and n ! 1. Here,
L


� �
Yj
�

j�0
�

denotes the law of the Markov chain
�
Yj
�

j�0 with initial distribution

 and transitional probabilities

bPyz D zP
�
�1 C : : :C �y D z

�

yE Œ��
; y; z 2 N;
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where �1; : : : ; �y are independent copies of the offspring number �. The stationary
distribution of

�
Yj
�

j�0 is

Orz D zrz

mr
; z 2 N:

The process .eYj/j�0 is the time-reversed Markov chain with transition probabilities

ePyz D OrzbPzy

Ory
:

6.1.3.2 The Case ˇ D 0

In this part of the survey we consider a subcritical branching process in random
environment such that

E
�
XetX

� D 1
for any t > 0.

To be more specific, we suppose that a D �EŒX� > 0, E
�
X2
�
< 1 and, in

addition, as x ! 1,

A.x/ D P .X > x/ � l.x/

x�
; � > 2; (6.12)

where l.x/ is a function slowly varying at infinity. Thus, the random variable X does
not satisfy the Cramer condition for t > 0.

We also assume that A.x/ meets the following (technical)

Assumption A1 for any fixed h > 0,

A.x C h/� A.x/ D �h�A.x/

x
.1C o.1// as x ! 1: (6.13)

Let � D �.�/ be the same as in (6.11).

Assumption A2 (i) there exists ı > 0 such that, as x ! 1;

P .� > x/ D o

 
1

log x � .log log x/1Cı

!

I

(ii) as n ! 1,

L .f .1 � e�an/ jX > an/
d! L.
/; (6.14)

where 
 is a random variable which is less than 1 with a positive probability.
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Let L� .Z1e�an/ be the law of Z1e�an under fixed � corresponding to f .�I s/.
If EX < 0 then (6.14) is equivalent to the following assumption, concerning
convergence of random measures:

L� .Z1e
�xjX > x/ H) 
ı0 C .1 � 
/ ı1 as n ! 1; (6.15)

where ı0 and ı1 are measures assigning unit masses to the corresponding points.
In what follows we assume that the distribution of X is nonlattice. The case when

the distribution of X is lattice needs natural changes in the respective statements.
Define

fk;n .s/ D fk. fkC1.: : : . fn�1 .s// : : ://; 0 � k � n�1; and fn;n .s/ D s: (6.16)

Theorem 6.5 Assume that a D �EŒX� > 0 and conditions (6.12), (6.13) and
Assumptions A1 and A2 are valid. Then the survival probability of the process fZng
has, as n ! 1, the asymptotic representation

P .Zn > 0/ � KP .X > na/ ; (6.17)

where

K D
1X

jD0
E
�
1 � f0;j .
/

� 2 .0;1/; (6.18)

and 
 is a random variable that has the same distribution as the 
 in Assump-
tion A2(ii) and is independent of the underlying environment ˘ D f�ng .and
consequently of ff0;jg for each j D 0; 1; : : : /.

It can be shown that if �1 is either almost surely a Poisson distribution or almost
surely a geometric distribution, then 
 � 0 and the constant K D P1

jD0 P.Zj > 0/.
In this case Theorem 6.5 has the following intuitive explanation. Let

Un D inf
˚
j W Xj > na

�
(6.19)

be the first time when the increment of the ARW exceeds na (the ARW has a big
jump). Then the event fZn > 0g is asymptotically equivalent to

fUn < n;ZUn�1 > 0g D [j<nfZj�1 > 0;Un D jg:

Now for each fixed j � 1,

P.Zj�1 > 0;Un D j/ � P.Zj�1 > 0/P.X1 > na/;
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and hence, not rigorously,

P.Zn > 0/ � P.Un < n;ZUn�1 > 0/

�
1X

jD1
P.Zj�1 > 0/ � P.X1 > na/ D KP.X1 > na/:

In fact, one can show that the process fZk; k D 1; 2; : : :g survives up to a distant
moment n owing to one big jump of the ARW happened at the very beginning of the
evolution of the process; moreover, the big jump is accompanied by a population
explosion which leads to survival.

We now give an example taken from [23] of a BPRE where 
 is either positive
and less than 1 with probability 1, or random with support not concentrated at 1.
To this aim let 
 be a random variable with values in Œ0; 1 � ı� � Œ0; 1� for some
ı 2 .0; 1�, and p and q; p C q D 1; pq > 0, be random variables independent of 

such that the random variable

X D log .1 � 
/C log
p

q

meets the conditions EŒX� < 0 and (6.12). Define

f .s/ D 
 C .1 � 
/ q

1 � ps
:

Then f 0.1/ D .1 � 
/ p=q D eX , and


 � f .1 � e�an/ D 
 C .1 � 
/ q

q C pe�na

D 
 C .1 � 
/ 1

1C .1 � 
/�1 eX�na

� 
 C e�.X�na/:

Since EŒX� < 0, we have for any " 2 .0; 1/,

lim
n!1

P .j f .1� e�an/� 
j � " j X > na/ � lim
n!1

P .X � na � � log " j X > na/ D 0:

Therefore, as n ! 1;

L .f .1 � e�an/jX > na/
d! L.
/:
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Let �2 D Var.X/. The following conditional functional limit theorem was proved
in [23]:

Theorem 6.6 Suppose that a D �EŒX� > 0 and (6.12), (6.13) and Assumptions A1
and A2 are valid. Then for any j � 1,

lim
n!1P.Un D jjZn > 0/ D E.1 � f0;j.
//=K:

Moreover,

L
�

ZŒnt�_Un

ZUn exp.SŒnt�_Un � SUn/
; 0 � t � 1

ˇ
ˇ
ˇ
ˇZn > 0

�
H) L .1; 0 � t � 1/ ; (6.20)

L
�

1

�
p

n

�
log

�
ZŒnt�_Un=ZUn

�C nta
�
; 0 � t � 1

ˇ
ˇ̌
ˇZn > 0

�
H) L.Bt; 0 � t � 1/;

(6.21)

and for any " > 0,

L
�

1

�
p

n

�
log

�
ZŒnt�=ZŒn"�

�C n.t � "/a
�
; " � t � 1

ˇ
ˇ
ˇ̌ Zn > 0

�

H) L.Bt � B"; " � t � 1/;

where Bt is a standard Brownian motion.

Therefore, after the population explosion at time Un, the population drops
exponentially at rate a, with a fluctuation of order exp.O.

p
k// with k the number

of generations elapsed after the explosion. Moreover, it follows from (6.20) and the
invariance principle that

L
�

log
�
ZŒnt�_Un=ZUn

� � .SŒnt�_Un � SUn/; 0 � t � 1
ˇ
ˇ Zn > 0

� H) L.0; 0 � t � 1/;

and, therefore, at the logarithmic level the fluctuations of the population are
completely described by the fluctuations of the associated random walk after the
big jump. Moreover, we see by (6.21) that given Zn > 0 the size of the population
is not necessarily bounded! This phenomenon has no analogues for other types of
subcritical BPRE’s.

6.1.3.3 The Case ˇ 2 .0; 1/

In the previous subsection the favorable trajectories leading to the survival of the
process up to moment n have one big jump exceeding na.1� "/ D �n.1� "/E ŒX�.
For the case ˇ 2 .0; 1/ the situation is more delicate. Namely, the trajectories
providing survival up to moment n have a big jump with values in the interval
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�
bn � M

p
n; bn � M

p
n
�

where b > 0 is some parameter (see below) and M is
sufficiently large.

Let us list the conditions which provide the appearance of this phenomenon.

Hypothesis A The distribution of X has density

pX .x/ D l0.x/

x�C1 e�ˇx;

where l0.x/ is a function slowly varying at infinity, � > 2, ˇ 2 .0; 1/ and, in
addition,

' 0.ˇ/ D E
�
XeˇX

�
< 0: (6.22)

To formulate one more basic condition we once again use nowadays classical
technique of studying subcritical branching processes in random environment used,
for instance, in [6–9, 17]. Denote by Fn the ��algebra generated by the tuple
.�1; �2; : : : ; �nI Z0;Z1; : : : ;Zn/ and let P.n/ be the restriction of P to Fn. Setting

� D ' .ˇ/ D E
�
eˇX

�
;

we introduce another probability measure P by the following change of measure

dP.n/ D ��neˇSn dP.n/; n D 1; 2; : : : (6.23)

or, what is the same, for any random variable Yn measurable with respect to Fn we
let

E ŒYn� D ��n
E
�
YneˇSn

�
: (6.24)

Note that by Jensen’s inequality and (6.22),

�a D E ŒX� <
E
�
XeˇX

�

E
�
eˇX

� D ' 0 .ˇ/ =' .ˇ/ D E ŒX� D �b < 0:

Thus, under the new measure the BPRE is still subcritical and the ARW fSn; n � 0g
tends to �1 as n ! 1 with a smaller rate.

Hypothesis B There exists a random function

g.�/; � 2 Œ0;1/; 0 < g.�/ < 1 for all � > 0;

and

lim
�!1 g .�/ D 0
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such that, for all k D 0; 1; 2; : : :

lim
y!1 E

�
f k
�
�I e��=y

� j f 0 .�I 1/ D y
� D E

�
gk .�/

�
: (6.25)

The following result was established in [12]:

Theorem 6.7 If

E Œ� log .1 � � .f0g//� < 1; E

2

4e�X
X

k�1
� .fkg/ k log k

3

5 < 1 (6.26)

and Hypotheses A and B are valid, then there exist positive constants C0 and C1
such that, as n ! 1

P .Zn > 0/ � C0ˇ�
n�1 l0.n/

.bn/�C1 � C1P .Ln � 0/ : (6.27)

We stress that � D '.ˇ/ 2 .0; 1/ in view of '.0/ D 1 and (6.22).
In fact, one can show that

P .Zn > 0/ � const � P.X1 2 Œbn � M
p

n; bn C M
p

n�/

for n large enough. Thus, (6.27) once again confirms that in the subcritical regime
the survival event is, as a rule, associated with the event when the ARW is bounded
from below.

Note that to study the asymptotic behavior of the survival probability for the case
ˇ D 0 implying P D P, the condition was imposed that

L
�

f
�
�I e��=y

� j f 0.�I 1/ > y
� �! L .
/ ; y ! 1;

where 
 is a random variable being independent of � > 0 and less than 1 with a
positive probability. In this case the random walk S generated by the environment
that provides survival up to a distant moment n should have a single big jump
exceeding .1 � "/ an for any " > 0. In the case ˇ 2 .0; 1/ the random walk
generated by the environment, viewing under the measure P and providing survival
up to a distant moment n should have a single big jump enveloped by bn�M

p
n and

bnCM
p

n for a large constant M. This requires the validity of the conditions that are
based on local properties of the random variable f 0.�I 1/ and includes dependence
of the limiting function in (6.25) on � > 0.

Theorem 6.8 Under the conditions of Theorem 6.7,

lim
n!1E

�
sZn jZn > 0

� D ˝.s/;
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where ˝.s/ is the probability generating function of a proper nondegenerate
distribution supported on ZC.

We see that, contrary to the case ˇ D �C ^1 D 0 this Yaglom-type limit theorem
has the same form as for the ordinary Galton-Watson subcritical processes.

For every pair n � j � 1, we define a tuple of random variables

Wn;j D 1� fn;j.0/

eSn�Sj
(6.28)

and its limit

Wj D lim
n!1 Wn;j;

which exists by monotonicity of Wn;j in n. We also define a random function gj W
RC ! Œ0; 1� such that

1. gj is a probabilistic copy of the function g specified by (6.25);
2. f0;j�1, gj and .Wn;j;Wj; fk W k � j C 1/ are independent for each n � j (it is

always possible, the initial probability space being extended if required).

We set

cj D
Z 1

�1
E
�
1 � f0;j�1.gj.e

vWj//
�

e�ˇvdv

and focus on the exceptional environment explaining the survival event by giving a
more explicit result. For any ı 2 .0; 1/, let

~ .ı/ D inff j � 1 W Xj � ıbng:

Theorem 6.9 Under P, conditionally on Zn > 0, ~.ı/ converges in distribution
to a proper random variable. Moreover, conditionally on fZn > 0;Xj � ıbng, the
distribution law of .X~.ı/ � bn/=.

p
n VarX/ converges to a law 
 specified by


.B/ D c�1
j E



1.G 2 B/

Z 1

�1
�
1 � f0;j�1.gj.e

vWj//
�

e�ˇvdv

�

for any Borel set B � R, where G is a centered gaussian random variable with
variance VarX, which is independent of . f0;j�1; gj/.

The following two examples taken from [12] meet the conditions of Theorem 6.7.

Example 6.1 Let (with a slight abuse of notation) � D � .�/ � 0 be an integer-
valued random variable with probability generating function f .�I s/ D E

�
s�.�/

�
.

If E Œlog f 0.�I 1/� < 0 and there exists a deterministic function g.�/; � � 0, with
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g.�/ < 1; � > 0, and g.0/ D 1, such that, for every " > 0

lim
y!1 P

 

� W sup
0��<1

ˇ
ˇ f
�
�I e��=y

� � g.�/
ˇ
ˇ > "

ˇ
ˇ
ˇ f 0 .�I 1/ D y

!

D 0;

then Hypothesis B is satisfied for the respective subcritical branching process.

Example 6.2 If the support of the environment is concentrated on probability
measures � 2 N such that, for any " > 0

lim
y!1 P

�
� W

ˇ
ˇ
ˇ
ˇ
�.�/

f 0.�I 1/ � 1

ˇ
ˇ
ˇ
ˇ > "

ˇ
ˇ
ˇ f 0.�I 1/ D y

�
D 0 (6.29)

and the density pf .y/ of the random variable f 0.�I 1/ is positive for all sufficiently
large y, then g.�/ D e��. Condition (6.29) is satisfied if, for instance,

lim
y!1 P

�
� W Var�.�/

. f 0.�I 1//2 > "
ˇ̌
ˇ f 0.�I 1/ D y

�
D 0

for any " > 0.

6.2 Subcritical BPRE Attaining a High Level

There are several papers in which the asymptotic behavior of the distribution of the
random variables

sup
0�n<1

Zn and Y D
1X

kD0
Zk

are investigated for subcritical BPRE’s. The following result was established by
Afanasyev in [3]. Assume that EŒX� D EŒlog f 0.�I 1/� < 0 and there exists a positive
number � such that

E

h
e�X
i

D 1 (6.30)

and

E
�jXj e�X logC X

�
< 1; E

�
e.��1/XZ1 log.Z1 C 1/

�
< 1 (6.31)

and, in addition, if � � 1 then there exists a p > � such that

E
�
e.��p/XZp

1

�
< 1: (6.32)
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If the distribution of X is non-lattice then there exists a positive constant K1 such
that, as x ! 1

P

 

sup
0�n<1

Zn > x

!

� K1x
�� .

Under the same conditions and for the case of fractional-linear probability
generating functions fn.s/ and � 2 .0; 2� it was shown in [19] that there exists a
positive constant K2 such that, as x ! 1

P .Y > x/ � K2x
�� .

An extension of the previous results to the multitype subcritical BPRE’s counted
by random characteristics was obtained in [22].

Afanasyev investigated in a number of papers properties of subcritical BPRE’s
assuming that Tx D min fn W Zn > xg and x is large. A summary of his results
presented in [4, 5] looks as follows.

Let T D min fn W Zn D 0g and

d D E
�
Xe�X

�
; a D �EŒX�:

If the conditions (6.30)–(6.32) are valid then, as x ! C1
�

Tx

ln x

ˇ
ˇ
ˇ
ˇ Tx < C1

�
P! 1

d

and
�

T

ln x

ˇ̌
ˇ
ˇ Tx < C1

�
P! 1

d
C 1

a
:

If, in addition,

�2 D E
�
X2e�X

� � d2 < C1

then, as x ! C1

L
�

Txt � t ln x=d

�d�3=2pln x
; 0 � t � 1 jTx < C1

�
H) L.Bt; 0 � t � 1/

and, as y ! C1

L

 
Zty=d � ty

�
p

y=d
; 0 � t < 1 jTey < C1

!

H) L.Bt; 0 � t < 1/:
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Chapter 7
The Theorem of Envelopment and Directives
of Control in Resource Dependent Branching
Processes

F. Thomas Bruss
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7.1 Introduction

For human populations certain features will probably never change. People want to
live and be protected by the society in which they live. They will care for the future
of their children. They will need food and resources and will have to think about
production, distribution and consumption of resources. And then, they always seem
to long for a higher standard of living.

Survival and increasing the standard of living may be the most natural and most
important objectives of any human society. Therefore we single them out as two
special hypotheses:

H1. Individuals of a human society would like to survive and see a future for their
children.

H2. Individuals of a human society typically prefer a higher standard of living to a lower
one.

The hypotheses H1 and H2 are frequently incompatible with each other. Therefore
we establish the following rule of priority:

Priority: If H1 and H2 are in conflict with each other then H1 is assumed to take priority
before H2.
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Is it possible to predict limiting society forms for possible developments of
human societies just out of these two assumptions?

Before we answer any question about the effect of these hypotheses we must first
clarify what exactly is meant by Hypothesis H1. Clearly, the survival probability
should be strictly positive, and as large as possible. We will argue in the following
sections that it is preferable not to quantify exactly with what probability the
population wants to survive. As it is often the case for branching processes (see
e.g. [11]), if the survival probability is strictly positive for an initial state of one
ancestor, then under reasonable conditions it converges to one when the population
grows. This will also be the case for most populations we will examine through our
models.

Also, we have not yet defined what should be the rules to determine whether
or not a given society respects the hypotheses H1 and H2. These rules will be
established below in what we call the society obligation principle.

7.1.1 Society Obligation Principle

Since possible events like fertility changes, climate changes, unpredictable short-
ages of resources, war, or other catastrophes cannot be excluded, the objective to
survive must be defined in terms of probability. Extinction is a tail event which
cannot be determined in terms of finitely many generations, of course. We must
therefore define first what we mean by saying that a society respects H1.

Definition 7.1 Society obligation principle:
A society is said to respect hypothesis H1, if it satisfies the following conditions:

(i) If the currently observed parameters were to hold forever, then the population would,
with strictly positive probability, survive forever,

(ii) If (i) is not satisfied then the society must try to control immediately for survival,
that is, to take all steps in its power to obtain, as quickly as possible, a combination
of parameters which, if maintained forever, would yield under the same conditions a
positive survival probability.

It is thus the set of the currently observed parameters which we define here to be
the relevant measure for the change of rules (if necessary) since estimates for the
future are risky. This safety precaution is seen as an integral part of the obligation.

As announced before, the preceding definition does not specify a minimum
survival probability; it must just be strictly positive. Also, the definition contains no
rules concerning hypothesis H2 on its own. Hence we maintain some freedom with
respect to the average standard of living (which will be defined in Definition 7.4),
and more generally, in what way parameters should be corrected, if necessary. This
has the advantage that we do not have to suppose to know how much future societies
would risk just to increase the standard of living.
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7.1.2 Theorem of Envelopment and Related Results

Now let us return to the question whether it is possible to predict limiting society
forms for possible developments of human societies just out of the hypotheses H1
and H2.

Surprisingly, the answer is yes if human societies are modelled by sequences of
so-called resource dependent branching processes, in short RDBPs. In particular,
populations which are guided by the implications of H1 and H2 will live in the long
run in, what we call, an envelope.

This follows from the Theorem of Envelopment of Societies in Resource Depen-
dent Branching Processes [7] and from earlier results in [5, 8] surrounding this
theorem. Wajnberg [19] and others refer to these results, all taken together, as
the Bruss-Duerinckx Theorem. The combination of these results will show how
the survival criteria of the societies forming the mentioned envelope of possible
societies can be explicitly computed.

7.2 Main Definitions and Results

To streamline our discussion, we first recall the construction of RDBPs as well as
those results relating the envelopment theorem which will be needed.

A RDBP is a discrete time branching process modelling a population in which
individuals have to work in order to be able to live and to reproduce. It involves
production and consumption of resources, reproduction of individuals, decision
rules (policies) for distributing resources and a means of interaction between the
individuals and the society in which they live. The process counting the (remaining)
individuals is denoted by .�n/. We make the following assumptions:

• A1 All individuals which are admitted to reproduce within the population do so
independently of each other according to the same law fpkg1

kD0. The variable Dn.�n/

denotes the random number of descendants generated by �n individuals for generation
n C 1. The mean asexual reproduction per individual m D P

1

kD1 kpk is supposed to be
finite.

• A2 Individuals present in the population inherit resources, claim and consume resources
from the preceding generation and create themselves resources for the next generation.
The net outcome of all these activities is summarized as individual production of
resources, and its finite mean is denoted by r.

• A3 All production (resources, goods, services) is thought of as being evaluated in terms
of money and to go into a common pool called resource space. The resource space
available in the nth generation is denoted by Rn WD Rn.�n/.

• A4 Each individual claims an attribution of resources for its own consumption, simply
called claim. All claims are supposed to be i.i.d random variables with an absolute
continuous distribution function F. Here Xj

k denotes the claim of the jth individual in
generation k. The mean claim 
 WD R

1

0 xdF.x/ is supposed to be finite.
• A5 A policy �n is a rule to distribute resources among individuals of generation n as

long as the available resource space Rn suffices. Formally it is a function defined of the
permutation group of the list of claims brought forward in generation n. The output of
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�n is a counting function Q�n with values in f0; 1; 2; � � � ;Dn.�n/g which depends also
on Rn.�n/ and the list of claims. Its value determines the number of current descendants
that will remain in the population until the next reproduction time.

With these assumptions we can now give the formal definition of a RDBP:

Definition 7.2 Under the Assumptions A1–A5, let .�n/
1
nD0 be a discrete time

stochastic process defined by

�0 D 1 (7.1)

and recursively,

�nC1 D Q�n
�
Dn.�n/;

�
XkD1;2;��� ;Dn.�n/

n

�
;Rn.�n/

�
; n D 0; 1; � � � (7.2)

Then .�n/
1
nD0 is called a Resource Dependent Branching Process.

Definition 7.3 If we start .�n/ with k 2 f1; 2; � � � g individuals at time 0, that is with
initial condition (7.1) being replaced by �0 WD �0.k/ D k, then the resulting process
satisfying the corresponding recurrence relation (7.2) is denoted by .�n.k//. Hence,
for n D 0; 1; � � � ,

�nC1.k/ D Q�n
�
Dn.�n.k//;

�
XjD1;2;��� ;Dn.�n.k//

n

�
;Rn.�n.k//

�
(7.3)

and .�n/ � .�n.1//
1
nD0.

Definition 7.4 The random variable

Rn.�n.k//

�nC1.k/
(7.4)

is called the random average standard of living of the process .�n.k//1nD0 in
generation n C 1.

Interpretation: Individuals inherit and consume resources; they also create
resources, which they may consume and/or save for the next generation. They
have individual resource claims and an option of protest or non-cooperation, if
the current policy does not satisfy their claims. In the RDBP model of Bruss and
Duerinckx [7], an individual whose claim is not completely satisfied, leaves the
population before reproduction. Hence in their model emigration is seen in its strict
sense, and meant to be the interacting tool for individuals to express discontent with
the society.

Emigration can however be understood in a broader sense as a means of protest
against society. For instance, an individual can also be understood to emigrate if
it decides to make no net-contribution in production to the society and to have
deliberately no children.

The random claims of individuals are thought of as being the outcome of
individual desires and ambitions as well as individual strength to defend these
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desiderata against competition from the other descendants of the same generation.
We note that the actual average consumption is not the same as an average claim, and
that Definition 7.4 describes in (7.4) an average theoretical richness rather than what
consumers may see as an average standard of living. With (7.3) this is meaningful
also for smaller n if we suppose k to be large. If the limiting standard of living exits
as n ! 1, it is typically the same for all initial values k.

7.3 Special Societies

In the following we single out two specific societies, and this for two reasons. Firstly,
they belong to a class of RDBPs for which, using a result of [8] on stopping times of
order statistics, we can determine the survival criteria. Secondly, these policies play
a particular role from an ideologic point of view, polarising weakest and strongest
individuals.

The first one, the so-called weakest-first society (wf -society) always serves the
smallest claims first, as long as resources suffice. This means that the wf -society is
the most conservative spender of resources and therefore, with all other parameters
kept constant, will allow for more individuals to stay than any other society. The
extinction probability should therefore be the smallest possible, and if it survives, it
should grow more quickly that any other society.

This intuition is correct as the following results show. For the notation recall the
Assumptions A1–A5.

Theorem 7.1 The wf-society has, for any initial state k > 0, a positive probability
of survival, if either

r > m
 (7.5)

or, if (7.5) is not satisfied, if

mF.�/ > 1; where
Z �

0

xdF.x/ D r

m
: (7.6)

Remark 7.1 The condition r > m
 in (7.5) says that the total expected production
of a randomly chosen individual, i.e. heritage plus creation minus consumption, is
larger than the expected sum of claims of its descendants. This implies, in the long
run, the existence of more than enough resources for everyone. This in contrast to
the typical economic principle of shortness of resources. Therefore we confine for
the remainder of our paper our interest to the case r � m
.

For the same fixed parameters and initial values, let .Wn/
1
nD0 be the wf -process,

and .�n/
1
nD0 an arbitrary RDBP. Then we have (see [7]):
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Theorem 7.2

For all n 2 f1; 2; � � � g W P.�n � Wn/ D 1: (7.7)

The wf -society may moreover be seen as a safe-haven society with respect to the
risk of distinction, because it has also the following property:

Theorem 7.3 Let .Wn/
1
nD0 be a wf-process and let qwf be its extinction probability

under the initial condition W0 D 1. Then for all k 2 f1; 2; � � � g

lim
n!1 P

�
Wn D 0

ˇ̌
W0 D k

� D P
	

lim
n!1 Wn D 0jW0 D k



� qk

wf: (7.8)

Remark 7.2 The state 0 is absorbing for all .�n/, since there is no immigration in
RDBPs. This implies the equality lim P.�/ D P.lim.�// here as well as in some
other places in this paper. Also, we note that (7.8) implies, unless qwf D 1, that
the probability of extinction goes very quickly to 0 as k increases, and, together
with (7.7), that there is no better way to escape extinction. This is why we call it the
safe-haven property.

7.3.1 Limits of Growth Parameters

An arbitrary RDBP need not have an asymptotic growth rate. As an example we may
think of an obscure society which chooses very different rules to distribute resources
according to the number of descendants in generation n being odd or even. However,
if it does have an asymptotic growth rate then the following relationship will hold:

Theorem 7.4 Let .�n/ be an arbitrary RDBP, and let .Wn/ be the wf-process.
Further let � be defined by (7.6). Then

P

�
lim

n!1
WnC1
Wn

D mF.�/
ˇ
ˇ
ˇWn ! 1

�
D 1: (7.9)

Moreover, for any arbitrary RDBP .�n/

If P

�
lim

n!1
�nC1
�n

D `
ˇ
ˇ
ˇ�n ! 1

�
D 1 then ` � mF.�/: (7.10)

Remark 7.3 Note that if the wf -policy allows for a positive survival probability 1�
qwf then, according to (7.8), any society will most probably survive if it changes
(whenever necessary) into the direction of a wf -society. As said before, according
to (7.7) and (7.10) no other RDBP will do better with respect to survival.
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7.3.2 Strongest-First Society

It is natural to expect that the sf -society which wastes resources more than any other
society and can thus retain less individuals would then always lag behind any other
society. Interestingly, this is wrong, and an explicit counterexample is given in [7],
Sect. 6.2. In other words, one cannot hope for similarly strong comparison results
for the sf -process as in (7.7) for the wf -process .Wn/. Under the additional condition
of bounded individual claims [7] proved however the following result:

Theorem 7.5 Let � be the unique solution (see Remark 7.1) of the equation

Z 1

�

xdF.x/ D r

m
; (7.11)

and let .Sn/
1
nD0 denote the number of individuals in the sf-society in generation n.

Then, for any distribution F with bounded support,

P

�
lim

n!1
SnC1
Sn

D m.1 � F.�//
ˇ
ˇ
ˇ Sn ! 1

�
D 1: (7.12)

Interpretation: Recall that the parameter mF.�/ plays an important role in The-
orem 7.1, namely no society can survive unless mF.�/ > 1. The parameter
m.1�F.�// defined through (7.11) plays also a distinguished role. If this parameter
exceeds 1 then the population, once it has reached a sufficient size, can afford to
select any society form it wants without risking extinction.

7.3.3 The Envelope of Human Societies

We mentioned subtleties concerning the sf -process in the sense that, although (7.12)
holds, it cannot serve as a uniform lower bound (taken over all possible societies)
for effectives of a RDBP. The more surprising is therefore the fact that, as Bruss
and Duerinckx [7] have shown, the essence of our intuition is correct after all.
The wf -society has the largest survival probability of all societies, and as soon
as populations have a sufficiently large size, the sf -society will have the smallest
survival probability of all. Here is the precise formulation:

Theorem 7.6 Let .Wn.k// be the wf-process, .Sn.k// be the sf-process, and .�n.k//
be a process with an arbitrarily chosen policy, all with the same initial value k. Then

P
	

lim
n!1 Sn.k/ � lim

n!1�n.k/ � lim
n!1 Wn.k/



! 1; as k ! 1: (7.13)

Moreover, the right-hand-side inequality holds almost surely for all k 2 f1; 2; � � � g.
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We conclude that the wf -society, respectively the sf -society will, in the long run,
envelope (bound from above, respectively, from below) any arbitrary RDBP. This is
why Theorem 7.6 earns the name Theorem of envelopment.

7.4 Macro-Economic Interest Versus Tools

Theorem 7.6 displays interesting macro-economic facts. Bruss and Duerinck [7]
dare to call them fundamental because the theorem of envelopment spelled out
in (7.13) is true, although the intuition, why it should be true, is not only misleading
but in general false in one important direction. Having said this it is, as indicated
in the Introduction, not always clear in how far interesting facts can be turned into
interesting tools, that is, to produce concrete advice for societies following specified
objectives.

Now, there are indeed instances where this is the case, that is, where the implica-
tions of the envelopment theorem yield immediate directives. Two relatively recent
decisions (2013, respectively 2014) of the German grand-coalition government,
widely discussed in the media, were chosen in [6] to illustrate this. In the latter,
the application is almost straightforward, and the conclusion is that both decisions
of the German government should be reconsidered.

There is nothing special about the choice of Germany, except that two facts
coincide: firstly, Germany is a country with a particularly low natality rate, and
secondly, the mentioned legislations concern earlier retirement and a change in
the minimum wage policy. It is intuitive that reducing the age of retirement may
cause financial problems for a state. However, it may come as a surprise even to
specialists that such a step may speed up extinction, and this is true under very
general conditions.

We shall add more to these examples in Sect. 7.7.
Now, if we speak in the above examples of special coincidences which make

conclusions rather straightforward, it is natural to ask to what extent control advice
is at reach for more general circumstances. For instance, is it possible under certain
constraints to find a sufficiently large class of RDBPs (embeddable in our global
model) which allow for sub-envelopes of interest which can be computed and will
then lead to new directives of control? This question, for which Bruss and Duerinckx
have already partial answers (work in progress) should be the focus of interest for
whoever is interested in modelling human societies.

7.5 Local Models and Control

Since in reality many variables within a society depend on each other, a realistic
model for the evolution of a population process cannot be obtained through a single
RDBP unless one would allow for many more dependencies. This however would
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render RDBPs intractable. Moreover, this would not be skilful either because many
future developments and changes in parameters are unpredictable. Hence it would
not be convincing to fix, once and for good, a certain RDBP and to expect this
process to model the evolution of a population in a realistic way. The idea emerging
from these arguments is to consider evolution as a random sequence of locally
updated RDBPs.

But what should we suggest as the law of this sequence, that is, what should
determine the choice of the local model in each term of the sequence?

It is here that the society obligation principle assumes its role: We imagine that
the society looks at the current rates of natality, current rates of productivity, at the
way how claims of resources have developed, etc. Now, several parameters can be
influenced by the rules applied by society and updating will intervene. For instance,
society may encourage individuals to have more children, or consume less on the
average, or curtail larger claims, or, if possible, impose a higher productivity.

The guidelines of control are determined by what the society wants, and here the
basic hypothesis H1 (survival) stands out by definition. Increasing the standard of
living (H2) is desirable, but, exactly as the society obligation principle requires, H1
has first priority.

7.6 The Global Model

Our global model for the development of human society is therefore a sequence of
RDBPs which is in each generation (locally) compatible with the society obligation
principle. At each control time the society takes its decisions based on what would
happen if they went on as before. Here it is natural to think of generation time points
1; 2; � � � as being the typical times of control, but the choice of other times (shorter
periods, or times of census) are compatible with our model. Note that each local
model is now for a shorter period only. Assumptions A1–A5 are therefore easier to
justify.

In the global model we do not want to add further constraints to the society
obligation principle. For instance, if the society is satisfied with the currently
observed parameters, the update may not lead to a new model. Therefore we cannot
predict how a population will develop. However, it suffices to understand the local
RDBPs in order to find non-trivial bounds within which populations can develop.

Before we advertise the global model any further we look first in more detail into
the simplifying assumptions we made for the local models, i.e. into the assumptions
we made for the RDBPs.
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7.6.1 Bisexual and Asexual Reproduction

In the definition of a RDBP no reference is made to the reproduction mechanism,
although it seems necessary that the model be consistent with bisexual human repro-
duction. We explain here why we can confine our interest to asexual reproduction.

We see from the definition that RDBPs are Markov processes, although com-
plicated ones. Since 0 is, by definition, an absorbing state for all RDBPs, they
must either die out or explode. Hypothesis H1 has priority before an increase of
the standard of living, and thus the interesting RDBPs are only those which have a
positive survival probability.

The definition of a RDBP does not involve bisexual reproduction and hence
no mating functions. We simply speak of individuals and of their independent
reproduction defined by the law f pkg1

kD0 (see A1). For human populations it is
reasonable to assume the reproduction mean m to be finite, and, as usual, that
the conditions 0 < p0 < 1 and p0 C p1 < 1 are always satisfied. It is
understood that this Galton-Watson process type reproduction is only assumed for
the reproduction times. Clearly, these processes themselves are submitted to heavy
internal dependencies and are in general hardly comparable with Galton-Watson
processes.

This simplification is justified by being allowed to confine interest to the limiting
behaviour of reproduction and also by the existence of the so-called average
reproduction rate per mating unit introduced in [5]. For a discrete time bisexual
population process counting mating units, .Zn/

1
nD0, say, it is defined by

Qm D lim
k!1

1

k
E.ZnC1jZn D k/: (7.14)

This definition gave a useful answer to an interesting question put forward in [12].
See also [10]. Nowadays this limiting rate is usually called average reproduction
rate in the literature about bisexual population processes.

In [7], the existence of the limiting average reproduction rate is taken for granted
for human populations living under the same society form and under the same
conditions. Indeed, this can be justified for human populations for several obvious
reasons. Moreover, it was nice to see in the work presented at the workshop by
Prof. Mota (the slides of this talk, and all the following quoted in this paper can be
downloaded from http://branching.unex.es/wbpa15/index.htm, clicking on Abstract
menu) that assuming the existence of (7.14) finds support in many different forms,
and also for populations other than human populations.

7.6.2 RDBPs and '-Branching Processes

The presentation of Prof. G. Yanev was a good reminder that there is some connec-
tion between RDBPs and the so-called '-branching processes already introduced by

http://branching.unex.es/wbpa15/index.htm
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Sevastyanov and Zukov in the early seventies. Indeed, the function Q�n defined in a
RDBP determines the number of individuals in the nth generation which are allowed
to reproduce. Interesting results by Yanev [21], as well as a generalisation of these
without independence assumptions by Bruss [4] may therefore catch interest in the
domain of RDBPs. However, it seems difficult to exploit this connection easily when
we pass from the local model of a RDBP to the global model defined as a sequence
of RDBPs. As far as the author feels, only a sequence of updated models has a
chance to model approximately the evolution of a human society.

In that respect, population size dependent branching processes are closer to
RDBPs, as we shall see below.

7.6.3 RDBPs and Population-Size Dependent Branching
Processes

The presentations of Prof. Jagers and of Prof. Klebaner showed that, for cer-
tain questions, RDBPs may directly profit from their results on population-size
dependent reproduction. This concerns in particular results about what Jagers and
Klebaner and others call the quasi-stationary phase.:

Let .Zn/ be a (asexual) branching process with initial state Z0 and reproduction
rates which are supercritical below a certain threshold K, and subcritical above K.
See [16]. Let the reproduction rate be m.k/ if the current size is k and suppose
moreover that for some neighbourhood of K, V.K/, say,

m.k/k"K # 1 and m.k/k#K " 1; (7.15)

for all k 2 V.K/. Let Z0=K D 1 and, for fixed 0 < � < 1, let

�.K/� D inf

�
t � 0 W

ˇ
ˇ
ˇ
ˇ
Zt

K
� 1

ˇ
ˇ
ˇ
ˇ > �

�
(7.16)

Then there exists positive constants c1.�/ and c2.�/ such that

E
�
�.K/�

�
> c1.�/e

c2.�/K : (7.17)

Indeed, we see that the hypotheses H1 and H2 and the society obligation principle
play perfectly in the hands of the results of Jagers and Klebaner: If the effective
reproduction rate is greater than one, then the society is not afraid of the risk of
extinction and will, according to H2, increase its standard of living. The easiest way
to do this is to serve more bigger claims. This policy will reduce the number of those
individuals which will be able to stay, i.e., reduce the effective reproduction rate.
However, if the latter falls below one, then hypothesis H1 takes over. The society
obligation principle will force the society to increase its effective reproduction rate.
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We have argued already by the average reproduction rate defined in (7.14)
that bisexual reproduction makes no difference to asexual reproduction as far
as asymptotic phenomena are concerned. Now, in the population-size dependent
setting it is the law of reproduction which may fluctuate, whereas in a sequence of
RDBPs, it is the effective reproduction rate which may fluctuate through the control
of resource production and/or claims and/or natality rates. However, the reasons
why certain laws of reproduction are chosen in each generation should be irrelevant
because, like in the Jagers-Klebaner model, those individuals which do reproduce
in RDBPs, do so independently of each other.

Therefore, if in the global model the control is directly effective each time already
in the next generation, a result in the spirit of Theorem 7.1 must hold. Criticality
plays here a central role in the global model, and thus in RDBPs, because the
interplay of H1 and H2 makes near-criticality an attractive policy for societies. We
should mention that the results in [1] and in [2] should also merit interest for RDBPs
in that respect.

The author wonders about a question dressed in terms of a population size
dependent process and related to the above cited work of Jagers and Klebaner: Let
ı be a small positive real number, and let V.ı/ D Œ1 � ı; 1 C ı�. V is thought of
as being a target interval for the (effective) reproduction mean of a population size
dependent process.

Question: Suppose that the current state is K and that the current (effective) reproduction
mean equals �. Suppose further that the random number of generations necessary to bring
the reproduction mean back into V.ı/ has (waiting time) distribution Wı;�.w/. Under which
general conditions on Wı;�.w/ does

E
�
�V.ı/

�
> Qc1.ı/eQc2.ı/K ; (7.18)

hold for corresponding constants Qc1.ı/ and Qc2.ı/, where now �V.ı/ denotes the total sojourn
time of the reproduction mean in V.

Remark 7.4 The author sees the interest for this question as being obvious for
RDBPs. The assumption (7.15) can be assumed to hold and may simplify the proof.
It is also realistic to suppose that the waiting time mean is uniformly bounded away
from 0.

7.7 Understanding Unexpected Implications

Bruss and Duerinckx [7] comment in Sects. 8.1–8.3 on classical society forms,
including Mercantilism, Marxism, Leninism and Capitalism. The following com-
ments are more specific and more applied in the sense that they allow, at least
in certain cases, to derive definite advice how control parameters of a society
having specific objectives. Bruss [6] examines two examples of recent legislation
in Germany. We take these examples as guidelines of our approach.
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It is obvious that any society considering a change of legislation concerning the
standard age of retirement must keep financial constraints in view. Values are created
by production, and if the total expected time of production of individuals change,
the expected output will change, although not necessarily in the same proportion.

In the language of RDBPs the expected output is the expected contribution r
to the currently available common resource space R, say. We recall that we think
of all types of production as well as the total resource space as being measurable
in monetary units. If r will go up or down, R will do so accordingly. If a society
considers legislation allowing for an earlier retirement then it must consider the
consequences. If a smaller R should suffice to pay the same pension to the same
number of people working less than before then, as it seems, there should something
wrong.

Now, a priori, nothing need be wrong. There is the possibility that R is more
than sufficient, that is, that the previously paid pensions were not as high as they
could have been and leave a large reserve of funds. Viewing hypothesis H2 we
must conclude however, that this should rather be a short-time phenomenon because
typically people will vote for those politicians advertising and promising a higher
standard of living and who will thus spend the money. Finally these voters will
succeed in getting what is possible. But then, when there are no reserve funds,
there must be something wrong indeed. Decreasing the expected output r should
lead (with life expectancies going up rather than going down) to smaller pension
payments. Thus reducing the age of retirement is clearly a question of how to finance
it.

7.7.1 Hidden Phenomena

It may come as a surprise that, apart from these financial problems, reducing the
age of retirement may accelerate a decrease of the effectives of a population and
thus increase the probability of extinction. For RDBPs at least, this is, as the next
theorem will show, the case if the natality rate is subcritical, that is if m < 1.

Theorem 7.7

(i) If the natality rate m of a RDBP .�n/ is smaller than 1 and the average
production r does not exceed m
 (where 
 is the average claim) then, for m
fixed, a reduction of the rate r implies an increase of the extinction probability
of .�n/.

(ii) For a fixed average production r the extinction probability of an arbitrary
RDBP .�n/ decreases as m increases.

Proof

(i) Remember that, with respect to H1, the society obligation is intrinsic in the
definition. Let now 0 < m=r � 
 be fixed. Recall that F, the cumulative
distribution function of the random claims, was supposed to be absolutely
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continuous, and it is monotone increasing by definition. Hence there exists a
unique solution � WD �Œr;m� of the equation

Z �Œr;m�

0

xdF.x/ D r

m
: (7.19)

According to Theorem 7.1, (7.6), .�n/ is bound to get extinct since mF.�/ < 1.

Now let G.r;m/ D mF.�Œr;m�/. Using again the continuity of F we see
from (7.19) that �Œr;m� is by its definition differentiable in r. It follows that

@G.r;m/

@r
D m

dF.�Œr;m�/

d�Œr;m�

@�Œr;m�

@r
� 0; (7.20)

because m@F.�/=@� on the right-hand side of (7.20) is clearly nonnegative, and the
factor @�=@r as well according to (7.19). Hence reducing r implies reducing the
growth rate mF.�Œr;m�/. This is the growth rate of the wf -society. The priority rule
of H1 before H2 together with the society obligation forces the society governing the
process .�n/ however to try to realize this growth rate mF.�Œr;m�/ which, according
to (7.10) in Theorem 7.4, is best possible. Hence statement (i) of Theorem 7.7 is
proved.

(ii) Although this statement seems evident, the proof takes slightly more than
the proof of (i). We look again at the definition of �Œr;m� in the integral
equation (7.19). Since the relevant parameter m is in the denominator on
the right-hand side, �Œr;m� is now a decreasing function of m. As �Œr;m� is
differentiable in m for all m > 0 we have @�.r;m/=@m � 0. Clearly

Z �

0

xdF.x/ �
Z �

0

�dF.x/ D �F.�/: (7.21)

Hence from (7.19)

F.�Œr;m�/ � r

m�Œr;m�
: (7.22)

The partial derivative of both sides of (7.19) with respect to m yields, on the
one hand,

�Œr;m� f .�Œr;m�/
@�Œr;m�

@m
D �r

m2
; (7.23)

where f denotes the corresponding density of random claims. On the other hand
we obtain

@G.r;m/

@m
D F.�Œr;m�/C mf .�Œr;m�/

@�Œr;m�

@m
: (7.24)
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This implies, using (7.22) and (7.23) that the right-hand side of (7.24) is positive
so that @mF.�Œr;m�/=@m is also positive.

This proves (ii) and completes the proof of Theorem 7.7. ut
Remark 7.5 One should note that Theorem 7 could be stated without knowing more
about F and the parameters r and m. All we needed was that F is an absolute
continuous distribution function, and for (i), that r � m
.

If we let vary both parameters m and r at the same time then we need to know
more, of course, to make conclusions. Indeed, now we would have to know the
interplay between r and m, in other words, to know where the total differential

�r;m.dr; dm/ WD @mF.�Œr;m�/

@r
dr C @mF.�Œr;m�/

@m
dm (7.25)

will vanish if r varies with m and vice versa.

Example 7.1 (Earlier Retirement) In 2014 the German government passed a law
reducing the age of official retirement from 63 to 65 years. Some constraints do
apply so that the average working time of people is unlikely to decrease by the two
full years. However, it will definitely decrease, and thus with all other parameters
staying equal, the average production rate r will decrease. Since the current German
natality rate is only about m � 0:71 < 1 per individual (the lowest in Europe and
among the lowest in the world), case (i) of Theorem 7.7 applies. We conclude that
this legislation not only poses the problem of finding funds to finance the earlier
retirement but, more seriously, even accelerate the de-population of Germany.

Of course, it is the extremely low natality in Germany which is the main problem,
but natality is what it is for the moment, and no quick increase of the birth rate can
be expected. Therefore r is so important. For foreign media which usually do not
speak of the German natality problem but rather prefer to hint to productivity as a
good example for others, it may sound like a paradox that German productivity may
be a problem. But, as we have just seen, it is not a paradox. Reducing the age of
retirement is in contradiction to H1 and to the society obligation principle. It should
be urgently re-considered.

Remark 7.6 Example 7.1 would of course apply similarly to any country with
natality rate m < 1: As far as the author could find out, there was (fortunately) no
other country in recent decades with m < 1 where the government would propose
a reduction of the retirement age. On the contrary, countries with a better natality,
as for instance Belgium, envisage increasing the legal age of retirement. Ironically,
some Belgian media hint to Germany to find public support for their project, saying
that Germany plans to lift the retirement age up to 67. This is confusing media
information. Indeed, certain groups of people in Germany will be able to work until
the age of 67 or possibly longer. As we all know, a truth being valid on a subset may
be very misleading on the whole set which counts.
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7.7.2 Discussion

One could argue that the conclusions in Example 7.1 are based only on asymptotic
results and may not be valid. Our answer would be that with such a low individual
reproduction rate of 0:71, the asymptotic truth will quickly coincide with the truth.

Furthermore one could argue that the parameters m and r could change into a
positive direction so that the problem of an accelerated extinction would disappear.
But then we must object that we cannot know this and thus society should follow
the rule as determined by the society obligation principle. The latter requires that
decisions must be based on the currently observed parameters.

Finally, one might object that it is not clear that the society obligation principle
must be imposed. Here our defense is bound to be somewhat weaker. We cannot
prove that the society obligation principle is compulsory in an adequate society
model because it has an axiomatic component. Indeed, if we have to decide what
it means that a society respects hypothesis H1 and gives H1 priority before H2,
then we must create a contradiction-free framework which defines what exactly this
means. This is what we have done in our principle where the currently observed
parameters are defined as the relevant ones. From the point of reliability this is
arguably the best framework. However, clearly, a contradiction-free framework need
not be unique.

Example 7.2 (Minimum Wage) Minimum wage legislation has been on the agenda
of several governments in recent years. Does the introduction of a nationwide
minimum wage increase productivity, or does it rather reduce it? Further, if it is
true that a minimum wage policy will reduce the number of available jobs in the
working class, would it then also be true that overall natality would go up because
jobless people may have more time for other things?

There are plenty of discussions about this everywhere. The message RDBPs can
tell is that, once one believes to have understood the interaction of m and r then
any society which respects H1 and H2 must study the behaviour of the equation
�r;m.dr; dm/ D 0. With f .x/ D dF.x/=dx the left-hand side of this equation
becomes

�
f .�Œr;m�/

@�Œr;m�

@r

�
m dr C

�
F.�Œr;m�/C mf .�Œr;m�/

@�Œr;m�

@m

�
dm (7.26)

so that we would have to know the exact form of the density of claims f .
Understanding the interplay of the two parameters m (natality) and r (produc-

tion), as well as f (linked with consumption) is important for any society respecting
H1 before H2 because the effective reproduction mean is essential. Moreover, if the
safe-haven rate mF.�Œr;m�/ approaches 1, then much may depend on the way it
approaches 1, as exemplified by results in [17] for size-dependent BPs.
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7.7.3 Immigration

In the definition of a RDBP emigration plays a fundamental role in the model
as a means of interaction between individuals and society. Immigration is not
incorporated however, at least not so far. This contrasts the numerous interesting
contributions concerning and/or including immigration for other BPs as we have
heard in the expositions in the workshop by Prof. Ispàny Prof. Pap (see also [13, 14])
as well as Prof. Mota [18]. If one thinks of the increasing number of questions
immigration raises for human society, this is a weakness of RDBPs.

How could one overcome this weakness? One may be tempted to try to mimic
immigration by a temporarily increased reproduction rate. See in that context the
subsection Sequence of branching processes with immigration of the presentation of
Prof. Ispàny as well as the earlier result in [20]. Indeed, recalling again the results
of [15] for population size dependent BPs we know that population size dependence
is quite a tractable setting.

However, there are at least two reasons why one has to be careful. Firstly, in the
terminology used by Prof. Braumann in his presentation at the workshop such a
replacement means a different type of stochasticity. Immigration from outside and
changes of parameters inside a population is not the same. See in particular [3] for a
more specific comparison, and e.g. [9] for a related problem of statistical inference.
Prof. Braumann’s presentation made it explicit that we usually have to pay a real
price for replacing one type of stochasticity by another one, and this seems to be the
case here as well.

This is one danger, but there is another one for RDBPs. If we model immigration
we should model at the same time stochasticity which stems from the origin of
immigrants. But then computability becomes a real problem.

To explain this, look again at the results of [7], and here specifically at
Theorems 7.1 and 7.4. If the number of immigrants in a population becomes
important then this may have a considerable impact on natality rates, and on
productivity. In our model m and r would change, and it is good to see that the global
model we proposed can cope with this. However, people with a different upbringing
and origins also typically have a different consumption behaviour, hence implying
in general a different claim distribution F. If we suppose that F can be suitably
parametrised by m and r then (7.26) should now read

�r;m.dr; dm/ WD @mF.r;m/.�Œr;m�/

@r
dr C @mF.r;m/.�Œr;m�/

@m
dm

However, it is in practice not clear at all, whether such a parametrisation is
meaningful. And then, why should F.r;m/.x/ allow for a density? How should we
then compute �Œr;m�?

We conclude that those politicians who say that they understand the good and
bad effects of immigration policies on social security and pensions must be creative
mathematicians. Even for RDBPs which are still relatively simple models for



136 F.T. Bruss

societies compared to what societies seem to be in real life, a rigorous study of
the influence of immigration is not evident at all.

References

1. Afanasyev, V.I., Geiger, J., Kersting, G., Vatutin, V.A.: Criticality in branching processes in
random environment. Ann. Prob. 33(2), 645–673 (2005)

2. Barbour, A.D., Hamza, K., Kaspi, H., Klebaner, F.C.: Escape from the boundary in Markov
population processes. Adv. Appl. Probab. 47(4) 1190–1211 (2015)

3. Braumann, C.: Environmental versus demographic stochasticity in population growth. In:
González, M., del Puerto, I., Martínez, R., Molina, M., Mota, M., Ramos, A. (Eds.), Lecture
Notes in Statistics - Proceedings, vol. 197, pp. 37–52. Springer, Berlin (2010)

4. Bruss, F.T.: A counterpart of the Borel-Cantelli Lemma. J. Appl. Prob. 17, 1094–1101 (1980)
5. Bruss, F.T.: A note on extinction criteria for bisexual Galton-Watson processes. J. Appl. Prob.

21, 915–919 (1984)
6. Bruss, F.T.: Grenzen einer jeden Gesellschaft (in German; English summary). In: Jahresb. der

Deut. Math.-Ver., vol. 116, pp. 137–152. Springer, Berlin (2014)
7. Bruss, F.T., Duerinckx, M.: Resource dependent branching processes and the envelope of

societies. Ann. Appl. Probab. 25(1), 324–372 (2015)
8. Bruss, F.T., Robertson, J.B.: ‘Wald’s Lemma’ for sums of order statistics of i.i.d. random

variables. Adv. Appl. Probab. 23, 612–623 (1991)
9. Bruss, F.T., Slavtchova-Bojkova, M.: On waiting times to populate an environment and a

question of statistical inference. J. Appl. Probab. 36, 261–267 (1999)
10. Daley, D.J., Hull, D.M., Taylor, J.M.: Bisexual Galton-Watson branching processes with

superadditive mating functions. J. Appl. Probab. 23, 585–600 (1986)
11. Haccou, P., Jagers, P., Vatutin, V.A.: Branching Processes - Variation, Growth and Extinction

of Populations. Cambridge University Press, Cambridge (2005)
12. Hull, D.M.: A necessary condition for extinction in those bisexual Galton-Watson branching

processes governed by superadditive mating function. J. Appl. Prob. 19(4), 847–850 (1982)
13. Ispány, M.: Some asymptotic results for strongly critical branching processes with immigration

in varying environment, Chapter 5. In: del Puerto, I., González, M., Gutiérrez, C., Martínez, R.,
Minuesa, C., Molina, M., Mota, M., Ramos, A. (eds.) Lecture Notes in Statistics - Proceedings.
Springer, Berlin (2016)

14. Ispány, M., Pap, G., van Zuijlen, M.: Fluctuation limit of branching processes with immigration
and estimation of the means. Adv. Appl. Probab. 37, 523–538 (2005)

15. Jagers, P., Klebaner, F.C.: Population-size-dependent and age-dependent branching processes.
Stoch. Process. Appl. 87, 235–254 (2000)

16. Jagers, P., Klebaner, F.C.: Population-size-dependent, age-structured branching processes
linger around their carrying capacity. J. Appl. Prob. 48A, 249–260 (2011)

17. Klebaner, F.C.: On population-size dependent branching processes. Adv. Appl. Probab. 16,
30–55 (1984)

18. Molina, M.: Two-sex branching process literature. In: González, M., del Puerto, I., Martínez,
R., Molina, M., Mota, M., Ramos, A. (eds.) Lecture Notes in Statistics - Proceedings, vol. 197,
pp. 279–291. Springer, Berlin (2010)

19. Wajnberg, A.: Le théorème de Bruss-Duerinckx. FNRS-News, Fond National de la Recherche
Scientifique 6, 21–12 (2014)

20. Wei, C.Z., Winnicki, J.: Some asymptotic results for the branching process with immigration.
Stoch. Process. Appl. 31, 261–282 (1989)

21. Yanev, N.M.: Conditions for degeneracy of '-branching processes with random '. Theory
Probab. Appl. 20, 421–428 (1976)



Chapter 8
From Size to Age and Type Structure Dependent
Branching: A First Step to Sexual Reproduction
in General Population Processes
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8.1 From Population Size Dependence to Age
Structure Effects

Classical branching processes, even the most general, share the property that
individuals are supposed to multiply independently of one another, at least given
some environment that in its turn is supposed to be unaffected by the population.
Only more recently have birth-and-death and branching processes been considered
which allow individual reproduction to be influenced by population size. The
first results, due to Klebaner [14], deal with Galton-Watson processes. Work on
general, age-structured processes and habitats with a threshold, a so called carrying
capacity, came only decades later, cf. [5, 11, 13, 15, 16, 21], inspired by deterministic
population dynamics [6–8, 22].
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The general formulation of population-size-dependence runs as follows. Any
individual of age a in a population of size z in a habitat of carrying capacity K
is characterised by three entities, which we refer to as population parameters:

• a birth intensity bK
z .a/,

• a death intensity hK
z .a/, and

• a probability distribution for the number of children at death at age a, f pK
z .a; k/,

k D 0; 1; 2; : : :g.

The birth intensity is supposed to catch the reproduction of higher animals and
plants, during life, whereas the number of children at death (splitting) reflects cell
division or particle split. Births during mother’s life are assumed to occur one by
one, and the distribution of the number of children at splitting should have bounded
mean mK

z .a/ and variance. Further, the processes are supposed to be monotonous in
the sense that if we consider two classical branching process with the same starting
condition and fixed parameters pertaining to “sizes” z � z0, the former population
should be larger than or equal to the latter, in distribution, at any time. At population
size K, i.e. for parameters bK

K ; h
K
K , etc. the population size-dependent process should

pass from super- to sub-criticality, for precise formulations cf. [13]. In this section,
we recapitulate results there and in [11, 12].

Let Zt denote the population size at time t � 0 and write Ta WD infftI Zt � aKg,
where 0 < a < 1 and Z0 D z is presumed (much) smaller than aK. Let Yt be the
(not population-size-dependent) process with parameters bK

aK ; h
K
aK , etc, i.e. frozen at

population size aK, and Y0 D z. Then, by the assumed monotonicity in parameters,
Zt � Yt on fTa � tg a. s.

Write T for the time to extinction, infftI Zt D 0g, so that the probability of early
extinction can be interpreted as the probability of never attaining aK,

P.T < Ta/ D P.sup Zt < aK/ � P.sup Yt < aK/ D P.Yt ! 0/ D q.aK/z;

if q.y/ denotes the classical extinction probability of a process from one ancestor
with parameters frozen at population size y. However, by coupling our process to
the not-size-dependent branching process with parameters frozen at the initial size,
much as customary in epidemic spread process, [3, 4, 19], we should be able to do
better during an initial phase of length o.

p
K/ or even O.K2=3/.

Informally, the coupling process can be described the following way, in the case
where the life span distribution is unaffected by population size, and there is no
splitting: Let �.1/; �.2/; : : : be the successive birth moments in the process with
frozen parameters and denote the age of the mother in question at those times by
˛1; ˛2; : : :. As before, write Z0 D z. To recover the size-dependent population, then
retain the ith birth with probability min.1; bK

Z�.i/
.˛i/=bK

z .˛i//, provided none of her
(grand)mothers has been deleted.

Also if the population escapes early extinction, it will satisfy Zt � Yt as long
as Zt � aK. Since Yt grows exponentially when not dying out, the Z process must
then attain the level aK within a time of order log K. Once up in a band around the
carrying capacity, the population size can be expected to remain there for a time of
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length O.ecK/, for some c > 0 as K ! 1, [13]. In special cases constants can be
calculated. Thus [11, 15], for binary Galton-Watson process with Michaelis-Menten
style reproduction, (i.e. the probability in the n C 1th generation of two children
being = K=.K C Zn/), the subsistence time will be � e f .a/K , where

f .a/ D a.1 � a/2

8.1C a/

for any 0 < a < 1.
During the long sojourn around the carrying capacity, the age distribution

will settle around a stable McKendrick-von Foerster form [10, 11], known from
deterministic population dynamics. When ultimately the population embarks on its
journey to extinction, i.e. passes the level aK never to reach it again, its remaining
life will again be short, logarithmic in K, [11].

From size-dependence the step seems short, almost of notational character, to
age structure dependence, as done in [11]. Indeed, let At denote the whole vector
of ages at time t � 0, so that Zt D .1;At/ D jAtj and index parameters with these
vectors instead of with just population size, bA; hA etc., A D .a1; a2 : : : az/. If the
process is still supercritical below the carrying capacity, strongly critical at it, i.e.
jAj D K ) bK

A ChK
A .m

K
A �1/ D 0, and subcritical when large (and further technical

conditions, cf, [11]), results for size dependence continue to hold.
Alas, the generalisation is not as far-reaching, as it might first seem. It opens

up for dependence upon other population features, like volume or DNA mass
dependence, but it is difficult to see realistic dependencies upon the age distribution
per se. Still the situation is very much like that of population size dependence. It
becomes radically different in multi-type cases, like sexual reproduction where only
one type of individuals can reproduce, but in a manner that is heavily dependent
upon the prevalence of the other type, in fertile ages.

8.2 Process Structure

Hence, we take a further step and lay the foundations for mathematical analysis of
multi-type processes with population structure dependence. The individuals in the
population are now characterised by their types and ages, to be written s1; s2; : : : ; sz,
where sj D .ij; aj/ 2 S D T � R

C, and z is the population size. The type space T

is finite, say consisting of k types, and the state of the process S is taken to be the
array s1; s2; : : : ; sz or equivalently the counting measure

S.B/ D
zX

jD1
ısj.B/;B � S: (8.1)
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For a test function f W S ! R, hence,

. f ; S/ D
Z

f .s/S.ds/ D
zX

iD1
f .sj/: (8.2)

Population evolution is given by a measure-valued process fStI t � 0g, reporting
the number of individuals, their ages, and their types at any time t � 0. The
randomness comes through random events of birth and death. These are described,
as usual, by their intensities, which besides dependence on the individual’s own
age and type may be influenced by the whole population structure, i.e. by the other
individuals’ ages and types.

The process develops in a simple manner: while there are no deaths or births,
it changes only by ageing. When an individual dies, its point mass disappears and
an offspring number of point masses at zero age appears. Similarly, when she gives
birth during life a point mass appears at the origin. Type at birth is determined by
the type distribution, for example sex may be obtained by independent Bernoulli
trials with probability p for becoming female and q D 1 � p for male. More
generally we write p D . p1; p2; : : : ; pk/ for the probabilities that a type variable
I takes the values 1; 2 : : : k. These are also allowed to depend on the mother’s age
and type, s, and the whole population structure S; we write pS.s/. The reason to
include reproduction both at death (splitting) and during life time is to cover cases
corresponding to Galton-Watson as well as birth-and-death processes. To avoid
unnecessary technicalities we assume throughout that all quantities below (like
derivatives, expectations, etc.) exist and are well defined

Theorem 8.1 For any bounded C1 function F on R
C and function f on S, which is

C1 in its last argument,

lim
t!0

1

t
ESŒF.. f ; St//� F.. f ; S//� D GF.. f ; S//; (8.3)

where

GF.. f ; S// D F0.. f ; S//. f 0; S/C
zX

jD1
bS.sj/ŒEpS.sj/F. f .I; 0/C . f ; S//� F.. f ; S//�

C
zX

jD1
hS.sj/EŒF.

kX

lD1
f .l; 0/Yl

S.sj/C . f ; S/� f .sj//� F.. f ; S//�:

Here, f 0 is the derivative in the second co-ordinate a, and Yl
S.i; a/ is the number of

l-type offspring of an i-type individual dying at age a, the population composition
then being S.
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In what follows, ml
S.s/ D ESYl.s/, l D 1; 2 : : : ; k, denotes the means and

� D .�l1;l2 / D
	
ESYl1 .s/Yl2 .s/




l1;l2

the matrix of second moments of offspring at death distributions. G defines a
generator of a measure-valued multi-type branching process. This is Dynkin’s
formula:

Theorem 8.2 For any bounded C1 function F on R
C and function f on S, which is

C1 in its last argument,

F.. f ; St// D F.. f ; S0//C
Z t

0

GF.. f ; Su//du C MF;f
t ; (8.4)

where MF;f
t is a zero mean local martingale with predictable quadratic variation

D
MF;f

t ;MF;f
t

E
D
Z t

0

	
GF2.. f ; Su// � 2F.. f ; Su//GF.. f ; Su//



du; (8.5)

and variance

ES.M
F;f
t /2 D ES

D
MF;f

t ;MF;f
t

E
: (8.6)

The derivation of the above is the same as in [12].
Taking the identity map, Fid.u/ D u, as F above, results in the linear operator LS

obtained by GFid.

Theorem 8.3 For a function f on S, which is C1 in its last argument,

. f ; St/ D . f ; S0/C
Z t

0

.LSu f ; Su/du C Mf
t ; (8.7)

where (note that pl
S and ml

S are functions on S)

LS f D f 0 � hS f C
	 kX

lD1
f .l; 0/pl

S



bS C

	 kX

lD1
f .l; 0/ml

S



hS; (8.8)

and Mf
t is a local square integrable martingale with the sharp bracket given by

˝
Mf ;Mf

˛
t D

Z t

0

	
.

kX

lD1
f 2.l; 0/pl

Su
/bSu C

	 kX

l1D1

kX

l2D1
f .l1; 0/f .l2; 0/�l1l2



hSu

�2
kX

lD1
f .l; 0/ml

Su
hSu f C hSu f 2; Su



du:
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The special choice of f such that f .s/ D 1 identically yields the equation for the
evolution in time t of the total population size, whereas taking f to be ıi.s/ D 1 as
soon as the first coordinate of s is i and zero otherwise gives the evolution of the
subpopulation of type i individuals.

Thus, the equation for the total size Zt D .1; St/ reduces to

Zt D Z0 C
Z t

0

.bSu C hSu.mSu � 1/; Su/du C M1
t ; (8.9)

where mS D Pk
lD1 ml

S is the mean of the total number of offspring at death and

˝
MZ;MZ

˛
t
D
Z t

0

	
bSu C

	 kX

l1D1

kX

l2D1
�l1l2



hSu � 2mSuhSu C hSu ; Su



du: (8.10)

For the type i subpopulation Zi
t D .ıi; St/,

Zi
t D Zi

0 C
Z t

0

.�hSuıi C pi
Su

bSu C mi
Su

hSu ; Su/du C Mi
t; (8.11)

˝
Mi;Mi

˛
t
D
Z t

0

	
pi

Su
bSu C �iihSu � 2mi

Su
hSuıi C hSuıi; Su



du: (8.12)

8.3 Processes with Carrying Capacity

As mentioned, the idea of a carrying capacity K is that population parameters
should stabilise for large K in a manner that makes population size fluctuate around
it, if it ever came close to it, cf. [10, 11, 13] in the single-type case. This is
made precise in the assumptions about demographic smoothness to follow. We thus
study populations, which have a carrying capacity K, and superscript corresponding
entities with a K, thought of as large. Since we are interested in their behaviour
around this carrying capacity, we assume that they start close to it, and study their
type and age composition while they prevail there, proving a Law of Large Numbers
corresponding to the single-type case of [10].

Thus, consider measures of the form

NSK D 1

K
SK; (8.13)

which are of course no longer counting measures on S but still have finite support.
In the limit as K ! 1, the age distribution turns out absolutely continuous, whereas
the type distribution remains discrete on the given space with k elements.
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A population process will be said to be demographically smoothly density
dependent, or for short just demographically smooth, if:

C0. The model parameters, bK , hK , mK’s, and � K’s are uniformly bounded.
C1. They are also normed uniformly Lipschitz in the following sense: there is a

C > 0 such that for all u 2 S D T � R
C and K, �.
; 
/ denoting the Levy-

Prokhorov distance between measures
 and 
 on S (rather on corresponding
�-algebra),

– jbK

.u/� bK


 .u/j � C�.
=K; 
=K/,
– jhK


.u/� hK

 .u/j � C�.
=K; 
=K/,

– jml;K

 .u/� ml;K


 .u/j � C�.
=K; 
=K/, l D 1; 2 : : : ; k,
– jpl;K


 .u/� pl;K

 .u/j � C�.
=K; 
=K/, l D 1; 2 : : : ; k.

C2. If the measures 
K on S are such that N
K D 
K=K converges weakly to
some N
, as K ! 1, then the limit lim bK


K D b1N
 exists, the same applying

to limits lim hK

K D h1N
 and all lim ml;K


K D ml;1
N
 as well as lim pl;K


K D pl;1
N
 .

C3. NSK
0 ) NS1

0 , and supK jNSK
0 j < 1, i.e. the process stabilises initially.

Remark As an illustration, the dependence of parameters upon the type and age
composition could have the form of a dependence on NSK , e.g. on .ıi�; NSK/, where
� is a function of age only. For example, if �.a/ D IŒa1;a2�.a/, we would obtain the
density of i-individuals in an age interval like that of reproductive ages. For such
dependencies assumption C2 is satisfied, if bK


 D b.�; N
K/ ! b.�; N
/ depends on its
suffix in a continuous fashion—similarly for other parameters.

The following result gives the stable type and stable age distributions NS1
t . It is

obtained from (8.7) by dividing through by K and taking limits by using the smooth
demography assumption. The martingale term vanishes (eg. by Doob’s inequality)
and we have the main result:

Theorem 8.4 Under the condition of demographical smoothness, the measure-
valued density process f 1K SK

t I t � 0g converges weakly, as K ! 1, to a process
fNS1

t I t � 0g, which solves the following equation

. f ; St/ D . f ; S0/C
Z t

0

.LSu f ; Su/du (8.14)

for test functions f . Here LS is given in (8.8), with parameters being the limiting
quantities in the smooth demographics.

Next, we make Eq. (8.14) explicit by using disintegration of measures St (NS1
t ), cf.

[20], e.g. The resulting explicit form is helpful in, for example, the case of sexual
reproduction.

Since T is a discrete and indeed finite set, we can write

� i D S.fig � R
C/; Ai.da/ D 1

� i
S.fig � da/;
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provided � i is positive. In our context � i is the proportion of type i individuals
and Ai is the age distribution of type i (conditioned on the individual being of type
i). Hence, NS1

t gives the limiting proportions of types and the age distribution of
each type. If � i D 0, then Ai is not defined, which is of no consequence as it will
disappear from the integral below. For test functions f on S D T � R

C,

. f ; S/ D
Z

S
f .u/S.du/ D

kX

iD1
� i
Z

RC

f .i; a/Ai.da/;

so that the limit equation (8.14) for NS1
t can be written explicitly

kX

iD1

� i
t

Z

RC

f .i; a/Ai
t.da/ D

kX

iD1

� i
0

Z

RC

f .i; a/Ai
0.da/C

kX

iD1

Z t

0

� i
u

Z

RC

gSu.i; a/A
i
u.da/du;

(8.15)
where

gS.i; a/ D LS f .i; a/ D f 0.i; a/� hS.i; a/f .i; a/C
	 kX

lD1
f .l; 0/pl

S.i; a/



bS.i; a/

C
	 kX

lD1
f .l; 0/ml

S.i; a/



hS.i; a/; (8.16)

omitting the superscript ‘1’ in the limiting quantities, as specified in C2. From
this, we can find equations both for the type distribution and for the age distribution
of every type. This is done in detail in the next section for the case of sexual
reproduction.

8.4 Sexual Reproduction

We specialise to the case of there being two types, females, and males; only females
reproducing, but with a fertility, that can be influenced by the availability of males.
The idea is that this will render the study of sexual reproduction possible also in age-
structured models, circumventing the notorious question of how to model couple
formation in structured populations.

In the unstructured Galton-Watson case, sexual reproduction has been exten-
sively studied for almost half a century, cf. relevant sections in [9] and the
sequel of papers from the Extremadura school, [17], and others. The success
hinges upon mating occurring in the one and only generation in existence at any
given moment, and more realistic population models, like general branching pro-
cesses, allowing co-existence of individuals from several generations, have resisted
attempts at generalisation to sexual reproduction. The same applies to age-structured
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deterministic population dynamics, which also remains asexual, cf. [7, 8], and even
to demographic theory, which is clonal in spite of it study object being human
populations (this probably warranted by the large number context of demography).
For a simple but elegant approach to reproduction with mating in the birth and death
case cf. [1, 2], generalised in [18].

We thus specialise the framework of the preceding section by choosing the
number of types k D 2, and write the type space T D f1; 2g. Since only females
can give birth, we may simplify notation further by writing bS as a function of age
alone for the female birth rate and similarly for the probability pS of the child being
female. The probability of a male child is qS D 1 � pS. Similarly, the mean number
of females born at death is m1

S and males m2
S, and the hazard rate for females is h1S

and for males h2S, again functions of age, i.e. hi
S.a/ D hS.i; a/; i D 1; 2. Omitting the

superscript 1 in the limiting quantities as specified in C2, (see also the Remark) we
see that the operator LS, in (8.8) and (8.16), takes the form

LS f .1; a/ D f 0.1; a/� h1S.a/f .1; a/C
	

f .1; 0/pS.a/C f .2; 0/qS.a/



bS.a/

C
	

f .1; 0/m1
S.a/C f .2; 0/m2

S.a/



h1S.a/;

LS f .2; a/ D f 0.2; a/� h2S.a/f .2; a/: (8.17)

If we introduce test functions of age, � and  , and write first f .1; a/ D �.a/
and f .2; a/ D 0, and then f .1; a/ D 0 and f .1; a/ D  .a/, the limit equa-
tion (8.14), (8.15) becomes as follows. Here it is easier to work with Si

t D � i
t A

i
t.

.�; S1t / D .�; S10/C
Z t

0

	
�0 � h1Su

� C �.0/. pSubSu C m1
Su

h1Su
/; S1u



du; (8.18)

. ; S2t / D . ; S20/C
Z t

0

h	
 0 � h2Su

 ; S2u



C
	
 .0/qSu bSu C  .0/m2

Su
h1Su
; S1u

i

du:

By integration by parts and looking at the adjoint operators, one can show that
the densities si.t; x/ on .0;1/ of Si

t exist (i D 1; 2), and that these equations are the
weak form of the pde’s, [10].

@s1

@t
C @s1

@x
D �hSt.s

1/; s1.t; 0/ D
Z 1

0

. pSt bSt C m1
St

h1St
/.y/s1.t; y/dy; (8.19)

@s2

@t
C @s2

@x
D �hSt.s

2/; s2.t; 0/ D
Z 1

0

.qSt bSt C m2
St

h1St
/.y/s1.t; y/dy:

Analysis of these two-dimensional generalised McKendrick-von Foerster equa-
tions will be given elsewhere.
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Further, we derive equations for the types. If f D ı1,

LS f .1; a/ D h1S.a/.m
1
S.a/� 1/C pS.a/bS.a/; LS f .2; a/ D 0;

and for f D ı2,

LS f .1; a/ D qS.a/bS.a/C m2
S.a/h

1
S.a/; LS f .2; a/ D �h2S.a/:

This implies the following equation for the limiting density of females NXt D �1t ,
and males NYt D �2t ,

NXt D NX0 C
Z t

0

NXu

Z

RC

h
h1Su
.a/.m1

Su
.a/� 1/C pSu.a/bSu.a/

i
A1u.da/du (8.20)

NYt D NY0 C
Z t

0

h NXu

Z

RC

.qSu.a/bSu.a/C m2
Su
.a/h1Su

.a//A1u.da/� NYu

Z

RC

h2Su
.a/A2u.da/

i
du;

which can be written as coupled ordinary differential equations,

PNXt D NXt.h
1
St
.m1

St
� 1/C pSt bSt ;A

1
t /: (8.21)

PNYt D NXt.qSt bSt C m2
St

h1St
;A1t /� NYt.h

2
St
;A2t /:

This last form shows how parameters of the model combine to influence the
composition and evolution, and should be analysed for fixed points etc.. It can
be viewed as a sort of generalised Lotka-Volterra equation, most obviously so
in the particular case, where the demographic parameters are independent of the
individual’s age and depend upon St only through the number of males and females
Xt;Yt, or only Yt.

8.5 Future Challenges

It may be suitable to factor female birth intensities into a probability of being
fertilised, �.x; y/, a function of the numbers x and y of females and males present
at each time point, whereas crowding effects are mirrored in population size
dependence of the reproduction intensity of fertile females ˇz and of the death
intensities hz,

bSt D �.Xt;Yt/ˇZt ;mSt D �.Xt;Yt/
Zt ; hSt D hZt :

Clearly �.x; 0/ ought to be taken as 0 for all x. The case where � is an increasing
function of the number of males only, reflects promiscuity, whereas a situation
where it is a function of the sex ratio Yt=Xt comes closer to mating proper. In any
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case, the probability of fertilisation should be taken as an increasing function of its
second argument, maybe satisfying �.x; 1/ � � for some � > 0 and all x � 1.
(This rules out the case of strict and complete monogamy.) In the case of a carrying
capacity K the parameters ˇK

z ; 

K
z , and hK

z define supercritical populations for z < K
turning subcritical as z > K, in the sense discussed in [13].

We have outlined an approach to type and age structured population dynamics
with a possible application to sexual reproduction in general stochastic population
models. It raises many questions, some of which have been noted in the text. Others
concern extinction probabilities, growth rates, prevalence time, and sex ratios and
other compositional matters during prevalence, and of course about differences to
and similarities with clonally reproducing populations, as well as between different
fertilisation schemes. Investigations about Galton-Watson processes with mating
indicate that clear general assertions about the initial phase, survival chances and
a stage of exponential growth, may be hard cf. [17] or Alsmeyer’s sections in [9],
whereas the approach in [10–13] may give some hope for a description of the
lingering phase. We intend to pursue this in forthcoming more general work.
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Chapter 9
Supercritical Sevastyanov Branching Processes
with Non-homogeneous Poisson Immigration

Ollivier Hyrien, Kosto V. Mitov, and Nikolay M. Yanev
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9.1 Introduction

Sevastyanov [26] introduced branching processes with immigration and studied
their properties in the Markov case when immigration occurs in accordance with
a time-homogeneous Poisson process. Extensions to the Bellman–Harris process
with time-homogeneous immigration were subsequently considered by Jagers
[14], Pakes [23], Radcliffe [25], Pakes and Kaplan [24], and Kaplan and Pakes
[16]. Mitov and Yanev [18–20] investigated Bellman–Harris processes with state-
dependent immigration (see also Chap. 3 in Ahsanullah and Yanev [1]).

The Sevastyanov process is an extension of the Bellman–Harris process, which
allows the lifespan and the offspring of the process to be dependent [27–29]. This
extension has been supported by analysis of cell kinetics data [4, 10–12].
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Comprehensive reviews of branching processes, including their applications to
biology, can be found in the following monographs: Harris [7], Sevastyanov [29],
Mode [22], Athreya and Ney [3], Jagers [15], Asmussen and Hering [2], Yakovlev
and Yanev [32], Kimmel and Axelrod [17], Haccou et al. [6] and Ahsanullah and
Yanev [1]. For specific discussions on applications of Markov and Bellman–Harris
branching processes with non-homogeneous Poisson immigration to modeling cell
kinetics, the reader is referred to Yakovlev and Yanev [33, 34] and Hyrien and Yanev
[8, 9]. See also Hyrien et al. [13] for an application of a two-type Bellman–Harris
process with immigration to study the dynamics of immature (BFU-E) and mature
(CFUE) erythroid progenitors following sublethal total body irradiation.

The model under consideration herein is developed based on Sevastyanov [27–
29] age-dependent branching process and, in addition, allows an immigration
component at times described by a time-nonhomogeneous Poisson process. In
fact the present paper offers a continuation of earlier investigations by Mitov and
Yanev [21] who focused on the critical case. Here, we study the supercritical case.
Note that this case was investigated by Yanev [30, 31] when immigration is time-
homogeneous.

The paper is organized as follows. Section 9.2 describes the biological back-
ground and motivation. This will provide the intuition used to construct the more
general model formulated in Sect. 9.3. The basic equations for the probability gen-
erating functions and the moments are also presented in Sect. 9.3. The asymptotic
behavior for the means, variances and covariances of the supercritical process with
immigration are investigated in Sect. 9.4 for several classes of immigration rates. In
Sect. 9.5 we prove two sets of limit results. The first one (Theorem 9.1) generalizes
classical results obtained by Sevastyanov [26], while the second one (Theorems 9.2
and 9.3) describes novel behaviors that arise from the non-homogeneity of the
immigration process. Theorem 9.2 can be interpreted as a LLN and Theorem 9.3
as a CLT.

9.2 Biological Motivation

The development and repair of tissues of the body is controlled by the processes
of cell division, cell death, and cell differentiation. Because the outcome of the
cell cycle is stochastic, age-dependent branching processes have been proposed to
describe the dynamics of cell populations. To date, the Bellman–Harris process
has remained the model of choice in such applications. It is flexible enough to
accommodate multiple cell types, and it allows the possibility for cells to immigrate
from an unobservable compartment via an immigration component [8, 33]. An
important assumption made by this model is that the duration of the lifespan and the
outcome of the cell cycle (that is, division, death, or differentiation) are independent.
In other words, the conditional offspring distribution (here, the probability that the
cell either divides, dies, or differentiates), given the lifespan of the cell, given the
lifespan duration, does not change during the lifespan.
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Several studies have shown that the duration of the cell lifespan and the outcome
of the cell cycle are stochastically dependent. For example, studies that investigated
the generation of oligodendrocytes from their cultured progenitor cells found that
these cells self-renewed and differentiated into oligodendrocytes dissimilarly over
time [4, 10, 11]. Other studies reported that lymphocytes were prone to cell death
about 1 h after birth but divided only after about 12 h on average [12]. These findings
are consistent with the assumptions of the Sevastyanov process.

A population in which cells divide, differentiate, die, or immigrate into the
population could be described as follows. The process begins at time zero with N0
cells. When modeling the development of tissues from the earliest embryonic stages
it is reasonable to set N0 D 0. New cells (immigrants) arrive in the population in
accordance with a non-homogeneous Poisson process with instantaneous rate r.t/.
These immigrants are assumed to be of age zero upon arrival in the population.
When completing its lifespan, every cell either divides into two new cells or it exits
the mitotic cycle to either differentiate or to die. Let p2 denote the probability of
division, and put p0 D 1 � p2 for the probability of exiting the mitotic cycle. The
duration of the lifespan of any cell (referring here to either the time to division or
the time to death/differentiation) is described by a non-negative random variable
� . Conditional on the cell dividing, � has cumulative distribution function (c.d.f.)
G2.t/ D Pf� � tj� D 2g that satisfies G2.0/ D 0, whereas if it exits the mitotic
cycle to either die or differentiate, it has a c.d.f. G0.x/ D Pf� � xj� D 0g that
satisfies G2.0/ D 0. Cells are assumed to evolve independently of each other.

The unconditional c.d.f of the duration of the lifespan, G.t/, is a mixture

G.t/ D p0G0.t/C p2G2.t/;

and the conditional distribution of � given � is the posterior probability

P.� D xj� � t/ D px.1 � Gx.t//

1 � p0G0.t/ � p2G2.t/
;

for x D 0 or 2, such that the process belongs to the class of Sevastyanov processes
when G0 6� G2. This example motivated the investigation of a class of Sevastyanov
branching processes with non-homogeneous Poisson immigration defined in the
next section. We consider a more general process to extend the scope of our work.

9.3 The Process and Its Equations

We define a process that begins with the immigration of a first group of cells, all of
age zero, into the population at a random time S1. Additional groups of cells, also
of age zero, subsequently immigrate into the population at random time points Sk,
k D 1; 2 � � � , ordered as 0 D S0 < S1 < S2 < � � � . We assume that this sequence of
random times forms a non-homogeneous Poisson process ˘.t/ with instantaneous
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rate r.t/. The cumulative rate is R.t/ D R t
0

r.u/du. Let Ui D Si � Si�1, i D 1; 2 � � � ,
denote the inter-arrival times, such that Sk D Pk

iD1 Ui, k D 1; 2; : : :. Write Ik for the
number of immigrants that enter the population at time Sk. We assume that fIkg1

kD1
is a sequence of independent and identically distributed r.v. with a p.g.f. g.s/ D
EŒsIk � D P1

iD0 gisi, jsj � 1. Let � D EŒIk� D dg.s/

ds
jsD1 be the immigration mean

and introduce the second factorial moment �2 D d2g.s/

ds2
jsD1 D EŒIk.Ik � 1/�.

Upon arrival, every immigrant initiates an age-dependent branching process. This
process describes the lifespan of every cell by a non-negative random variable �with
c.d.f. G.t/ D Pf� � tg; t � 0. Upon completion of its lifespan, every cell produces a
random number of offspring, say �, with conditional probability generating function
(p.g.f.) given on the cell is of age u

h.u; s/ D
1X

kD0
pk.u/s

k; h.u; 1/ � 1; jsj � 1:

We assume that every cell evolves independently of every other cell and that the
collection of trees initiated by the immigrants are mutually independent.

The evolution of the process is governed by the joint distribution of .�; �/. They
need not be independent, in which case the above assumptions define a Sevastyanov
branching process with immigration. It reduces to a Bellman–Harris process if the
random variables � and � are independent; that is, if h.u; s/ � h.s/.

Let, for every t � 0, Z.t/ denote the number of cells at time t in the population
for the process without immigration and started from a single cell at time t D 0.
Sevastyanov [27] showed that the associated p.g.f. F.tI s/ D EŒsZ.t/jZ.0/ D 1�

satisfies the non-linear integral equation

F.t; s/ D s.1 � G.t//C
Z t

0

h.u;F.t � u; s//dG.u/ (9.1)

with the initial condition F.0; s/ D s and under mild regularity conditions this
equation admits a unique solution in the class of the p.g.f.

Define the moments of the offspring distribution:

a.u/ D @h.u; s/

@s

ˇ
ˇ
ˇ
ˇ
sD1

; b.u/ D @2h.u; s/

@s2

ˇ
ˇ
ˇ
ˇ
sD1

a D
Z 1

0

a.u/dG.u/; and b D
Z 1

0

b.u/dG.u/:
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and let 
 D EŒ�� D
Z 1

0

xdG.x/ denote the expected life-span of any cell. These

characteristics are assumed to be finite. The Malthusian parameter ˛ is the solution
to the equation

Z 1

0

e�˛xa.x/dG.x/ D 1:

This paper is concerned with the supercritical case a > 1, where ˛ always exists
and is strictly positive.

Define the moments

A.t/ D EŒZ.t/jZ.0/ D 1�; t � 0;

B.t; �/ D EŒZ.t/Z.t C �/jZ.0/ D 1�; t � 0; � � 0;

B.t/ D EŒZ.t/.Z.t/ � 1/jZ.0/ D 1� D B.t; 0/� A.t/; t � 0;

V.t/ D VarŒZ.t/jZ.0/ D 1� D B.t/C A.t/ � A2.t/ D B.t; 0/ � A.t/2; t � 0:

Throughout, we shall assume that G.t/ and G.˛/
a .t/ D R t

0
a.u/e�˛udG.u/ are non-

lattice distributions. Then, A.t/ satisfies the asymptotic approximation as t ! 1
[29],

A.t/ D Ae˛t.1C o.1//; A D
R1
0

e�˛t.1 � G.t//dt
R1
0 xe�˛xa.x/dG.x/

: (9.2)

If, additionally,
R1
0

b.u/e�2˛udG.u/ < 1, then as t ! 1,

B.t; �/ D Be˛�C2˛t.1C o.1//; B D A2
R1
0

b.x/e�2˛xdG.x/

1 � R1
0

a.x/e�2˛xdG.x/
: (9.3)

Therefore, as t ! 1, B.t/ D Be2˛t.1C o.1//,

V.t/ D B.t; 0/� A.t/2 D Ve2˛t.1C o.1//; V D B � A2: (9.4)

Let fY.t/; t � 0g denote the number of cells at time t as described by the process
with immigration. Unless G.t/ is an exponential distribution, this process is non-
Markov and can be studied by means of integral equations. It satisfies Y.t/ D 0 as
long as ˘.t/ D 0, and, when ˘.t/ > 0, it can be decomposed as

Y.t/ D
˘.t/X

kD1

IkX

lD1
Z.k;l/.t � Sk/;
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where Z.k;l/.t/, l D 1; : : : ; Ik and k D 1; 2 � � � , are i.i.d. copies of fZ.t/gt�0 started
with a single ancestor cell at time Sk.

When fUig1
iD1 are i.i.d. exponentially distributed r.v. with c.d.f. G0.x/ D PfUi �

xg D 1 � e�rx, x � 0, ˘.t/ reduces to an ordinary Poisson process with cumulative
rate R.t/ D rt, and Y.t/ is an age-dependent branching process with homogeneous
Poisson immigration. This process was investigated by Yanev [31].

Introduce the p.g.f. �.tI s/ D EŒsY.t/jY.0/ D 0�. Yakovlev and Yanev ([34];
Theorem 1) proved that �.tI s/ admits the expression

�.tI s/ D exp

�
�
Z t

0

r.t � u/Œ1 � g.F.uI s//�du

�
; (9.5)

where F.uI s/ satisfies the integral equation (9.1), and it satisfies the initial condition
�.0; s/ D 1. Define the moments of the process with immigration

M.t/ D EŒY.t/jY.0/ D 0� D @�.tI s/

@s

ˇ
ˇ̌
ˇ
sD1

;

M2.t/ D EŒY.t/.Y.t/ � 1/jY.0/ D 0� D @2�.tI s/

@s2

ˇ
ˇ
ˇ
ˇ
sD1

;

W.t/ D VarŒY.t/jY.0/ D 0� D M2.t/C M.t/.1 � M.t//:

We deduce from Eq. (9.5) that

M.t/ D �

Z t

0

r.t � u/A.u/du; (9.6)

M2.t/ D �

Z t

0

r.t � u/B.u/du

C Œ�

Z t

0

r.t � u/A.u/du�2 C �2

Z t

0

r.t � u/A2.u/du;

W.t/ D
Z t

0

r.t � u/Œ�V.u/C .� C �2/A
2.u/�du: (9.7)

To derive expressions for the covariances, define the joint p.g.f.

�.s1; s2I t; �/ D EŒsY.t/
1 sY.tC�/

2 jY.0/ D 0�; t; � � 0:
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Using the same line of arguments as Yakovlev and Yanev [34] to prove identity (9.5),
we find that

�.s1; s2I t; �/ D exp

�
�
Z t

0

r.u/Œ1 � g.F.s1; s2I t � u; �//�du

�
Z tC�

t
r.v/Œ1 � g.F.1; s2I t; � � v//�dv

�
; (9.8)

where F.s1; s2I t; �/ D EŒsZ.t/
1 sZ.tC�/

2 � is well determine by Eq. (22) in Sevastyanov
[29], Chap. VIII.8, as follows

F.s1; s2I t; �/ D
Z tC0

o
h.uI F.s1; s2I t � u; �//dG.u/

C s1

Z tC�C0

tC0
h.uI F.s2; t C � � u//dG.u/C s1s2.1 � G.t C �//:

For the covariance

C.t; �/ D CovŒY.t/;Y.t C �/� D @2 log�.s1; s2I t; �/

@si@sj

ˇ
ˇ
ˇ
ˇ
s1Ds2D1

we deduce from Eq. (9.8) that

C.t; �/ D
Z t

0

r.u/Œ�B.t � u; �/C �2A.t � u/A.t C � � u/�du; (9.9)

with the initial condition B.0; �/ D B.�/.

9.4 Asymptotic Expansions for the Moments

Lemma 9.1 Let a.t/ and b.t/ be nonnegative functions defined on Œ0;1/. Assume
that a.t/ is bounded, lim

t!1 a.t/ D a < 1 and
R1
0

b.t/dt D b < 1. Then

lim
t!1

Z t

0

a.u/b.t � u/du D ab:

Proof We have, for every 0 < � < 1, that

Z t

0

a.u/b.t � u/du D
Z �t

0

a.u/b.t � u/du C
Z t

�t
a.u/b.t � u/du D I1.t/C I2.t/:
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Note first that, for large enough t,

I1.t/ � max
0�u��t

a.u/
Z t

t.1��/
b.u/du ! 0; t ! 1:

and, for every " > 0:

.a � "/
Z t.1��/

0

b.u/du � I2.t/ � .a C "/

Z t.1��/

0

b.u/du;

which completes the proof. ut
Proposition 9.1 Define Ort.˛/ D R t

0 r.u/e�˛udu and assume that

lim
t!1 Ort.˛/ D Or.˛/ < 1: (9.10)

Then, as t ! 1, we have that:

M.t/ D A� Or.˛/e˛t.1C o.1//; (9.11)

W.t/ D e2˛t Or.2˛/ ��V C .� C �2/A
2
�
.1C o.1//; (9.12)

C.t; �/ D e˛�C2˛t Or.2˛/ ��B C �2A
2
�
.1C o.1//: (9.13)

Proof Manipulating Eq. (9.6) leads to

M.t/ D �e˛t
Z t

0

r.t � u/e�˛.t�u/A.u/e�˛udu:

Using Eqs. (9.2) and (9.10) and applying Lemma 9.1 we obtain as t ! 1
Z t

0

r.t � u/e�˛.t�u/A.u/e�˛udu ! AOr.˛/:

The above convergence obviously establishes (9.11).
To prove the asymptotic behavior of the variance W.t/, we use Eqs. (9.2), (9.4)

and (9.7) to obtain

W.t/ D e2˛t
Z t

0

r.t � u/

e2˛.t�u/



�

V.u/

e2˛u
C .� C �2/

A2.u/

e2˛u

�
du:

Applying Lemma 9.1 again and using (9.10) leads to (9.12).
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Finally we deduce from Eq. (9.9) that

C.t; �/ D
Z t

0

r.u/Œ�B.t � u; �/C �2A.t � u/A.t C � � u/�du

D e˛�C2˛t
Z t

0

r.u/

e2˛u



�

B.t � u; �/

e˛�C2˛.t�u/
C �2

A.t � u/

e˛.t�u/

A.t C � � u/

e˛.�Ct�u/

�
du:

Now Eqs. (9.2), (9.3) and (9.10) and Lemma 9.1 lead to (9.13). ut
Remark 9.1 Condition (9.10) is fulfilled if r.t/ D L.t/t� for some s.v.f. L.t/ and
some constant � 2 R, or, more generally, if r.t/ D O.e�t/ for some constant � < ˛.

Proposition 9.2 Assume that r.t/ D re�t , r > 0 and � > 0. Then, as t ! 1,

(i) M.t/ D �r OA.�/e�t.1 C o.1//, if � > ˛, OA.�/ D R1
0

e�.��˛/uA.u/e�˛udu <
1;

(ii) M.t/ D �rAte˛t.1C o.1//, if � D ˛;

(iii) M.t/ D A�r

˛ � � e˛t.1C o.1//, if � < ˛.

Proof In case (i), we deduce from Eq. (9.6) that

M.t/ D �re�t
Z t

0

e�.��˛/uA.u/e�˛udu:

Since A.u/e�˛u ! A as u ! 1 (see Eq. (9.2)), and � � ˛ > 0 the above integral
converges to the constant OA.�/ D R1

0
e�.��˛/uA.u/e�˛udu. This completes the

proof.
To prove the result stated in case (ii), we write

M.t/ D �re˛t
Z t

0

A.u/e�˛udu:

Since A.u/e�˛u ! A as u ! 1, then
R t
0

A.u/e�˛udu � At as t ! 1, which
completes the proof.

Case (iii) follows from (1.11) with Or.˛/ D 1
˛�� . ut

Proposition 9.3 Assume that r.t/ D re�t , r > 0 and � > 0. Then, as t ! 1,

(i) W.t/ D We�t.1C o.1// if � > 2˛,

W D r
Z 1

0

e��uŒ�V.u/C .� C �2/A
2.u/�duI

(ii) W.t/ D rŒ�V C .� C �2/A
2�te2˛t.1C o.1// if � D 2˛;

(iii) W.t/ D rŒ�V C .� C �2/A2�

2˛ � � e2˛t.1C o.1// if � < 2˛.
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Proof In case (i), we use Eq. (9.7) to write

W.t/ D re�t
Z t

0

e�.��2˛/uŒ�V.u/C .� C �2/A
2.u/�e�2˛udu: (9.14)

It follows from Eqs. (9.2) and (9.4) that

�
�V.u/C .� C �2/A

2.u/
�

e2˛u ! �
�V C .� C �2/A

2
�
; u ! 1:

Since � > 2˛, the integral in Eq. (9.14) converges. This completes the proof of (i).
In case (ii), where � D 2˛, we have

W.t/ D re2˛t
Z t

0

e�2˛uŒ�V.u/C .� C �2/A
2.u/�du

� rŒ�V C .� C �2/A
2�te2˛t.1C o.1//

as t ! 1, and the result follows.
In case (iii), where � < 2˛, we have

W.t/ D
Z t

0

re�u Œ�V.t � u/C .� C �2/A2.t � u/�

Œ�V C .� C �2/A2�e2˛.t�u/
Œ�V C .� C �2/A

2�e2˛.t�u/du

D rŒ�V C .� C �2/A
2�e2˛t

Z t

0

e.��2˛/u Œ�V.t � u/C .� C �2/A2.t � u/�

Œ�V C .� C �2/A2�e2˛.t�u/
du:

Since
Z 1

0

e.��2˛/tdt D 1

2˛ � � and
Œ�V.t/C .� C �2/A2.t/�

Œ�V C .� C �2/A2�e2˛.t/
! 1 as t ! 1, the

result follows by Lemma 9.1. ut
Proposition 9.4 Assume that r.t/ D re�t , r > 0 and � > 0. Then, as t ! 1,

(i) C.t; �/ D Cre˛�C2�t.1C o.1// if � > 2˛,

C D
Z 1

0

e�.��2˛/u


�

B.u; �/

e˛�C2˛u
C �2

A.u/

e˛u

A.� C u/

e˛.�Cu/

�
du;

.
(ii) C.t; �/ D rŒ�B C �2A

2�te˛�C2˛t.1C o.1// if � D 2˛.

(iii) C.t; �/ D rŒ�B C �2A2�

2˛ � � e˛�C2˛t.1C o.1// if � < 2˛.

Proof We obtain from Eq. (9.9) that

C.t; �/ D re˛�C2�t
Z t

0

e�.��2˛/u


�

B.u; �/

e˛�C2˛u
C �2

A.u/

e˛u

A.� C u/

e˛.�Cu/

�
du:
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In case (i) as u ! 1, we deduce from (9.2) and (9.3) that



�

B.u; �/

e˛�C2˛u
C �2

A.u/

e˛u

A.� C u/

e˛.�Cu/

�
! �B C �2A

2 (9.15)

Since � > 2˛, C is finite which completes the proof.
In case (ii), we deduce from Eq. (9.15) that

Z t

0



�

B.u; �/

e˛�C2˛u
C �2

A.u/

e˛u

A.� C u/

e˛.�Cu/

�
du � Œ�B C �2A

2�t;

as t ! 1, which completes the proof of (ii).
In case (iii), we deduce from Eq. (9.9) that

C.t; �/ D
Z t

0

re�u



�

B.t � u; �/

e˛�C2˛.t�u/
C �2

A.t � u/

e˛.t�u/

A.� C t � u/

e˛.�Ct�u/

�
e˛�C2˛.t�u/du

D re˛�C2˛t
Z t

0

e.��2˛/u


�

B.t � u; �/

e˛�C2˛.t�u/
C �2

A.t � u/

e˛.t�u/

A.� C t � u/

e˛.�Ct�u/

�
du:

Since
Z 1

0

e.��2˛/tdt D 1

2˛ � � and



�

B.t; �/

e˛�C2˛t
C �2

A.t/

e˛t

A.� C t/

e˛.�Ct/

�
! Œ�B C

�2A
2�, as t ! 1 then the result follows by Lemma 9.1. ut

9.5 Limit Theorems

Theorem 9.1 Assume that Or.˛/ D limt!1 Ort.˛/ < 1. Then, as t ! 1,

	.t/ D Y.t/=M.t/
L2! 	;

where 	 is a random variable with expectation E	 D 1 and variance

Var.	/ D Or.2˛/ ��V C .� C �2/A
2
�
ŒA� Or.˛/��2 :

Proof Note first that EŒ	.t/� � 1. Hence, it is sufficient to prove that

�.t; �/ D EŒ	.t C �/ � 	.t/�2 ! 0 as t ! 1;

uniformly for � � 0. We have

�.t; �/ D VarŒ	.t C �/�C VarŒ	.t/� � 2CovŒ	.t/; 	.t C �/� (9.16)
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where

VarŒ	.t/� D W.t/

M2.t/
and CovŒ	.t/; 	.t C �/� D C.t; �/

M.t/M.t C �/
: (9.17)

As t ! 1, we deduce from Eqs. (9.11)–(9.13) that

VarŒ	.t/� D e2˛t Or.2˛/ ��V C .� C �2/A2
�

ŒA� Or.˛/�2 e2˛t
.1C o.1//

D Or.2˛/ ��V C .� C �2/A
2
�
ŒA� Or.˛/��2 .1C o.1//;

VarŒ	.t C �/� D e2˛.tC�/Or.2˛/ ��V C .� C �2/A2
�

ŒA� Or.˛/�2 e2˛.tC�/
.1C o.1//

D Or.2˛/ ��V C .� C �2/A
2
�
ŒA� Or.˛/��2 .1C o.1//;

CovŒ	.t/; 	.t C �/� D e˛�C2˛t Or.2˛/ ��B C �2A2
�

ŒA� Or.˛/�2 e2˛tC˛� .1C o.1//

D Or.2˛/ ��B C �2A
2
�
ŒA� Or.˛/��2 .1C o.1//:

The result stated in the theorem follows using the fact that V C A2 � B D 0. ut
Theorem 9.2 Assume that r.t/ D re�t with � � ˛ and r > 0. Then, as t ! 1,

	.t/ D Y.t/=M.t/
L2�! 1 and 	.t/

a:s:�! 1:

Proof Assume first that � D ˛. Then � < 2˛, and we deduce from Proposi-
tions 9.2.(ii), 9.3.(iii), and 9.4.(iii), as t ! 1, that

M.t/ D �rAte˛t.1C o.1//; (9.18)

W.t/ D r

2˛ � �

�
�V C .� C �2/A

2
�

e2˛t.1C o.1//; (9.19)

C.t; �/ D r
�
�B C �2A

2
�

e˛�C2˛t.1C o.1//: (9.20)

Note that EŒ	.t/� � 1. We deduce from Eqs. (9.18)–(9.20), as t ! 1, that

VarŒ	.t/� D rŒ�V C .� C �2/A2�e2˛t

.2˛ � �/.�rA/2t2e2˛t
.1C o.1// D O.t�2/;

VarŒ	.t C �/� D rŒ�V C .� C �2/A2�e2˛.tC�/

.2˛ � �/.�rA/2.t C �/2e2˛.tC�/
.1C o.1// D O.t�2/;
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CovŒ	.t/; 	.t C �/� D rŒ�B C �2A2�e˛�C2˛t

.2˛ � �/.�rA/2t.t C �/e˛�C2˛t
.1C o.1// D O.t�2/:

Now the first relation follows from EŒ	.t/� D 1 and VarŒ	.t/� ! 0 as t ! 1. Next,
Eqs. (9.16), (9.17) and the above three identities imply that

�.t; �/ WD EŒ	.t C �/ � 	.t/�2 D O.t�2/;

uniformly on � � 0, as t ! 1.
Hence,

R1
0
�.t; �/dt < 1, and Theorem 21.1 in Harris [7] entails that 	.t/

converges almost surely to 1.
The proofs of the remaining cases are similar. The result follows from the

asymptotic behavior of�.t; �/:

�.t; �/ D

8
ˆ̂
<

ˆ̂
:

O.t�2/ if � D ˛

O.e�2.˛��/t/ if ˛ < � < 2˛
O.e�2˛t/ if � D 2˛

O.e��t/ if � > 2˛:

ut
Remark 9.2 Theorem 9.2 can be interpreted as a SLLN. Hence one can conjecture
a CLT.

Theorem 9.3 Assume that r.t/ D re�t with � � ˛ and r > 0.

(i) If ˛ � � � 2˛, then X.t/ D Y.t/ � M.t/
p

W.t/

d�! N.0; 1/ as t ! 1.

(ii) If � > 2˛, then X.t/
d�! N.0; �2/ as t ! 1;

where �2 D 1� �r OA.�/
�

r
Z 1

0

e��uŒ�V.u/C .� C �2/A
2.u/�du

��1
.

Proof Define the characteristic function 't.z/ WD EŒeizX.t/�. It follows from the
definition of X.t/ that

't.z/ D e�izM.t/=
p

W.t/�.tI eiz=
p

W.t//;

where �.tI s/ WD EŒsY.t/jY.0/ D 0�. Next, we deduce from Eq. (9.5) that

log't.z/ D �izM.t/=
p

W.t/ �
Z t

0

r.t � u/Œ1 � g.F.uI eiz=
p

W.t///�du:

Note that, as s ! 1,

1 � g.s/ � �.1� s/ � �2.1 � s/2=2;

1 � F.uI s/ � A.u/.1� s/ � B.u/.1� s/2=2:



164 O. Hyrien et al.

and, as x ! 0, 1 � ecx � �cx. Therefore, as t ! 1,

log't.z/ � �izM.t/=
p

W.t/ (9.21)

�
Z t

0

r.t � u/f�Œ1� F.uI eiz=
p

W.t//�� �2Œ1 � F.uI eiz=
p

W.t/�2=2gdu:

As t ! 1,

1 � F.uI eiz=
p

W.t// � A.u/.1� eiz=
p

W.t// � B.u/.1� eiz=
p

W.t//2=2

� �izA.u/=
p

W.t/C z2B.u/=
p

W.t/=2:

Hence,

D.t/ D
Z t

0

r.t � u/
n
�Œ1 � F.uI eiz=

p
W.t//� � �2Œ1 � F.uI eiz=

p
W.t/�2=2

o
du

� �iz�
Z t

0

r.t � u/A.u/du=
p

W.t/C .z2=2/�
Z t

0

r.t � u/B.u/du=W.t/

C .z2=2/�2

Z t

0

r.t � u/A2.u/du=W.t/:

Now using (9.6) and (9.7) one has as t ! 1,

D.t/ � �izM.t/=
p

W.t/C .z2=2/Œ1� M.t/=W.t/�:

Hence one gets from (9.21)

log't.z/ � �.z2=2/Œ1� M.t/=W.t/�; t ! 1: (9.22)

As t ! 1, we deduce from the asymptotic of M.t/ and W.t/ (see Sect. 9.4) that

M.t/=W.t/ ! 0 when ˛ � � � 2˛ and M.t/=W.t/ ! �r OA.�/
W when � > 2˛. Then

�2 D 1 � �r OA.�/
W .

Therefore, returning to Eq. (9.22), we finally obtain that limt!1 't. z/ D e�z2=2

for ˛ � � < 2˛ and limt!1 't. z/ D e�z2�2=2 for � > 2˛ which are characteristic
functions of normal distributions. Assertions .i/ and .ii/ follow by applying the
continuity theorem [5]. ut
Remark 9.3 Recall that the relation

X.t/ D ŒY.t/ � M.t/�=
p

W.t/
d�! N.0; �2/ as t ! 1

is often presented as Y.t/ 2 N.M.t/; �2W.t// and one can say that Y.t/ has asymp-
totic normality with a mean M.t/ and a variance �2W.t/. Then from Theorem 9.3
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using Propositions 9.2 and 9.3 one can obtain the following relations which give
more convenient interpretation for the rate of convergence:

(a) If � D ˛ then Y.t/=te˛t 2 N
	
�rA; K

.2˛��/t2



,

(b) If ˛ < � < 2˛ then Y.t/=e�t 2 N
	
�r OA.�/; K

.2˛��/ e
2.˛��/t



,

(c) If � D 2˛ then Y.t/=e2˛t 2 N
	
�r OA.2˛/;Kte�2˛t



,

(d) If � > 2˛ then Y.t/=e�t 2 N.�r OA.�/; �2We��t/,

where K D r.� C .� C �2/A2/ and W D r
R1
0

e��uŒ�V.u/C .� C �2/A2.u/�du.
Note that these relations are also useful for constructing of asymptotically

confident intervals.
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Chapter 10
Crump-Mode-Jagers Branching Process:
A Numerical Approach

Plamen Trayanov

Mathematics Subject Classification (2000): 60J80

10.1 Introduction

The Crump-Mode-Jagers branching process or also called General Branching
Process (GBP) describes a population in which each woman could have random
life length and random intervals of time between each birth (see Jagers [5]). All
individuals are assumed to have the same birth and death distributions regardless
of the time. The expected population count for such branching process satisfies a
specific renewal equation. Its theoretical solution is given by renewal theory. As
explained in Mitov and Omey [8] the solution is a convolution of two functions,
one of which is the renewal function, which is an infinite sum of convolutions
with increasing order. Calculating even one of the terms in this sum numerically
is computationally heavy and very time consuming. To make things worse, in order
to find the expected future age structure we need to solve a 100 renewal equations—
one for each age. It is preferable to use a more suitable numerical method for solving
the renewal equation in order to reduce computation time. Some examples of such
numerical methods can be found in [1, 4, 9, 13].

This paper presents a numerical approach for projecting the population age
structure based on the theory of General Branching Processes that consists only
of simple matrix multiplications and solves all the required renewal equations at the
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same time. A special case of this numerical method turns out to be the Leslie matrix
projection, widely used in demographics. The estimation error of the expected total
population count, calculated using Leslie matrix is proved to be of order O.h/ and
the estimation error for each particular age interval—of order O.h2/. The result
justifies the use of Leslie matrix in demographics. From another point of view
the Leslie matrix projection turns out to be a very effective numerical method for
solving renewal equations.

Section 10.2 reviews the definition of GBP and some of the results presented
in Jagers [5]. Section 10.3 reviews a GBP that is relevant for human population
and some theoretical results are derived. The Appendix reviews two examples. The
first example shows the application of the numerical method for projecting the
population of Bulgaria given the current age structure. The second example shows
the application of this numerical method for solving renewal equations.

10.2 Preliminary Results

For consistency, the notation used in this paper is the same as in Jagers [5].
Let I be the set of all n-tuples of non-negative integers for all n. This is an index

set for individuals in the population. The GBP presented in Jagers [5] assumes the
process starts from a single individual denoted by .0/. The woman .0/ is assumed
to have age 0 at time t D 0. The n-th child of x 2 I is denoted by .x; n/.

We denote by � a point process defined on RC and 
.A/ D E.�.A//, where A is
a Borel set in RC. The individual .x; n/ 2 I exists if �x.1/ � n. The point process
models the births of a woman.

Let �x be a random variable that models the life length of the individual x and
�x be a point process of a woman x. For each x 2 I is defined a couple .�x; �x/ and
these couples are assumed to be independent and identically distributed. This means
the distributions of � and � are time invariant.

Let �x.k/ D infft W �x.t/ � kg be the age of birth of child .x; k/. Let �x D
�0. j1/C �j1 . j2/C : : :C �. j1;:::;jn�1/. jn/, where x D . j1; : : : ; jn/ and �0 D 0.

Definition 10.1 The GBP is defined as za
t D P

x2I
za

t .x/, where za
t .x/ is an indicator

variable for the event that the individual x is alive and younger than a > 0 (or at age
a) at time t > 0:

za
t .x/ D

(
1; when t � a � �x � t < �x C �x;

0; otherwise:

At time t, the oldest individual is younger than t, so we can write zt D za
t , when

a > t. Note that the above definition includes individuals which age is exactly a in
the branching process za

t , as opposed to the definition presented in Jagers [5].
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Let 
.t/ D 
.Œ0; t�/ for t > 0, F.s/ D E.s�.1//, jsj � 1, L.t/ D P.�x � t/ and
S.t/ D 1 � L.t/. This latter denotes the survival probability function. It is known
(see Jagers [5]) that if F.s/ < 1; jsj � 1, then mt D E.zt/ < 1, for all t, moreover
ma

t D E.za
t / satisfies

ma
t D 1Œ0;a�.t/f1 � L.t/g C

tZ

0

ma
t�u 
.du/: (10.1)

When a D 1 it is skipped in the notation.
The theoretical solution of Eq. (10.1) is provided by renewal theory (see Mitov

and Omey [8]). If we have an analytical expression for the functions S and 
 then
sometimes it is possible to find the theoretical solution of this equation but, in
general, this is not the case. In the case of human populations the functions S and

 could be estimated from empirical data using smoothing splines and thus not
have a decent analytical expression. Moreover, in practice, the theoretical functions
that were researched as models of the mortality distribution in practice do not fit
the data well enough and have some fitting problems due to the large number of
parameters (a very impressive theoretical model of mortality can be found in Mode
[7]). But even if we assume some analytical expression for the functions S.t/ and

.t/, solving the renewal equation could be very difficult. Another problem arises
from the need to forecast not only the total population but the age structure too.
If we have 100 age intervals (0-1, 1-2, . . . , 99-100), then in order to calculate the
age structure we need to solve 100 equations, substituting a D 1; 2; 3; : : : ; 100 in
Eq. (10.1) and then taking the differences maC1

t � ma
t .

10.3 Results

Let bzt be a branching process started with a woman aged b at time t D 0, b� be the
point process, b
 be the expectation of the point process and bS be the survivability
function. We have that b
.t/ D E.�.t C b/ � �.b/ j � > b/; t > 0 is the expected
number of children that a woman has after age b if she has survived to that age and
bS.t/ D P.� > b C t j � > b/ is the probability she lives t years after age b if she
has survived to age b. Let bza

t be the number of individuals younger than a at time t,
that corresponds to a woman at aged b for t D 0. If a D 1 and b D 0 we will skip
a and b in the notation.

Theorem 10.1 Let 1Œ0;a�b�.t/ be an indicator function such that 1Œ0;a�b�.t/ D 1, if
t 2 Œ0; a � b�, with a � b � 0, and 1Œ0;a�b�.t/ D 0 if a � b < 0 or t > a � b.
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If F.s/ < 1; jsj � 1, and S.b/ > 0 , then bmt D E.bzt/ < 1, for all t, and
the expected number of individuals who are younger than a at time t (or at age a),
started with a woman at age b at time zero, bma

t D E.bza
t /, satisfies

bma
t D bS.t/1Œ0;a�b�.t/C

tZ

0

ma
t�u b
.du/; (10.2)

where bS.t/ D S.bCt/
S.b/ denotes the probability that a woman at age b to survive b C t,

b
.t/ D 
.tCb/�
.b/
S.b/ is the expectation of that point process and ma

t�u is the solution
of the previous Eq. (10.1).

In addition if S.t/ and 
.t/ are twice differentiable on t, then bma
t is twice

differentiable both on t for t ¤ a � b and on b for b ¤ a. If a D 1 then bmt

is twice differentiable for all t > 0.

Proof The proof is quite similar to the proof of Eq. (10.1) presented in Jagers [5] but
note that the life-length of the first woman .0/ and the point process have different
distribution from the ones of her children. The first woman at age b at time 0 has
�0.t/ children in the interval Œ0; t�. Let zŒn�at��.n/ denotes the branching process of the

n-th child of this woman .0/. Then we have that bza
t D bza

t .0/C
�0.t/P

nD1
zŒn�at��.n/. This sum

is finite and if we use the linearity of expectation we obtain

bma
t D Ebza

t D P.bza
t .0/ D 1/C E

0

@
�0.t/X

nD1
zŒn�at��.n/

1

A

D P.bza
t .0/ D 1/C E

0

@
tZ

0

za
t�u �0.du/

1

A

D bS.t/1Œ0;a�b�.t/C
tZ

0

ma
t�u b
.du/;

where b
.u/ D E�0.u/ D E.�.u C b/� �.b/ j � > b/.
If S.t/ is twice differentiable and b is such that S.b/ > 0 then bS.t/ D S.tCb/

S.b/
is correctly defined and twice differentiable both on t and on b. We have that
b
.t/ D 
.tCb/�
.b/

S.b/ , consequently, if 
.t/ is twice differentiable then b
.t/ is
twice differentiable both on t and on b. We have that the convolution of two twice
differentiable functions is also twice differentiable, hence, ma

t as a solution to the
renewal equation (10.1), is also twice differentiable on t when t ¤ a. Due to
the term 1Œ0;a�b�.t/ in Eq. (10.2), we have that bma

t is twice differentiable on t for
t > 0; t ¤ a; t ¤ a � b. If we set a D 1, then it is twice differentiable for all t > 0.
We also have that due to the term 1Œ0;a�b�.t/ in Eq. (10.2), bma

t is twice differentiable
on b, when b ¤ a. ut
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Let ! be the maximum age of the life table, i.e. P.� > !/ D 0. In other words,
it is the maximum age that a person can live.

In order to introduce the age structure, it is needed to separate the population
by age groups using intervals with length h. We can assume the maximum age
! is multiple of h. Let Nt.bhI .b C 1/h� be the number of women in the age
interval .bhI .b C 1/h� at time t, i.e. the population age structure. For example, if
the branching process started with one woman of age 0 at time 0, then we have

zt D NtŒ0I h�C
!=h�1P

bD1
Nt.bhI .b C 1/h� and Nt.bhI .b C 1/h� D zbhCh

t � zbh
t .

The following theorem shows that the expected age structure at time t C h can
be calculated from the expected age structure at time t. The theorem holds for
branching processes starting with one or finite number of individuals at different
ages (including random ages at time 0).

Theorem 10.2 Let the conditions of Theorem 10.1 hold. Let S.t/ and 
.t/ be twice
differentiable onR and
.t/ D 0 for t � 0. Let u


00.t/ be a bounded function of t and
u and S00.t/ a bounded function of t. Then the following numerical approximation
holds for h ! 0:

E .NtCh..b C 1/hI .b C 2/h�/ D E .Nt.bhI .b C 1/h�/ � �bhS.h/C O.h2/
�
;

E .NtChŒ0I h// D
!=h�1X

bD0
E .Nt.bhI .b C 1/h�/ � bh
.h/C E .NtŒ0I!�/ � O.h2/;

where b is an integer, b � 0.
As alternative

E .NtChŒ0I h// D
!=h�1X

bD0

�
E .Nt.bhI .b C 1/h�/ � bh


0.0/h
�C E .NtŒ0I!�/ � O.h2/:

The constant in the error terms O.h2/ does not depend on the choice of b.

Proof Let u > 0. By substituting t D h in Theorem 10.1 and using the rectangular
approximation of integrals, we can calculate the expected number of newborns and
the expected number of individuals at age u that will survive to age u C h:

umh
h D uS.h/1Œ0;h�u�.h/C

hZ

0

mh
h�v u
.dv/ D

hZ

0

mh�v u
.dv/

D m0 � .u
.h/� u
.0//C O.h2/ D u
.h/C O.h2/;

umuCh
h � umh

h D uS.h/1Œ0;h�.h/C
hZ

0

muCh
h�v u
.dv/�

hZ

0

mh
h�v u
.dv/ D uS.h/:

(10.3)
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Note that umb
h D umh

h for every h � b < u C h so the number of individuals in the
age interval .h; uCh/ is 0, i.e. after time h we can only have individuals at age uCh
or age Œ0; h�.

From Taylor’s theorem, it follows that the error term O.h2/ in Eq. (10.3) has

the form
h
�m0

h�	 � u

0.	/C mh�	 � u


00.	/
i

� h2

2
. The term u


00.	1/ � sup
u;v

u

00.v/ is

bounded by some constant independent of u. The function u

0.v/ is also bounded

due the fact that its derivative is bounded so the term u

0.	/ is smaller than some

constant independent of u. This means jumh
h � u
.h/j < Ch2, where the constant C

does not depend on u and h.
Let b � h and u 2 Œb; b C h/ so u ! b as h ! 0. By using the Taylor’s formula

we have

u
.h/� b
.h/ D 
.u C h/� 
.u/

S.u/
� 
.b C h/� 
.b/

S.b/

D S.b/
0.u/h � S.u/
0.b/h C O.h2/

S.u/S.b/

D S.b/
0.u/� S.u/
0.b/
S.u/S.b/

� h C O.h2/ D O.h2/

and

uS.h/� bS.h/ D S.u C h/S.b/� S.b C h/S.u/

S.u/S.b/

D ŒS.u C h/� S.u/�S.b/� ŒS.b C h/� S.b/�S.u/

S.u/S.b/

D S0.u/S.b/� S.u/S0.b/C O.h2/

S.u/S.b/
� h D O.h2/:

This means for u 2 Œb; b C h/ we have

umh
h D b
.h/C O.h2/;

umuCh
h � umh

h D bS.h/C O.h2/:

The constant in the error terms O.h2/ does not depend on u and h due to the fact
u


00.v/ and S00.v/ are bounded.
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Let �i 2 .bh; .b C 1/h� be the ages of the individuals inside the age interval
.bh; .b C 1/h� and denote their distribution functions by F�i for each i. Then,

E

	
�i z

.bC2/h
h � �i z

.bC1/h
h



D E

h
E

	
�i z

.bC2/h
h � �i z

.bC1/h
h j �i


i

D
.bC1/hZ

bh

	
um.bC2/h

h � um.bC1/h
h



dF�i.u/ D

.bC1/hZ

bh

�
umuCh

h � umh
h

�
dF�i.u/

D
.bC1/hZ

bh

uS.h/ dF�i.u/ D bhS.h/C O.h2/;

E
�
�i z

h
h

� D E
�
E
�
�i z

h
h j �i

�� D
.bC1/hZ

bh

umh
h dF�i.u/ D bh
.h/C O.h2/:

The number of individuals at age within .bhI .b C 1/h� who survived after time
h is

E .NtCh..b C 1/hI .b C 2/h�/ D E

Nt.bhI.bC1/h�X

iD1

	
�i z

.bC2/h
h � �i z

.bC1/h
h




D E .Nt.bhI .b C 1/h�/ � .bhS.h/C O.h2//;

and the number of individuals that were born during that time is

E .NtChŒ0I h// D
!=h�1X

bD0
E

Nt.bhI.bC1/h�X

iD1
�i z

h
h

D
!=h�1X

bD0

�
E.Nt.bhI .b C 1/h�/ � �bh
.h/C O.h2/

��

D
!=h�1X

bD0
.E.Nt.bhI .b C 1/h�/ � bh
.h//C E .NtŒ0I!�/ � O.h2/:

If we assume 
 to be twice differentiable then

bh
.h/ D bh
.0/C bh

0.0/h C O.h2/ D bh


0.0/h C O.h2/;
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from it follows that

E .NtChŒ0I h// D
!=h�1X

bD0
ŒE .Nt.bhI .b C 1/h�/ � bh


0.0/h�C E .NtŒ0I!�/ � O.h2/:

ut
Let us introduce a matrix notation to lighten the notation:

A D

2

6
66
6
6
4

0
.h/ h
.h/ : : : !�2h
.h/ !�h
.h/

0S.h/ 0 : : : 0 0

0 hS.h/ : : : 0 0
:::

:::
: : :

:::
:::

0 0 : : : !�2hS.h/ 0

3

7
77
7
7
5

!
h � !

h

;

B D

2

66
6
6
6
4

0

0.0/h h


0.0/h : : : !�2h

0.0/h !�h


0.0/h
0S.h/ 0 : : : 0 0

0 hS.h/ : : : 0 0
:::

:::
: : :

:::
:::

0 0 : : : !�2hS.h/ 0

3

77
7
7
7
5

!
h � !

h

;

ŒENt� D

2

6
6
6
4

E .NtŒ0I h�/
E .Nt.hI 2h�/

:::

E .Nt.! � hI!�/

3

7
7
7
5

!
h �1

; ŒO.h2/� D

2

6
6
6
4

O.h2/
O.h2/
:::

O.h2/

3

7
7
7
5

!
h �1

and Œ1� D

2

6
6
6
4

1

1
:::

1

3

7
7
7
5

!
h �1

:

Corollary 10.1 Let us substitute h D 1; k D 1 in Theorem 10.2 and assume a
woman can only have one child in each age interval .bI .b C 1/�. Let pb denote
the conditional probability of a woman giving birth at certain age within the age
interval and sb denote the conditional probability of a woman surviving to the end
of the interval if she is alive at the beginning. Then, the expected number of children
that a woman has in the age interval is b
.1/ D 1 �pb C0 �.1�pb/ D pb, bS.1/ D sb,
and the matrix A has the following form:

A D

2

66
6
6
6
4

p0 p1 : : : p!�2 p!�1
s1 0 : : : 0 0

0 s2 : : : 0 0
:::
:::
: : :

:::
:::

0 0 : : : s!�2 0

3

77
7
7
7
5

!�!

:

This matrix is also called Leslie matrix in demographics and it is used for projecting
human populations (see Keyfitz [6]).



10 Crump-Mode-Jagers Branching Process: A Numerical Approach 175

Theorem 10.3 Let the initial population at time t D 0 be composed of finite number
of individuals on random ages that have absolutely continuous distributions. Let
E .N0Œ0I h�/, E .N0.bhI .b C 1/h�/, for b D 1; : : : ; .!=h � 1/, be the expected age
structure of the population at time t D 0. Let the conditions of Theorem 10.1 hold
and let u


00.v/ be bounded on Œ0; t�2 and S00.v/ be bounded on Œ0; t�. Then for all
k � t=h we have

ŒENkh� D Ak � ŒEN0�C ŒO.h2/�;

ŒENkh� D Bk � ŒEN0�C ŒO.h2/�

and the total population count is

Œ1�| � ŒENkh� D Œ1�| � Ak � ŒEN0�C O.h/;

Œ1�| � ŒENkh� D Œ1�| � Bk � ŒEN0�C O.h/:

Proof Theorem 10.2 could be written in matrix form as ŒENt� D A �ŒENt�h�CŒEt�h�,
where ŒEt�h� is the error term. If we apply Theorem 10.2 recursively t=h times we
obtain

ŒENt� D A
t
h � ŒEN0�C A

t
h �1ŒE0�C : : :C AŒEt�2h�C ŒEt�h�; (10.4)

where ŒEbh� are the error terms.
We will see that the error ŒENt��A

t
h �ŒEN0� in Eq. (10.4) is actually ŒO.h2/�. From

Theorem 10.2 it follows that each element of the absolute error ŒjEbhj� is bounded
by the corresponding element in the vector ŒEmax

bh �:

ŒjEbhj� �

2

6
6
6
4

E .NbhŒ0I!�/ � Ch2

E .NbhŒ0I h�/ � Ch2

:::

E .Nbh.! � 2hI! � h�/ � Ch2

3

7
7
7
5

!
h �1

D ŒEmax
bh �;

where the constant C does not depend on the choice of b or h.
From the finiteness of the functions um0.h/ and uS.h/, it follows that there exists

a matrix Amax such that each element of the matrices A and B is smaller than the
corresponding element in matrix Amax:

Amax D

2

6
6
6
4

Mh Mh : : : Mh Mh
1 0 : : : 0 0
:::

0 0 : : : 1 0

3

7
7
7
5

!
h � !

h

;

where M is a constant.
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Because of the continuous distribution of the point process �, the ages of the
descendants of each woman in the population are absolutely continuous random
variables. If the ages of the initial women at time t D 0 are absolutely continuous
too, then all the individuals in the population have absolutely continuous random
ages for every t, i.e. E .NtŒbI b C h�/ ! 0 for every b and t, when h ! 0.

It is obvious that A �ŒjEbhj� � Amax �ŒEmax
bh �, where the comparison is element-wise.

If we multiply recursively Ak
max � ŒEmax

bh � D A � Ak�1
max � ŒEmax

bh � and use that

E .NbhŒ0I h�/C : : :C E .Nbh.! � .k C 1/hI! � kh�/ � E .NbhŒ0I!�/ ;

then for k < !=h,

Ak
max � ŒEmax

bh � � Ch2 �

2

6
6
6
6
6
66
6
6
6
6
4

E .NbhŒ0I!�/ 2Mh.Mh C 1/k�1
E .NbhŒ0I!�/ 2Mh.Mh C 1/k�2

:::

E .NbhŒ0I!�/ .2Mh/
E .NbhŒ0I h�/

:::

E .Nbh.! � .k C 2/hI! � .k C 1/h�/

3

7
7
7
7
7
77
7
7
7
7
5

!
h �1

;

and for k � !=h

Ak
max � ŒEmax

bh � � Ch2 �

2

66
6
4

E .NbhŒ0I!�/ 2Mh.Mh C 1/k�1
E .NbhŒ0I!�/ 2Mh.Mh C 1/k�2

:::

E .NbhŒ0I!�/ 2Mh.Mh C 1/k�!=h

3

77
7
5

!
h �1

:

Then for k D t=h we have Mh.Mh C 1/t=h�1 Ï MetM � h ! 0 as h ! 0. In addition,
E .NbŒ0I!�/ is finite for every b � t and E .NbŒaI a C h�/ ! 0 for every a < ! and
b � t, as h ! 0. Consequently there exists a constant C, independent of b, and h
(but dependent of t) such that each element of vector Ak

max � ŒEmax
bh � is less than Ch3,

k D 1; : : : ; .t=h � 1/.
If we sum all error terms in Eq. (10.4) we obtain that every element of the

absolute error jA t
h �1ŒE0�C : : :C AŒEt�2h�C ŒEt�h�j is smaller than t

h � Ch3 D O.h2/
for some constant C hence

ŒENt� D At=h � ŒEN0�C ŒO.h2/�:

If we sum all of the different ages (their count is !=h) we obtain

Œ1�|ŒENt� D Œ1�| � At=h � ŒEN0�C Œ1�| � ŒO.h2/� D Œ1�| � At=h � ŒEN0�C O.h/:
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If we fix the period t and decrease h, the error of the formula above tends to 0.
However, note that the error term depends on t. If we fix h and increase t, then the
approximation error increases. ut
Theorem 10.4 Let N0Œ0I C1/ D N0ŒbI b� D 1, i.e. we only have one individual at
time zero and her age is b. Then, for every k D 1; : : : ; t=h,

bmkh D �
1 : : : 1

�
1� !

h
�

2

6
6
66
6
4

0
.h/ h
.h/ : : : !�2h
.h/ !�h
.h/

0S.h/ 0 : : : 0 0

0 hS.h/ : : : 0 0
:::

:::
: : :

:::
:::

0 0 : : : !�2hS.h/ 0

3

7
7
77
7
5

k

!
h � !

h

�

2

66
6
6
6
66
6
6
6
6
4

0
:::

0

1

0
:::

0

3

77
7
7
7
77
7
7
7
7
5

!
h �1

CO.h/;

where the only non-zero element in this vector is on position b=hC1, corresponding
to the age interval .b; b C h�. As alternative we can also use matrix B instead of A
for approximation.

Proof In this case the branching process starts with an individual at exact age
of b. If we consider a similar branching process starting with an individual of
age � 2 .b; b C h�, continuously distributed in the age interval, then we can apply
Theorem 10.3. We know that bmt is a continuous function of b, so E�mt D
bmt C O.h/. ut
Corollary 10.2 If we consider a branching process starting with an individual
of age 0 then by applying Theorem 10.3 we obtain the solutions to the renewal
equations (10.1) for all the ages a simultaneously:

2

6
6
6
4

mh
kh

m2h
kh � mh

kh
:::

m!
kh � m!�h

kh

3

7
7
7
5

�

2

6
6
6
6
6
4

0
.h/ h
.h/ : : : !�2h
.h/ !�h
.h/

0S.h/ 0 : : : 0 0

0 hS.h/ : : : 0 0
:::

:::
: : :

:::
:::

0 0 : : : !�2hS.h/ 0

3

7
7
7
7
7
5

k

!
h � !

h

�

2

6
6
6
4

1

0
:::

0

3

7
7
7
5

!
h �1

for every k D 1; : : : ; t=h. The expected population ma
kh is the sum of the first a=h

rows in the column vector above.
Note that if t � ! then we can use a truncated matrix, consisting of the first .t=h/

rows and columns and we will obtain the same approximation.

Corollary 10.2 provides us the numerical solution to the renewal equations (10.1).
Due to the fact it involves only matrix multiplications and the matrix is actually quite
simple (it has non-zero elements only in the first row and one of the diagonals), the
numerical method is really fast and efficient. In addition , in every step of the matrix
multiplication we obtain the solutions to all the renewal equations at the same time.
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Given the initial age structure of the population and the functions S.t/ and

.t/ we can calculate the expected future population age structure by using
Theorem 10.2. An example reviewing the population of Bulgaria is presented in the
Appendix. Other applications of the GBP in demographics are presented in [11, 12].

Acknowledgements The research is supported by the National Fund for Scientific Research at
the Ministry of Education and Science of Bulgaria, grant No DFNI-I02/17 and partially supported
by the financial funds allocated to the Sofia University “St. Kl. Ohridski”, grant No 047/2015.

Appendix

Example 1 Forecasting the population age structure of Bulgaria.

In order to find the expected future population of Bulgaria we need to find models
for the functions S.t/ and 
.t/ from empirical data. The data used for calculations
in this paper are published by Eurostat. One knows the number of live births by
mother’s age, the number of deaths by age and the number of people by age. The
demographic theory uses these data to produce the life-tables (see Keyfitz [6]). The
Chiang’s formula (see Chiang [3]) presents the relation between age-specific birth
and death rates and the probabilities for birth and death by age. Using demographics
we can find the distribution of the life length and the probability of a woman giving
birth at a specific age from the demographic coefficients.

The empirical estimations of these age-specific probabilities suggest the assump-
tion of smoothness for 
.t/ and S.t/ is appropriate in case of human populations.
Using smoothing splines, we can find the functional model that generated the data
(see Ramsay [10] and Boor [2]). The resulting functions for 
.t/ and S.t/ are
presented in Figs. 10.1, 10.2, and 10.3.

Fig. 10.1 Point process
density function 
0.t/,
Bulgaria 2013
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Fig. 10.2 Expectation of
point process 
.t/, Bulgaria
2013

Fig. 10.3 Survival
probability S.t/, Bulgaria
2013

We know the initial age structure of the population N0.bhI .b C 1/h�, i.e. the
number of all women on a specific age at the beginning of 2013. Having modelled
the life length of each individual and her point process from real data (published by
Eurostat), we can substitute those in Corollary 10.2 and Theorem 10.2. On each step
of the matrix multiplication, we obtain the expected future population age structure.
The resulting total population count is presented in Fig. 10.4.

Example 2 Numerical solution to renewal equations.

Let us consider a Poisson renewal process, i.e. the inter-renewal time is exponen-
tially distributed according to the distribution function F.x/ D 1 � e��x. It is
well-known that the number of renewals until time t follows Poisson distribution
and the expected number of renewals until time t is given by EN.t/ D �t. The
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Fig. 10.4 Female population
count

function U.t/ D EN.t/ C 1 D 1C �t is called renewal function and it satisfies the
following renewal equation.

U.t/ D I.t/C
tZ

0

U.t � u/dF.u/; (10.5)

where I.t/ D 1 for t � 0. If we consider the general equation

Z.t/ D z.t/C
tZ

0

Z.t � u/dF.u/; (10.6)

then (from renewal theory) its solution is Z.t/ D .U 	 z/.t/. To see how the
numerical method in Corollary 10.2 works we will use it for solving Eq. (10.5)
and then Eq. (10.6), choosing for example z.t/ D e�t.

From Eq. (10.5) it is obvious that S.t/ D 1 for every t > 0 and

bh
.h/ D 
..b C 1/h/� 
.bh/

S.bh/
D e��bh.1 � e��h/

for every b. From b
.t/ D Œ
.t C b/ � 
.b/�=S.b/ we can calculate the derivative
b


0.t/ D 
0.t C b/=S.b/. Then bh

0.0/ D 
0.bh/=S.bh/D 
0.bh/ D �e��bh.

In this case ! D C1 but for the purpose of calculating the U.t/ we can assume
! D t or we can assign some value that is greater than t to ! and the results will not
change. However, it is more convenient for calculations to use the smallest possible
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! D t so that the matrix A has the following form:

A D

2

6
6
6
66
6
4

.1 � e��h/
.1�e��h/

e��h : : :
.1�e��h/

e��.t�2h/
.1�e��h/

e��.t�h/

1 0 : : : 0 0

0 1 : : : 0 0
:::

:::
: : :

:::
:::

0 0 : : : 1 0

3

7
7
7
77
7
5

:

Let us denote by OU.t/ the numerical solution of Eq. (10.5). It can be shown that
Ak � �1 0 : : : 0�| � �

�h : : : �h 1 0 : : : 0
�|

and OU.kh/ D Œ1� � Ak � �1 0 : : : 0�| D
1C .kh/�C k � O.h2/ D U.kh/C k � O.h2/ for every k D 1; : : : ; t=h, using Taylor
expansion of ex. For k D t=h, we obtain U.t/ D OU.t/C O.h/.

Let us consider the second equation (10.6). Its theoretical solution is given by the
Riemann-Stieltjes integral

Z.t/ D
tZ

0

e�.t�u/d.1C �u/ D e�t C �

tZ

0

eu�td.u � t/

D e�t C �eu�tjt
0 D e�t C �.1 � e�t/:

Note that the function U has a jump for t D 0: U.0/ D 1 and U.t/ D 0 for t < 0, so
the term U.0/ � z.t � 0/ D e�t is added when calculating the Stieltjes integral.

In this particular case, we have S.t/ D e�t, bhS.h/ D S..b C 1/h/=S.bh/ D e�h

and bh
.h/ D Œ
..b C 1/h/ � 
.bh/�=S.bh/ D e��bh.1 � e��h/=e�bh for every b.
Then,

A D

2

6
6
6
6
66
4

.1 � e��h/
e��h.1�e��h/

e�h : : :
e��.t�2h/.1�e��h/

e�.t�2h/
e��.t�h/.1�e��h/

e�.t�h/

e�h 0 : : : 0 0

0 e�h : : : 0 0
:::

:::
: : :

:::
:::

0 0 : : : e�h 0

3

7
7
7
7
77
5

:

Since it can be shown by recursion that

Ak
�
1 0 : : : 0

�| � �
�h : : : �h .1 � kh/ 0 : : : 0

�|
;

the numerical approximation of the function Z.t/ is OZ.kh/ D Œ1� � Ak � �1 0 : : : 0�| D
1 C .kh/� � kh C k � O.h2/ for every k D 1; : : : ; t=h. The theoretical solution is
Z.kh/ D e�kh C�.1� e�kh/ D 1� kh C� � kh C O.h2/ consequently it follows that
U.kh/ D OU.kh/C k � O.h2/. When k D t=h we get U.t/ D OU.t/C O.h/. For a fixed
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t, we obtain the numerical solution of the renewal equation inside the interval Œ0; t�
with estimation error O.h/.
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Chapter 11
Bayesian Analysis for Controlled Branching
Processes

Miguel González, Cristina Gutiérrez, Rodrigo Martínez, Carmen Minuesa,
and Inés M. del Puerto
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11.1 Introduction

The branching model considered in the present work is the controlled branching
process. This model is a generalization of the standard Bienaymé-Galton-Watson
(BGW) branching process, and, in the terminology of population dynamics, is used
to describe the evolution of populations in which a control of the population size
at each generation is needed. This control consists of determining mathematically
the number of individuals with reproductive capacity at each generation through
a random process. In practice, this branching model can describe reasonably well
the probabilistic evolution of populations in which, for various reasons of an
environmental, social, or other nature, there is a mechanism that establishes the
number of progenitors which take part in each generation. For example, in an
ecological context, one can think of an invasive animal species that is widely
recognized as a threat to native ecosystems, but there is disagreement about plans
to eradicate it, i.e., while the presence of the species is appreciated by a part of the
society, if its numbers are left uncontrolled it is known to be very harmful to native
ecosystems. In such a case, it is better to control the population to keep it within
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admissible limits even though this might mean periods when animals have to be
culled. Another practical situation that can be modelled by this kind of process is the
evolution of an animal population that is threatened by the existence of predators. In
each generation, the survival of each animal (and therefore the possibility of giving
new births) will be strongly affected by this factor, making the introduction of a
random mechanism necessary to model the evolution of this kind of population.

Mathematically, a controlled branching process with random control function
(CBP) is a discrete-time stochastic growth population model fZngn�0 defined
recursively as

Z0 D N 2 N; ZnC1 D
�n.Zn/X

jD1
Xnj; n � 0; (11.1)

where fXnj W n D 0; 1; : : : I j D 1; 2; : : :g and f�n.k/ W n; k D 0; 1; : : :g are two
independent families of non-negative integer-valued random variables. Moreover,
Xnj, n D 0; 1; : : :; j D 1; 2; : : :, are independent and identically distributed (i.i.d.)
random variables and, for each n D 0; 1; : : :, f�n.k/gk�0, are independent stochastic
processes with equal one-dimensional probability distributions. The empty sum
in (11.1) is defined to be 0. Let f pk W k � 0g denote the common probability
distribution of the random variables Xnj, i.e., pk D P.Xnj D k/, k � 0, and
m D EŒXnj� (assumed finite).

Intuitively, Zn denotes the number of individuals in generation n, and Xni the
number of offspring of the ith individual in generation n. Thus, the probability
law f pk W k � 0g is termed the offspring distribution, and m the offspring mean.
The control variables �n.�/ could be seen as a random mechanism determining the
individual migration process in each generation depending on its population size.

The probabilistic theory of CBPs, in particular the problem of their extinction
and their limiting behaviour, has been extensively investigated (see for example
[1, 8] and references therein, and [18]). The presence of the control mechanism
complicates the study of this kind of process. Nevertheless, it allows one to model
a much greater variety of behaviours than the BGW branching process. One of
its features that is important for applications is that it overcomes one of the
main deficiencies of the BGW process, which is the possibility of an unbounded
population growth with a supercritical offspring law (i.e., m > 1). Thus, in [5],
it was proved that a CBP with offspring mean greater than unity (and, of course,
other regularity conditions governing the control mechanism) can die out with
probability one. The offspring mean continues to play a key role in the probabilistic
evolution of a CBP, as the above-cited papers show. Indeed, it was established
that the asymptotic mean growth rate of the process denoted by � and defined by
� D limk!1 k�1EŒZnC1 j Zn D k� D limk!1 k�1".k/m, with ".k/ D EŒ�n.k/�
(whenever it exists) is the threshold parameter that determines the behaviour of a
CBP in relation to its extinction. Hence the importance of making inferences on
the offspring mean and on the asymptotic mean growth rate. However, there have
as yet been few papers devoted to this topic. Inferential studies from a frequentist
standpoint may be found in [6, 7, 11, 19]. A first approach from a Bayesian
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standpoint was considered in [13] in a parametric context, and in [10] for the
particular case of a deterministic control function.

The present study is a continuation of this line of research by developing the
inferential theory in a non-parametric framework for the offspring law and in a
parametric setting for the control distributions, depending on a single parameter
termed the control parameter. Notice that, in relation to [10], random control rather
than deterministic one introduces much more uncertainty in the model becoming
its behaviour richer, but adding a considerable difficulty on the estimation of
its parameters. Moreover, another important novelty is that we assume an upper
bound of the support of the offspring law is unknown. We model this uncertainty
considering the support potentially infinite. Although this could seem a strong
condition, the gain in flexibility makes the model more attractive and realistic. In this
case, to deal with the inference procedure we shall use as prior a Dirichlet process on
the space of the nonnegative integers. Consequently, in this chapter, we address the
inference of the control parameter, of the offspring distribution, and of the offspring
mean, as well as the asymptotic mean growth rate and the prediction of future sizes
of the population. To this end, Sect. 11.2 begins by assuming that the entire family
tree up to some given generation can be observed. A Dirichlet process is introduced
to model the prior distribution of the offspring law, avoiding assumptions on the
cardinality of its support. However, actually, in most populations, it is not possible to
observe these data, and only the population size at each generation can be recorded.
To deal with the Bayesian inference in this case, a Markov chain Monte Carlo
(MCMC) method is used, in particular, the Gibbs sampler algorithm, to approximate
the posterior distribution of parameters of interest. The present implementation of
this algorithm generalizes the results in [9, 10] and represents the Bayesian analogy
of the given in [11].

Section 11.2 also deals with the problem of approximating the predictive pos-
terior distributions. As illustration, in Sect. 11.3 a simulated example is presented.
Finally, some concluding remarks are given in Sect. 11.4.

11.2 Bayesian Analysis

For the purpose of this chapter, we consider a CBP with an offspring distribution
p D f pk W k � 0g, without assuming any knowledge about the cardinality
of its support. With respect to the random control mechanism, note that one has
different probability distributions for each population size k � 0, that corresponding
to �n.k/. Consequently, from a finite sample, it is not possible to deal with the
inference problems arising from this model (at least for the control distributions)
without assuming that there exists some stable structure. We therefore consider a
parametric scheme for the control process. In particular, we take a CBP with control
distributions belonging to the power series family. Formally, for each k � 0,

P.�n.k/ D j/ D ak. j/� j=Ak.�/; j D 0; 1; : : : I � 2 �k; (11.2)
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with ak. j/ known non-negative values, Ak.�/ D P1
jD0 ak. j/� j, and �k D f� > 0 W

0 < Ak.�/ < 1g being an open subset of R. We also assume that the sets �k are
independent of k. Hence, we shall henceforth drop the index k from�k, the control
parameter space. This implies a certain stability in the probability laws of the control
variables �n.k/, for k � 0, depending on a single parameter � , the control parameter,
and on the size of the population, k. Let us write �.k; �/ D EŒ�n.k/�, and assume the
following regularity condition:

Y

k2B

Ak.�/ D AP
k2B k.�/; for every B 
 N; � 2 �: (11.3)

Condition (11.3), satisfied by a wide family of probability distributions, is a
technical hypothesis that allows the theory of conjugate families to be made use
of in the Bayesian analysis to be developed below. Moreover (11.3) implies that
Ak.�/ D .A1.�//k, so that

�.k; �/ D �A0
k.�/.Ak.�//

�1 D k�.A1.�//
k�1A0

1.�/.A1.�//
�k D k�.1; �/:

This allows the family of distributions verifying (11.3) to be reparametrized by 
 D

.�/ D �.1; �/. It also guarantees the existence of the limit � and its parametriza-
tion in terms of the two mean-value parameters, the offspring mean m and 
, with
� D m
.

Unlike the parameter � , 
 has the same interpretation for all the power series
families of distributions satisfying (11.3). We refer to 
 as the migration parameter
since, whenever 
 < 1, one can use such control distributions to model processes
with expected emigration, whereas 
 > 1 can model processes with expected
immigration. For 
 D 1 neither emigration nor immigration is expected.

Remark 11.1 Some interesting particular cases of control distributions verify-
ing (11.2) and (11.3) are the following:

a) Consider for each k that �n.k/ follows a binomial distribution with parameters
k and 0 < q < 1. In such a case � D q.1 � q/�1. It is easy to see that
conditions (11.2) and (11.3) hold, and in particular that 
 D �.1C �/�1.D q/.
From a practical standpoint, this control mechanism could be reasonable to
model situations in which, in each generation, each individual can be removed
from the population with probability 1 � q, not participating in its subsequent
evolution, and can survive and give birth to offspring in the next generation
with probability q. The value of q is considered to be independent of the total
population size in each generation. These control functions always take into
account the possibility of an emigration phenomenon in each generation (
 < 1).
A CBP with this family of control distributions can be useful to model predator
effects in a population.

b) Consider for each k that �n.k/ has a Poisson distribution with parameter k� .
Again conditions (11.2) and (11.3) hold, and one deduces that
 D � . Depending
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on the value of 
, a CBP with these control functions can model either expected
immigration or expected emigration processes.

c) Consider for each k that �n.k/ has a negative binomial distribution with
parameters k and q, with 0 < q < 1. Now � D 1 � q. It is easy to see again that
conditions (11.2) and (11.3) hold. In this case 
 D �.1 � �/�1. The associated
CBP can also be used to model different migratory movements.

To infer the posterior distribution of the main parameters of interest, we consider
initially that the entire family tree up to the current nth generation can be observed.
After studying this case, we consider a more realistic requirement that only the
total population size at each generation can be sampled. To deal with this second
situation, we shall need the Gibbs sampler.

11.2.1 Analysis Based on the Entire Family Tree

We consider that the entire family tree up to the current nth generation can be
observed, i.e., fXlj W j D 1; : : : ; �l.Zl/I l D 0; 1; : : : ; n � 1g, or at least the variables

Z�
n;k D

n�1X

lD0
Zl.k/; where Zl.k/ D

�l.Zl/X

jD1
IfXljDkg; k � 0;

with IA standing for the indicator function of the set A. Intuitively, Zl.k/ represents
the number of progenitors at the lth generation with exactly k offspring, and
therefore Z�

n;k is the accumulated number up to generation n of progenitors that give
rise to exactly k offspring. Let us write Z�

n D fZl.k/; k � 0; l D 0; 1; : : : ; n � 1g,
and introduce the following variables:

Yn D
n�1X

lD0
Zl and Y�

n D
n�1X

lD0
�l.Zl/;

i.e., Yn and Y�
n represent, respectively, the total number of individuals and progen-

itors in the population up to the .n � 1/th generation. Using (11.2) and (11.3), one
can deduce that the likelihood based on the sample Z�

n verifies

f .Z�
n j p; �/ /

Y

k�0
p

Z�

n;k
k �Y�

n =AYn.�/: (11.4)

Hence, since no restriction has been imposed on the cardinality of support of
the reproduction law, and the offspring and control distributions are independent, an
appropriate conjugate class of prior distributions for . p; �/ is �. p; �/ D �. p/�.�/,
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with �. p/ being the distribution corresponding to

p � DP. p.0/; ˛/; (11.5)

where DP denotes the Dirichlet process, with p.0/ D f pk.0/; k � 0g being the base
measure and ˛ the concentration parameter, ˛ > 0, and �.�/ the distribution given
by the density

'.a; b/�1�a=Ab.�/; (11.6)

with

'.a; b/ D
Z

�

�a=Ab.�/d�;

where a; b � 0.
Then, using (11.4)–(11.6), one has that the posterior distribution

�. p; � j Z�
n / / �. p j Z�

n /�.� j Z�
n /; (11.7)

with �. p j Z�
n / being the distribution corresponding to

p j Z�
n � DP

0

@ ˛

˛ C Y�
n

p.0/C 1

˛ C Y�
n

X

k�0
Z�

n;kık; ˛ C Y�
n

1

A ;

with ık a Dirac delta at k, k � 0, and

�.� j Z�
n / D '.a C Y�

n ; b C Yn/
�1�aCY�

n =AbCYn.�/:

From (11.7), using Dirichlet process properties and considering the squared error
loss function, it follows straightforwardly that the Bayes estimator for the offspring
distribution and � are, respectively:

bpk D .˛pk.0/C Z�
n;k/=.˛ C Y�

n /; k � 0;

and

O� D '.a C Y�
n C 1; b C Yn/='.a C Y�

n ; b C Yn/:

As a consequence, one obtains that the Bayes estimator for the offspring mean
based on the sample Z�

n , under squared error loss, is given by

Qm D .˛m.0/ C Yn C Zn � Z0/=.˛ C Y�
n /; (11.8)
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with m.0/ being the mean of p.0/, and for
 and � one has Q
 D R
� 
.�/�.� j Z�

n /d�
and Q� D Qm Q
, respectively.

Remark 11.2 In particular, for the examples considered in Remark 11.1,
using (11.6), one has that the beta distribution family is an appropriate conjugate
class of prior distributions for q in the binomial control case and for � when the
control distributions are negative binomial. For the Poisson control distribution
case, an appropriate conjugate class of priors for � is the gamma distribution family.

Remark 11.3 The theoretical approach to dealing with the inference issues related
to a CBP is to assume that the control law belongs to the power series distribution
family. This is an exponential family that includes many important distributions. It
is worth noting that, from a practical standpoint, in most situations the choice of the
control process, whether it is governed by a Poisson, binomial, negative binomial,
or some other scheme, should be a prior specification based on knowledge of the
development of the population.

11.2.2 Analysis Based on Population Size in Each
Generation: Gibbs Sampler

In real situations, it is difficult to observe the whole family tree up to the current
generation or even the random variables Zl.k/, k � 0, l D 0; : : : ; n � 1. Hence,
in this subsection we shall assume the more realistic requirement that these are
unobservable, with the observable data being Zn D fZ0; : : : ;Zng. Given the
definition of the model, an expression of the posterior distribution for . p; �/ after
observingZn can not be displayed in a closed form. Consequently, we shall describe
an algorithm based on the Gibbs sampler (see e.g., [2]) to approximate it only by
observing Zn. To this end, it is necessary to take the unobservable variables Zl.k/,
k � 0; l D 0; 1; : : : ; n � 1 as being latent variables, and consider the augmented
parameter vector . p; �;Z�

n /. Let �. p; � j Zn/ denote the posterior distribution
of . p; �/ after observing Zn. We shall approximate the posterior distribution of
. p; �;Z�

n / after observingZn, denoted by �. p; �;Z�
n j Zn/, and from this obtain an

approximation for its marginal distribution �. p; � j Zn/. To use the Gibbs sampler,
first, it is necessary to obtain the conditional posterior distribution of . p; �/ after
observing Zn and Z�

n , which is denoted by �. p; � j Zn;Z�
n /, and the conditional

posterior distribution of Z�
n after observing . p; �;Zn/, denoted by f .Z�

n j p; �;Zn/.
Taking into account that, for l D 0; : : : ; n � 1,

ZlC1 D
X

k�0
kZl.k/; (11.9)

�. p; � j Zn;Z�
n / is the same as �. p; � j Z�

n / given in (11.7). Let us now
consider f .Z�

n j p; �;Zn/. Denoting by P.�/ the conditional probability given
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an offspring distribution p and control distributions governed by � (the explicit
indication of the conditioning on p and � is dropped for notational clarity), since the
individuals reproduce independently and the control distributions are independent
of the offspring distribution, one has that, for zl.k/ 2 N [ f0g; k � 0; l D
0; 1; : : : ; n � 1, zl 2 N; l D 0; : : : ; n, satisfying the constraints zl D P

k�0 kzl�1.k/,
l D 1; : : : ; n,

P.Zl.k/ D zl.k/; k � 0; l D 0; 1; : : : ; n � 1 j Z0 D z0; : : : ;Zn D zn/

D
n�1Y

lD0
P .Zl.k/ D zl.k/; k � 0 j Zl D zl;ZlC1 D zlC1/ :

Hence,

f .Z�
n j p; �;Zn/ D

n�1Y

lD0
f .Zl.k/; k � 0jp; �;Zl;ZlC1/;

where f .Zl.k/; k � 0jp; �;Zl;ZlC1/ denotes the conditional distribution of the
random sequence fZl.k/; k � 0g given p; � , Zl, and ZlC1. Now, writing ��

l DP
k�0 zl.k/,

P.Zl.k/ D zl.k/; k � 0 j Zl D zl;ZlC1 D zlC1/

D 1

P.ZlC1 D zlC1 j Zl D zl/

��
l ŠQ

k�0 zl.k/Š

Y

k�0
pzl.k/

k azl

�
��

l

�
��

�

l =Azl.�/:

Thus, computationally, an appropriate way to obtain a sample from f .Z�
n j p; �;Zn/

is as follows. Given the known sample fz0; : : : ; zng and known values of � and p,
one samples, for each l D 0; 1; : : : ; n � 1, a value ��

l .zl/ from the distribution of
the variable �l.zl/ given by (11.2). Then, for each l D 0; 1; : : : ; n � 1, one samples

a sequence fzl.k/, k � 0g from the multinomial probabilities ��

l .zl/ŠQ
k�0 zl.k/Š

Q
k�0 pzl.k/

k ,

k � 0, normalized by considering the constraint zlC1 D P
k�0 kzl.k/. Notice that,

although the cardinality of the support of the reproduction law may be infinite, once
zlC1 is known, only a finite number of coordinates of the sequence fzl.k/, k � 0g are
non-null. Indeed, zl.k/ D 0 for all k � zlC1.

Once it is known how to obtain samples from the distributions �. p; � j Zn;Z�
n /

and f .Z�
n j p; �;Zn/, the Gibbs sampler algorithm works as follows:

Initialize l D 0

Generate p.0/ � DP. p.0/; ˛/
Generate �.0/ from (11.6)
Iterate

l D l C 1

Generate Z�.l/
n � f .Z�

n j p.l�1/; � .l�1/;Zn/

Generate . p.l/; � .l// � �. p; � j Z�.l/
n /
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Notice that, given the sample Zn, the maximum number of coordinates of p.l/,
for all l � 0, involved in the algorithm is 1+max1�k�nfZkg. Hence, in the last step of
the algorithm, bearing in mind Eq. (11.7) and the properties of the Dirichlet process,
one obtains these probabilities from the Dirichlet distribution.

The sequence f. p.l/; � .l/;Z�.l/
n /gl�0 is an ergodic Markov chain, and the sta-

tionary distribution of that Markov chain is just the sought-after joint distribution,
�. p; �;Z�

n j Zn/. Several practical implementation issues must be taken into
account for success with the sample obtained by the method described above.
Common approaches to reaching the equilibrium distribution as well as to reducing
the autocorrelation in the sample are to choose a sufficient burn-in period, N, and
to thin the output by storing only every Gth value after the burn-in period (G is
known as the batch size). Thus, for a run of the sequence f. p.l/; � .l/;Z�.l/

n /gl�0, one
chooses Q C 1 vectors f. p.N/; � .N//, . p.NCG/; � .NCG//, : : :, . p.NCQG/; � .NCQG//g.
These vectors are approximately independent sampled values of the distribution
�. p; � jZn/ if G and N are large enough (see [20]). Since they could be affected
by the initial state . p.0/; � .0//, the algorithm is applied T times, obtaining a final
sample of length T.Q C 1/. To determine N, G, and T in practice, we shall make
use of the Gelman–Rubin–Brooks and autocorrelation diagnostics (see [3, 4]). From
this sample one can estimate �. p; � j Zn/ and its marginal distributions, �. p j Zn/

and �.� j Zn/, by making use of kernel density estimators. These posterior densities
can be used to calculate numerically highest-probability-density (HPD) credible sets
for the respective parameters, yielding sets in which there is a high probability of
finding those parameters. In general, if �. p; �/ denotes a function of the offspring
law and the control parameter (we shall be interested below in m; 
, and �) then

�.� j Zn/ D
Z
�.� j Zn; p; �/�. p; � j Zn/dpd�:

Again using kernel density estimators, one can also approximate �.� j Zn/ and
calculate its HPD sets.

11.2.3 Approaches to Prediction

A very important problem from a practical standpoint is to infer the size of future
generations from currently available information. Thus, from a sample fZ0; : : : ;Zng,
one desires inferential statements about unobserved ZnCl, l � 1. Few results related
to this topic can be found in the branching process theory literature (see [12, 14]
for BGW processes). From a Bayesian standpoint, any inferential statement about
ZnCl; l � 1, given known population sizes until generation n, is contained in the
posterior predictive distribution f .ZnCl j Zn/. Of course, the inferential content of
the predictive distribution may be appropriately summarized to provide an estimator
of ZnCl as the mean of f .ZnCl j Zn/, and interval estimates of ZnCl such as the class
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of HPD sets which may be derived from f .ZnCl j Zn/. For simplicity, we shall
focus on the set fZnCl > 0g, avoiding approximating the density of the mass point
fZnCl D 0g whose estimation is obvious. The difficulty lies in finding a closed form
for this distribution.

We shall present two ways of approximating the predictive distribution, both
applying a Monte Carlo procedure. The first is a sampling-based method, and the
second is based on approximating EŒZnCl j Zn� and VarŒZnCl j Zn� and then seeking
a parametric model.

Method A We consider a random sample f. p.1/; � .1//, : : :, . p.r/; � .r//g from
�. p; � j Zn/. In particular, we shall use the one obtained with the Gibbs sampler in
Sect. 11.2.2, i.e., r D T.Q C 1/. It is clear that

f .ZnCl j Zn/ D
Z

f .ZnCl j Zn; p; �/�. p; � j Zn/dpd�:

On the basis of this formula, for each . p.i/; � .i//, i D 1; : : : ; r, one can simulate
s processes until the lth generation, which started with Zn individuals, obtaining
the values z.i/nCl;1, z.i/nCl;2, : : :, z.i/nCl;s from ZnCl > 0, and use them to approximate
f .ZnCl j Zn; p.i/; � .i// by a Gaussian kernel estimator

f .i/.x/ D 1

s

sX

jD1

1

b.i/
K

 
x � z.i/nCl;j

b.i/

!

; x 2 R;

with b.i/ an appropriate bandwidth and K.x/ the density of the standard normal
distribution. Thus, f .ZnCl j Zn/ is estimated by

Of .x/ D 1

r

rX

iD1
f .i/.x/; x 2 R: (11.10)

Method B We consider a random sample f. p.1/; � .1//, : : :, . p.r/; � .r//g (again the
sample obtained in Sect. 11.2.2) from �. p; � j Zn/, and for each i D 1; : : : ; r one
simulates s processes until the lth generation, which started with Zn, reproduction
law p.i/, and control distribution governed by �.i/. One calculates the mean and the
variance of the s�values z.i/nCl;j > 0, j D 1; : : : ; s, obtaining an approximation to

EŒZnCl j Zn; p.i/; � .i/� and to VarŒZnCl j Zn; p.i/; � .i/�. Finally,

EŒZnCl j Zn� � 1

r

rX

iD1
EŒZnCl j Zn; p

.i/; � .i/�;

and, considering that

VarŒZnCl j Zn� D EŒVarŒZnCl j Zn; p; ���C VarŒEŒZnCl j Zn; p; ���;
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with the mean and the variance in the right term of the previous equality considered
with respect to the distribution �. p; � j Zn/, then

VarŒZnCl j Zn� � 1

r

rX

iD1
VarŒZnCl j Zn; p

.i/; � .i/�C

C 1

r � 1
rX

iD1

 

EŒZnCl j Zn; p
.i/; � .i/� � 1

r

rX

iD1
EŒZnCl j Zn; p

.i/; � .i/�

!2
:

As was already proposed in Mendoza and Gutiérrez-Peña [14] for BGW processes,
we also use a gamma distribution with mean and variance EŒZnCl j Zn� and
VarŒZnCl j Zn�, respectively, (justified by the minimum logarithmic divergence
criterion) to approximate f .ZnCl j Zn/.

11.3 Simulated Example

In this section, we shall illustrate the methods described above by analysing an
example with simulated data.

We simulated 20 generations of a CBP with Z0 D 1, offspring law p0 D 0:0778,
p1 D 0:2592, p2 D 0:3456, p3 D 0:2304, p4 D 0:0768, p5 D 0:0102, and �n.k/
having a Poisson distribution with parameter 0:51k. Thus the offspring mean is m D
2, the control and the migration parameters coincide, being 
 D � D 0:51, and
in this case the asymptotic mean growth rate is � D m
 D 1:02. As 
 < 1, we
are considering a CBP with expected emigration. Figure 11.1 shows the evolution
of the simulated population sizes. In an emulation of the classification of standard
BGW processes, it was established in [8] that one refers to a subcritical, critical,
or supercritical CBP depending on whether � is less than, equal to, or greater than
unity. Despite the expected emigration, using the results in [5], one can deduce that
this supercritical CBP process has a positive probability of non-extinction.

We now focus on the estimation of p, 
, m, and � based on the population size
in each generation, by using the Gibbs sampler. We specify a Dirichlet process
on the non-negative integers to model the prior distribution of the offspring law,
avoiding any assumption about the cardinality of its support. Initially we choose
˛ D 1 as concentration parameter, and a Poisson distribution as base measure. It
is well known that the Poisson distribution models the number of events occurring
within a given time interval when those events occur at a known average rate and
independently of the time since the last event. It is thus appropriate for modeling
a generic offspring process. We propose that the average rate of the Poisson
distribution will be initially estimated by considering that no control is imposed
on the population. Therefore, the maximum likelihood estimator of the offspring
mean corresponding to a BGW process can be used, i.e., we propose the Poisson
base distribution with mean .Z1 C : : : C Zn/=.Z0 C : : : C Zn�1/, in this example,
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Fig. 11.1 Evolution of the
simulated population sizes
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1.06. Recall that for a Poisson control distribution—see Remark 11.1, b)—
 D � ,
so that we shall henceforth refer in the analysis to 
. With respect to the prior for
the parameter 
, as one does not know a priori what kind of expected migration is
taking place, one can take the value of 
 to be 1, and set as a prior distribution for 

a gamma distribution with mean 1 (the shape parameter is chosen to be unity). How
the choices of prior elicitation affect the inferences will be evaluated below.

In the simulation, we set T D 50 and ran the algorithm described in Sect. 11.2.2
20,000 times for each chain. Using the Gelman–Rubin–Brooks diagnostic plots
for . p; 
/, we took N D 5000. Table 11.1 lists the values of the estimated
potential scale reduction factor together with 97.5 % confidence upper bounds and
the autocorrelation values for 
 and the first values of p. That the values of the
estimated scale reduction factor are close to unity suggests that further simulations
will not improve the values of the listed scalar estimators (see [3, 4]). Finally, for
the autocorrelation study, we chose G D 600, and consequently Q D 25. The final
sample size was therefore 1300.

To evaluate the algorithm’s efficiency, Table 11.2 presents some summary
statistics for the posterior distributions of 
, m, and � . Note that, due to the batch
procedure, the time-series standard errors (TSSE) are very close to the Monte Carlo
standard errors (MCSE). Also, for the three parameters, the standard errors (MCSE
and TSSE) are less than 5 % of the posterior standard deviation (SD), indicating that
the number of observations considered seems to be a reasonable choice.

Figures 11.2 and 11.3 show the estimated posterior density for 
, m, and �
together with their true values, and the 95% HPD sets. The contour plot of the
estimated posterior density for .
;m/ is also shown. One observes that the 95 %
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Table 11.1 Potential scale
reduction factor and
autocorrelation for 
 and the
first values of p

Potential scale reduction Autocorrelation
Est. 97.5 % lag1 lag100 lag 600


 1.04 1.06 0.9894 0.6669 0.0577

p0 1.03 1.04 0.9937 0.6558 0.0776

p1 1.02 1.03 0.9925 0.5538 0.0446

p2 1.02 1.02 0.9895 0.4922 0.0326

p3 1.02 1.04 0.9893 0.5055 0.0302

p4 1.02 1.02 0.9684 0.1478 0.0020

p5 1.03 1.04 0.9337 0.0500 0.0000

p6 1.06 1.06 0.7524 0.0059 �0:0016

Table 11.2 Summary
statistics for the posterior
distributions of 
, m, and �

MEAN SD MCSE TSSE


 1.0187 0.6015 0.0167 0.0155

m 1.2751 0.4987 0.0138 0.0127

� 1.0597 0.0728 0.0020 0.0018

D
en

si
ty

0 1 2 3 4 5 6 7

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

hpd 95% hpd 95%μ

D
en

si
ty

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
2

0.
4

0.
6

0.
8

%59dph%59dph m

Fig. 11.2 Estimated posterior density for 
 (left) and m (right)

HPD sets contain the true values of the parameters. It is particularly noteworthy that
the method is not very accurate at identifying the parameters m and 
, although
P.
 < 1 j Z20/ is estimated at 0.662, identifying the process as having expected
emigration, and P.m > 1 j Z20/ is estimated at 0.711, identifying a mean
reproduction capacity of greater than unity. The method also provides a good
estimate of the process’s asymptotic mean growth rate, � , which is the parameter
that determines the limiting behaviour of the process. In this case, P.� > 1 j Z20/

is approximated by 0.80, identifying a supercritical CBP. The contour plot shows
clearly the interdependence of the parameters m, 
, and � .
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Fig. 11.3 Contour plot of estimated posterior density for .
;m/ (left) and estimated posterior
density for � (right)
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Fig. 11.4 Evolution of the squared error loss estimates of � with 95% HPD bands. The horizontal
line represents the true parameter value

Figure 11.4 illustrates the long-term behaviour of the estimates of � , showing for
each generation their Bayes estimates under squared error loss and their respective
95% HPD sets. Note that one has estimates closer to the real value and narrower
HPD intervals as the generations advance.
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Fig. 11.5 Histogram of the data from the true distribution together with estimated posterior
densities for Z21, Z23, and Z25. Method A: dotted line; Method B: discontinuous line

Table 11.3 Mean and 95 % prediction HPD sets for Z21; Z23; and Z25

MEAN 95 % prediction HPD

Method A/Method B Method A/Method B

Z21 24.3844 / 24.3840 11.2112–38.2382 /11.6116–38.7387

Z23 27.8852 / 27.8475 2.8028–57.8579 /4.6046–58.9590

Z25 31.7907 / 32.6389 3.9039–86.9870/1.1011–84.4845

Using the information on the population sizes until generation 20, we obtained
via the methods described in Sect. 11.2.3 the predictive distributions of Z21, Z23,
and Z25 on their respective non-extinction sets. Methods A and B were applied by
simulating s D 1000 processes, started with Z20 D 23 until the 5th generation, and
reproduction law and control parameter . p.i/; � .i//, i D 1; : : : ; 1300.

Figure 11.5 shows the predictive posterior distribution of Z21, Z23, and Z25
estimated by the two methods described above, together with the histogram of
the data from the true distribution. The sampling-based approach and the gamma
model lead to similar estimates for Z21;Z23, and Z25. Table 11.3 presents estimates
for Z21;Z23, and Z25 together with the 95 % HPD sets. The accuracy of these
approximations, assessed by comparison with the true distribution, is reasonable.
In spite of the fact that the estimation of m and 
 are not so precise as desirable,
the combination of both to estimate � is quite good, as shown Fig. 11.3 (right)
and this leads to the estimation of the forecast values of the process are accurate.
Nevertheless, according to Fig. 11.3 (right), the estimated values of � tend to be
slightly greater than the true value, so that the predictive values also show this
tendency.

Finally, we examine the sensitivity of inferences of the main parameters of
interest to the choice of the priors (in particular, focusing on the concentration
parameter, the base distribution, and the gamma parameters). For simplicity, we
present the analysis focussing on the asymptotic mean growth rate, � , a parameter
that determines the future evolution of the process. First, we analyse the influence
on the choices of the concentration parameter and of the kind of base distribution
(setting its mean to 1.06). With the prior on 
 assumed to be a gamma distribution
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Table 11.4 Sensitivity analysis for � jZ20

Base measure m.0/ D 1:06

Concentration Poisson Geometric
parameter ˛ MEAN HPD 95 % MEAN HPD 95 %

0.25 1.0629 0.9244 1.2060 1.0584 0.9164 1.2107

0.50 1.0646 0.9258 1.2136 1.0626 0.9251 1.2122

0.75 1.0616 0.9195 1.2118 1.0618 0.9187 1.2180

1 1.0597 0.9244 1.2073 1.0585 0.9053 1.2129

5 1.0583 0.9249 1.2104 1.0618 0.9062 1.2271

10 1.0613 0.9204 1.2081 1.0610 0.8980 1.2194

20 1.0554 0.9099 1.2041 1.0642 0.9065 1.2391

Table 11.5 Sensitivity analysis for � jZ20

Base measure ˛ D 1

Poisson Geometric
m.0/ MEAN HPD 95 % MEAN HPD 95 %

0.25 1.05592 0.93007 1.19095 1.05441 0.92359 1.19157

0.50 1.05687 0.92847 1.19287 1.05850 0.92709 1.19397

0.75 1.05983 0.93648 1.19943 1.06178 0.91882 1.21939

1 1.05664 0.91961 1.21131 1.05850 0.91213 1.20456

1.5 1.06283 0.91825 1.22327 1.06127 0.90646 1.22152

2 1.06270 0.90100 1.21972 1.06129 0.91375 1.21722

2.5 1.06631 0.91151 1.22647 1.06287 0.90328 1.24079

3 1.06887 0.90780 1.23867 1.06043 0.90816 1.23099

3.5 1.06978 0.89095 1.24436 1.06787 0.90444 1.25410

with mean 1 (its shape parameter taken as unity), the results in Table 11.4 show the
estimation of � not to be very sensitive to such changes. Second, with the same prior
on 
 and the concentration parameter equal to unity, the results in Table 11.5 show
the estimation of � neither to be very sensitive to the choice of the base distribution
or of its mean. Finally, we analyse the influence of the choice of the shape and mean
parameters of the gamma distribution. Taking the previous study into account, we
took the concentration parameter to be equal to unity, and the base distribution to be
a Poisson distribution with mean 1.06. The results in Table 11.6 again allow one to
conclude that the estimation of � is not very sensitive to the prior parameters.

In most of the situations, as was noted in Remark 11.3, one has prior knowledge
of the kind of the control distribution, and this was indeed our approach in the
simulated example where we assumed the control to be applied through a Poisson
control distribution. We next examined how the method works when assuming
complete ignorance of the control law. To this end, we implemented the method
by considering prior binomial, negative binomial, and Poisson control laws. Thus,
besides the data already simulated and presented in Fig. 11.1 which corresponded to
an expected emigration, we also considered a new sample from a CBP with Poisson
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Table 11.6 Sensitivity analysis for � jZ20

Gamma distribution

Mean Shape parameter

parameter 0.25 0.50 0.75 1 2.5 5 7.5

0.25 MEAN 1.0607 1.0546 1.0563 1.0506 1.0408 1.0293 1.0207

95 % HPD lower bound 0.9234 0.9021 0.9138 0.9023 0.8980 0.8841 0.8665

95 % HPD upper bound 1.2075 1.2219 1.1988 1.2153 1.1848 1.1860 1.1937

0.5 MEAN 1.0597 1.0524 1.0570 1.0523 1.0518 1.0466 1.0453

95% HPD lower bound 0.9168 0.9189 0.9052 0.9152 0.9047 0.9101 0.8998

95 % HPD upper bound 1.2128 1.1997 1.2160 1.2063 1.2066 1.1950 1.1911

0.75 MEAN 1.0638 1.0660 1.0632 1.0598 1.0571 1.0596 1.0575

95 % HPD lower bound 0.9242 0.9242 0.9198 0.9233 0.9177 0.9055 0.9194

95 % HPD upper bound 1.2065 1.2315 1.2136 1.2043 1.2042 1.2133 1.2075

1 MEAN 1.0617 1.0613 1.0606 1.0597 1.0620 1.0629 1.0689

95 % HPD lower bound 0.9193 0.9146 0.9164 0.9244 0.9191 0.9219 0.9268

95 % HPD upper bound 1.2132 1.2144 1.2119 1.2073 1.2121 1.2125 1.2058

5 MEAN 1.0599 1.0609 1.0652 1.0662 1.0628 1.0596 1.0657

95 % HPD lower bound 0.9042 0.9247 0.9302 0.9289 0.9241 0.9185 0.9250

95 % HPD upper bound 1.2102 1.2045 1.2124 1.2083 1.2107 1.2102 1.2145

10 MEAN 1.0617 1.0660 1.0620 1.0641 1.0607 1.0659 1.0634

95 % HPD lower bound 0.9179 0.9225 0.9188 0.9273 0.9212 0.9319 0.9240

95 % HPD upper bound 1.2101 1.2128 1.2089 1.2037 1.1952 1.2101 1.2073

20 MEAN 1.0590 1.0630 1.0644 1.0603 1.0632 1.0633 1.0662

95 % HPD lower bound 0.9232 0.9323 0.9195 0.9131 0.9259 0.9355 0.9354

95 % HPD upper bound 1.2109 1.2084 1.2042 1.2082 1.2099 1.1960 1.2092

control distributions with the same asymptotic mean growth rate as the previous
example but now with an expected immigration (with parameters m D 0:51 and

 D 2). The results in Table 11.7 illustrate how well (or now poorly) the fitted
models, in both the expected emigration and the expected immigration examples,
identify the asymptotic mean growth rate of the process as well as a supercritical
or a subcritical reproduction mean (i.e., m > 1 or m < 1, respectively). To
assess whether the fitted models detect an expected emigration or immigration, we
calculated P.
 < 1 j Z20/ or P.
 > 1 j Z20/, respectively. The approximations
of these probabilities are also given in the table. The results in the table show the
asymptotic mean growth rate of the process to usually be well identified whichever
situation is considered. This is because the generation-by-generation population
sizes provide enough information to estimate this value. However, the estimates of
the kind of offspring mean and of the migration process are not generally appropriate
in the absence of prior knowledge about the type of control. Analysing the fitted
model considering a prior Poisson control (the genuine control distribution), we
obtained acceptable results for the estimates of the offspring mean and of the
expected migration process in both the emigration and the immigration examples.
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Table 11.7 Sensitivity analysis: control prior distribution

Simulated model Fitted models

Poisson control P control B control NB control

Expected emigration � j Z20

m D 2I � D 1:02 Mean Variance Mean Variance Mean Variance

1.060 0.005 1.054 0.005 1.062 0.007

P.m > 1 j Z20/

0.711 0.995 0.400

P.
 < 1 j Z20/

0.662 0.317

Expected immigration � j Z20

m D 0:51I � D 1:02 Mean Variance Mean Variance Mean Variance

1.061 0.006 1.056 0.007 1.064 0.012

P.m < 1 j Z20/

0.626 0.013 0.735

P.
 > 1 j Z20/

0.767 0.801

P control Poisson control, B control binomial control, NB control negative binomial control

Considering a prior binomial control, we found a tendency to overestimate the
offspring mean for the two simulated data sets. This was especially so in case of
the expected immigration situation, precisely to compensate for the effect of the
immigration (recall that the binomial control only allows for emigration). Finally,
with a negative binomial control, one deduces from the results in Table 11.7 that,
despite both the simulated and the fitted models allowing for any kind of migration,
the fitted model identifies well neither the offspring mean nor the emigration process
when the latter is expected. The conclusion to be drawn from these simulated
examples is thus that, to obtain reliable estimates of the parameters of interest, one
should have some prior knowledge of the kind of control law.

Remark 11.4 For the computation of the examples, we used the statistical software
R, a language and environment for statistical computing and graphics (see [16]),
performing the simulations by parallel computing using the Rmpi [25] and snow
(see [21]) packages, and the convergence diagnostics using the coda package
(see [15]).

11.4 Concluding Remarks

As was noted in the Introduction, nowadays controlled branching processes are
one of the most relevant branching models for study. Apart from their inherent
interest, this current relevance is due to the fact that they generalize many impor-
tant branching processes—migration models, for instance. Moreover, beyond the
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framework of population dynamics, these models cover and generalize popular
models for the analysis of count-data time series, such as the INAR(1) models (see
[22, 23] for reviews). Consequently, the development of the inferential theory of
CBPs is an important task to provide a guarantee for their application to many real-
world problems. Some contributions to this theory have already been made from a
frequentist standpoint, either for the general model itself ([6, 19]) or for some of
its particular cases, such as the models with immigration (see, e.g., [17] and the
references therein) or INAR(1) (see [24]).

Respect to a Bayesian perspective, this chapter extends in several senses the
preliminary contributions established in [9, 10]. In particular, we have focused
on a CBP with non-parametric offspring law and with random control variables
instead of deterministic ones, assuming these belonging to a parametric family
of distributions that depend on a single parameter, termed the control parameter
(or its equivalent, the migration parameter). To avoid any assumption about the
cardinality of the support of the offspring law, a Dirichlet process was introduced.
The classical application of this methodological approach to a branching context in
a non-parametric framework for the offspring law requires the observation of the
entire family tree (up to some generation). Although we developed this approach
-with the novelty of using the Dirichlet process-, we reckon that from a practical
standpoint it is more realistic and relevant to avoid the need for observation of the
complete family tree and we only consider the record of the total generation sizes.
On the basis of this kind of sample, and making use of the Gibbs sampler and kernel
density estimators, we proposed a method to approximate the posterior density of
the control parameter (or of its parametrization as the migration parameter), of the
offspring law, and consequently the posterior densities of the offspring mean and
asymptotic mean growth rate, regardless of the nature of the offspring law (whether
subcritical, critical, or supercritical) and the kind of migration. It is worth noting
that the frequentist methods given until now depend strongly on this nature, making
a Bayesian method preferable in this sense. In fact, one can make inferences on the
nature of the offspring law or the kind of migration (immigration or emigration)
from the posterior density of the offspring mean or of the migration parameter,
respectively.

Furthermore, the above method also allows one to approximate the predictive
posterior densities. Two methods were proposed to make inferences on the size of
future generations.

We considered a simulated example in some depth to illustrate our findings, and
included a detailed sensitivity analysis regarding the choices of the priors. This
showed the methodological approach to not be unduly influenced by the choice
of priors of the control parameter or the priors of the concentration parameter or
the base distribution. However, it revealed the need for prior knowledge of the kind
of control being applied. With respect to the comparison of the two methods for
predictions, the simulated example showed the two approaches to lead essentially
to the same results.
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As an overall conclusion, we would state that the proposed procedure allowing
inference based only on total generation sizes constitutes the main contribution of
the present work.
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Chapter 12
Recurrence and Transience of Near-Critical
Multivariate Growth Models: Criteria
and Examples

Götz Kersting

Mathematics Subject Classification (2000): 60J10, 60J80

12.1 Introduction

We consider stochastic processes .Xn/n�0 taking values in R
dC D f.x1; : : : ; xd/

T 2
R

d W xi � 0g, i.e. the d-dimensional orthant, and adapted to some filtration .Fn/n�0,
which satisfy an equation of the form

XnC1 D MXn C g.Xn/C �n ; n 2 N0 ;

with a d � d matrix M having non-negative entries, with a function g W RdC ! R
d,

and with random fluctuations �n D .�n1; : : : ; �nd/
T satisfying

EŒ�n j Fn� D 0 a.s.

One may view the process as a non-linear random perturbation of the linear
dynamical system xnC1 D Mxn, n 2 N0. Here we require this system to be critical,
which means that the Perron-Frobenius eigenvalue �1 of M is equal to 1. We focus
on the situation, when M is a primitive matrix; then up to scaling there is a unique
left eigenvector ` D .`1; : : : ; `d/ corresponding to �1 and its components are all
strictly positive. As usual we let `1 C � � � C `d D 1.
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Now the size of the random fluctuations will be determined by the conditional
variance of `�n D `1�n1 C � � � C `d�nd . More precisely we assume that

EŒ.`�n/
2 j Fn� D �2.Xn/ a.s.

with some measurable function �2 W RdC ! RC.
We are aiming at general criteria for recurrence or transience of the process

.Xn/n�0, that is, at criteria which allow to decide whether fkXnk ! 1 for n ! 1g
is an event of zero probability or not, where k � k denotes an arbitrary norm on
R

d. Hereby, in talking about recurrence and transience, we have taken the liberty to
adopt the terminology from Markov chain theory. Certainly our processes obey only
a relaxed form of the Markov property, but examples typically are Markov chains.

Our theorems in the multivariate setting are complete generalizations of the
known results in the univariate setting. Therefore it is appropriate to first reconsider
the univariate case. This is done in Sect. 12.2. In Sect. 12.3 we apply these results
to the population size dependent bisexual Galton-Watson process. The multivariate
case is then discussed in Sect. 12.4. As an example the multivariate population size
dependent Galton Watson process is treated in Sect. 12.5. Proofs for the multivariate
criteria are given in Kersting (2016), arxiv:1605.04064 [math.PR].

12.2 The Univariate Case Revisited

In the 1-dimensional case our model equation simplifies to the difference equation

XnC1 D Xn C g.Xn/C �n

with some function g W RC ! R. A number of examples can be put into this
framework, among others e.g. population size dependent branching processes [10,
12], controlled branching processes [5], branching processes in random environment
[2], or nonlinear stochastic trends [7].

Our main condition is

gC.x/ D o.x/ as x ! 1 : (A1)

This assumption of “near-criticality” simply says that Xn is the dominating term
within Xn C g.Xn/ such that supercritical growth is excluded.

Also we assume the existence of some constants c; ı > 0 such that for Xn � c

EŒj�njp j Fn� � c�p.Xn/ a.s. with p D 2C ı : (A2)

With these two conditions we have the following criteria complementary to each
other.
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Theorem 12.1 Let (A1), (A2) be fulfilled. Assume that there is an " > 0 such that

xg.x/ � 1 � "

2
�2.x/ (12.1)

for x sufficiently large. Then

P.Xn ! 1 for n ! 1/ D 0 :

The converse criterium requires some slight additional restrictions.

Theorem 12.2 Let (A1), (A2) be fulfilled. Also let �2.x/ be bounded away from
zero on intervals .u; v/ with 0 < u < v < 1, and let

�2.x/ D O.x2 log�2=ı x/ for x ! 1 (12.2)

with ı as in (A2). Assume that there is an " > 0 such that

xg.x/ � 1C "

2
�2.x/ (12.3)

for x sufficiently large. Then there is a number m < 1 such that

P.lim sup
n

Xn � m or lim
n

Xn D 1/ D 1 :

If also for every c > 0 there is a n 2 N such that P.Xn > c/ > 0, then

P.Xn ! 1 for n ! 1/ > 0 :

These results are contained in [9]. From there the first theorem is taken literally,
while the second one is a somewhat more general version of the corresponding
Theorem 2 in [9]. There the condition g.x/ D O.x log�2=ı x/ is used, which is
stronger than our condition (12.2) in view of (12.3). Thus our theorem offers a
relaxation of conditions, which is more to the point and also useful in examples,
while the proof of the criterion remains practically unchanged (as one easily
convinces oneself).

The theorems can be understood as follows: Typically the long term behavior
is either dominated by the “drift term” g.Xn/, or it is mainly controlled by the
fluctuations �n. There is only a small boundary region where both the drift term and
the fluctuations have to be taken into account. It is there, where one would expect a
particular rich and variable stochastic behavior.

Remark 12.1 In order to get a better understanding of the main condition of both
theorems it is instructive to rewrite the model equation in a multiplicative form as

XnC1 D Xn.1C h.Xn/C 	n/ with h.x/ D g.x/

x
; 	n D �n

Xn
:
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Then

EŒ	2n j Fn� D �2.Xn/ a.s. with �2.x/ D �2.x/

x2
:

Now the main requirements (12.1) and (12.3) of the theorems read h.x/ � 1�"
2
�2.x/

versus h.x/ � 1C"
2
�2.x/. In this formulation the drift is directly related to the

variance of the fluctuations.

Remark 12.2 One might wonder, whether condition (12.2) can be substantially
relaxed or even removed. Without compensation this is not possible, as can be seen
from Example C in Sect. 3 of [9].

12.3 Example: The Bisexual GW-Process

For the bisexual Galton-Watson process the n-th generation of some population
(with n D 0; 1; : : :) consists of Fn female and Mn male individuals. They
are assumed to form L.Fn;Mn/ different couples, with some given deterministic
“mating function” L.�; �/, such that L.0; �/ D L.�; 0/ D 0. The i-th couple then has
�ni female and �ni male offspring. Thus the population evolves according to the
equations

FnC1 D
L.Fn;Mn/X

iD1
�ni ; MnC1 D

L.Fn;Mn/X

iD1
�ni :

Let Fn be the �-field, generated by the random pairs .Fk;Mk/, k D 0; : : : ; n. For
every n � 0 we assume that, given Fn, the pairs .�ni; �ni/, i � 1, are iid random
variables with values in N0 � N0. In former investigations it has been assumed that
their conditional distribution 
n is non-random, here we allow that 
n depends on
L.Fn;Mn/. Thus we deal with a population size dependent bisexual Galton-Watson
process. Note that the random variables Xn D L.Fn;Mn/, n D 0; 1; : : :, form a
Markov chain with values in N0 and an absorbing state 0.

For the bisexual Galton-Watson without population size dependence the question
of recurrence/transience (or in other words the question, whether extinction appears
with probability 1) has been completely solved for the large class of superadditive
mating functions, see [3] and the literature cited therein. In [13, 15] the authors
treated the case of mating functions depending on the population size.

Here we consider the situation where the distribution of .�ni; �ni/ may depend
on the number of couples Xn (this is a particular case of the model introduced in
[14]). Then it is necessary to specify the function L in more detail. We consider the
prominent case

L.x; y/ D min.x; ry/;
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where r � 1 is a natural number (r D 1 means monogamous mating and r � 2

polygamous mating). We restrict ourselves to the balanced situation when

EŒ�ni j Fn� D r EŒ�ni j Fn� a.s.

(the unbalanced case can be treated equally). In the case r D 1 this means that in
mean all females and males will find together in couples and it is only due to random
fluctuations that some will not succeed.

We like to apply our theorems to the process .Xn/n�0. The function g evaluated
on x > 0 is given by

x C g.x/ D EŒXnC1 j Xn D x� D Ex
�

min
� xX

iD1
�0i; r

xX

iD1
�0i
��
;

where we now use the notation ExŒ � � D EŒ � j X0 D x� familiar for Markov chains.
Denoting

e.x/ D ExŒ�01�

and using the identity 2min.u; v/ D u C v � ju � vj, we may rewrite the above
equation as

g.x/C x D xe.x/� 1
2
ExŒ
ˇ̌ xX

iD1
.�0i � r�0i/

ˇ̌
�

in the balanced case. The right-hand expectation can be asymptotically evaluated as
follows: Assuming that the function

v.x/ D ExŒ.�01 � r�01/
2�

has a finite, strictly positive limit for x ! 1, i.e.

v.x/ ! ˛ > 0 as x ! 1 ;

and assuming also

ExŒ�
2C�
01 C �

2C�
01 � � c (12.4)

for some � > 0, c < 1, we deduce from Lyapunov’s version of the central limit
theorem that

ExŒ
ˇ
ˇ

xX

iD1
.�0i � r�0i/

ˇ
ˇ� D p

˛x.EŒjNj�C o.1// as x ! 1 ;



212 G. Kersting

where N has a standard normal distribution. Since the right-hand expectation is
equal to

p
2=� , we end up with

g.x/ D .e.x/ � 1/x �
r
˛x

2�
C o.

p
x/ as x ! 1 :

The moments of �n can be obtained as follows:

ExŒj�0j2Cı�

D ExŒ
ˇ
ˇmin

� xX

iD1
�0i; r

xX

iD1
�0i
� � x � g.x/

ˇ
ˇ2Cı�

D ExŒ
ˇ
ˇmin

� xX

iD1
.�0i � e.x//;

xX

iD1
.r�0i � e.x//

�C
r
˛x

2�
C o.

p
x/
ˇ
ˇ2Cı�

From the Marcinkiewicz-Zygmund and the Hölder inequality we have

ExŒ
ˇ̌ xX

iD1
.�0i � e.x//

ˇ̌2C�
� � cEŒ

� xX

iD1
j�0i � e.x/j2�1C�=2�

� cEŒ
xX

iD1
j�0i � e.x/j2C�x�=2� D cx1C�=2EŒj�01 � e.x/j2C��

for some c > 0. Similarly the moment of the other sum may be estimated from
above. Thus because of (12.4) we may apply the multivariate central limit theorem
to obtain for 0 � ı < �

ExŒj�0j2Cı� D x1Cı=2EŒ
ˇ̌

min.N1;N2/Cp
˛=2�

ˇ̌2Cı
�C o.x1Cı=2/

as x ! 1, where the distribution of .N1;N2/ is bivariate normal. In particular
the right-hand expectation is strictly positive. Since we are dealing with a time
homogeneous Markov chain, (A2) is fulfilled for all ı < �.

We are now ready to apply our theorems. The above formulas suggest to chose

e.x/ D 1C ˇp
x

C o.x�1=2/ as x ! 1

for some real number ˇ. Then asymptotically

g.x/ � .ˇ �p
˛=2�/

p
x ; �2.x/ D ExŒ�

2
0 � � �x

for some � > 0. Thus applying Theorems 12.1 and 12.2 and noting that 0 is the only
absorbing state, we end up with the following result.
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Corollary 12.1 Assume that

e.x/ D 1C ˇp
x

C o.x�1=2/ as x ! 1

and that ExŒ�
2C�
01 C �

2C�
01 � � c for all x large enough and some �; c > 0. Then we

have:

(i) If ˇ <
p
˛=2�, then the process .Xn/n�0 gets extinct with probability 1.

(ii) If ˇ >
p
˛=2�, then .Xn/n�0 diverges with positive probability.

12.4 The General Case

Now we come back to the d-dimensional process .Xn/n�0 with values in R
dC

satisfying

XnC1 D MXn C g.Xn/C �n with EŒ�n j Fn� D 0 ; EŒ.`�n/
2 j Fn� D �2.Xn/ a.s.

We recall that M is assumed to be a primitive matrix, that is its entries are non-
negative and there is a natural number k such that the entries of Mk are all strictly
positive. We further assume that the Perron-Frobenius eigenvalue of M is equal to 1.
As is well-known, see [16], it has unique left and right eigenvectors ` D .`1; : : : ; `d/

and r D .r1; : : : ; rd/
T with strictly positive components and normalized by `1C� � �C

`d D `1r1 C � � � C `drd D 1.
We like to obtain generalisations of the Theorems 12.1 and 12.2 above. One

approach is to look for suitable d-dimensional versions of the recurrence condi-
tion (12.1) resp. of the transience condition (12.3) holding everywhere in the R

dC
(possibly up to a neighbourhood of the origin). This approach has been performed
by González et al [4], who considered in fact more general multitype Markov chains
and applied their results to controlled branching processes (see also [6]).

On the other hand there occur interesting instances where in some parts of the
state space one then would come across the recurrence condition (12.1) and in others
across the transience condition (12.3). Therefore we follow a different idea. From
Perron-Frobenius theory it is known that the modulus of the other eigenvalues of
M are all smaller than 1. Roughly speaking this implies that after multiplication
with M vectors x 2 R

dC are pushes towards the direction of the eigenvector r. The
same effect is also active for the process .Xn/n�0 (provided it is not nullified by the
presence of g or the �n). Thus on the event kXnk ! 1 one would expect that the
sequence Xn diverges asymptotically in the direction determined by r. Consequently
the mentioned recurrence or transience conditions have to be required only in some
vicinity of the ray r D f�r W � � 0g spanned by the vector r. This is the type
of condition we are aiming at. First results in this direction are due to Adam [1]
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who derives recurrence and transience criteria in the case where `g.x/ and �2.x/
asymptotically behave like certain powers of `x.

To make this intuition precise let us introduce some notation. Each vector x 2 R
d

can be uniquely dissected into two parts

x D Ox C Lx

such that

Ox 2 f�r W � 2 Rg and `Lx D 0 :

From Ox D �r it follows `x D �`r D � because of `r D 1. Thus

Ox D r`x :

Now we may characterize the vectors x close to the ray r by the property that kLxk is
small compared to kxk.

Similarly the process .Xn/ can be splitted:

Xn D OXn C LXn :

We are now ready to formulate our results. The assumptions are analogous to the
1-dimensional case. The condition of near-criticality now reads

kg.x/k D o.kxk/ as kxk ! 1 (A1�)

and the condition of moment boundedness gets the following form: There are c > 0
and ı > 0 such that for p D 2C ı and kXnk � c

EŒk�nkp j Fn� � c�p.Xn/ : (A2�)

For convenience we formulate here our theorems only for the case that g.x/
has only non-negative components, otherwise the required conditions are somewhat
more involved.

Theorem 12.3 Let (A1�) and (A2�) be fulfilled and let g.x/ � 0 (componentwise)
for kxk sufficiently large. Assume that there is an " > 0 and that for any a > 0 there
is some b > 0 such that for all x 2 R

dC we have

kxk � b ; kLxk2 � akxk � kg.x/k ) `x � `g.x/ � 1 � "

2
�2.x/ : (12.5)

Then

P.kXnk ! 1 as n ! 1/ D 0 :
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Note that in view of (A1�) the requirement kLxk2 � akxk � kg.x/k indeed defines
a region within R

dC which is located in the vicinity of the ray r (since x 2 r implies
Lx D 0). Note also that in the 1-dimensional case the requirement (12.5) reduces
to (12.1), because then Lx D 0 and `x D x for any x 2 RC.

Theorem 12.4 Let (A1�) and (A2�) be fulfilled and let g.x/ � 0 for kxk sufficiently
large. Also let �2.x/ be bounded away from zero for all x 2 R

dC with u < `x < v,
where 0 < u < v < 1, and let

�2.x/ D O.kxk2 log�2=ı kxk/ for x ! 1 and for some ı > 0 : (12.6)

Assume that there is an " > 0 and that for any a > 0 there is some b > 0 such that
for all x 2 R

dC we have

kxk � b ; kLxk2 � a�2.x/ ) `x � `g.x/ � 1C "

2
�2.x/ :

Then there is a number m < 1 such that

P.lim sup
n

kXnk � m or lim
n

kXnk D 1/ D 1 :

If additionally for every constant c > 0 there is a natural number n such that we
have P.kXnk > c/ > 0, then

P.kXnk ! 1 for n ! 1/ > 0

and

P.k LXnk D o.kXnk/ j kXnk ! 1/ D 1:

Now it is the condition kLxk2 � a�2.x/ which in view of (12.6) defines a vicinity
of the ray r. The last statement says that the process diverges in the direction of the
ray r. Again for d D 1 this Theorem reduces completely to Theorem 12.2.

Note that we did not specify which norm k � k we used. The choice makes no
difference because as is well-known all norms on R

d are equivalent in the sense that
for two norms k�k1 and k�k2 there are number c1; c2 > 0 such that c1k�k1 � k�k2 �
c2k � k1. Thus the formulated conditions and statements do not depend on the choice
of the norm.

The proof of both theorems will be given elsewhere.
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12.5 Example: The Multivariate GW-Process

In the multivariate Galton Watson process .Xn/n�0 each generation consists of d
different types of individuals, thus Xn D .Xn;1; : : : ;Xn;d/

T . Then

XnC1 D
dX

jD1

Xn;jX

iD1
	nij or XnC1;k D

dX

jD1

Xn;jX

iD1
	nijk

with 	nij D .	nij1; : : : ; 	nijd/
T . Here 	nijk is considered to be the offspring number

of individuals of type k born by the i-th individual of type j in generation n. It is
assumed that for n � 0 and given X0; : : : ;Xn the random vectors 	nij, i; j � 1, are
independent with a distribution which may depend on j but neither on i nor on n.
We allow that this distribution depends also on Xn, then .Xn/n�0 is a Markov chain
and constitutes a population size dependent multivariate Galton-Watson process as
introduced by Klebaner, see e.g. [11]. For a model where M is no longer primitive,
compare Jagers and Sagitov [8].

Now given the state x D .x1; : : : ; xd/
T 2 R

dC expectations are determined as
ExŒX1� D Pd

jD1 ExŒ	01j�xj or

ExŒX1� D Exx

with the d � d matrix of expectations

Ex D .ExŒ	011�; : : : ;ExŒ	01d�/ :

In our context this means that

g.x/ D .Ex � M/x

with some primitive matrix M and

�n D
dX

jD1

Xn;jX

iD1
.	nij � ExŒ	01j�/ :

By conditional independence we get

�2.x/ D ExŒ.`�0/
2� D

dX

jD1
Varx.`	01j/xj

or

�2.x/ D `�x`
T
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with

�x D
dX

jD1
Covx.	01j/xj

and the d � d covariance matrices Covx.	01j/ of 	01j, j D 1; : : : ; d.
As to condition (A2�) it is suitable here to work with the `1-norm kxk D P

k jxkj.
Then for p D 2C ı > 2

k�nkp D � dX

kD1
j

dX

jD1

Xn;jX

iD1
.	nijk � ExŒ	01jk�j

�p � d2p
dX

j;kD1

ˇ
ˇ

Xn;jX

iD1
.	nijk � ExŒ	01jk/�

ˇ
ˇp

Applying again the Marcinkiewicz-Zygmund and the Hölder inequality we obtain,
for some c > 0,

ExŒk�0kp� � cd2p
dX

j;kD1
x p=2

j ExŒj	01jk � ExŒ	01jk�jp� :

Assuming now that there is a number b > 0 such that for all x 2 R
dC

ExŒj	01jk � ExŒ	01jk�jp� � bExŒ.	01jk � ExŒ	01jk�/
2�p=2 (12.7)

we obtain

ExŒk�0kp� � bcd2p
� dX

j;kD1
xjExŒ.	01jk � ExŒ	01jk�/

2�
�p=2

;

that is

ExŒk�0kp� � bcd2p.trace �x/
p=2 :

Thus to attain validity of (A2�) we require besides (12.7) that there is a constant
c > 0 such that for all x 2 R

dC we have

trace �x � c `�x`
T :

This is fulfilled if e.g. the covariance matrices Covx.	01j/ have only non-negative
entries, but it may fail in general.

Now we are ready to apply our theorems to special cases as those discussed by
Klebaner [11] and Adam [1]. Details are left to the reader.
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Chapter 13
The Weighted Branching Process

Uwe Roesler
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13.1 Weighted Branching Process

Branching processes have a lot of applications in the real world. Basically, one
counts the number of offspring or individuals in a certain generation. But that is only
part of the story. In reality the mother (parents) passes some value to the children
and they to their children and so on. Examples of values are the DNA sequence,
money, knowledge, influence and so on.

We will present a general suitable mathematical model, the Weighted Branching
Process (WBP) [37, 39] .V;L;G;	/.
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For the tree we use the Ulam-Harris notation. Let V D N� D [1
nD0Nn be the set

of finite sequence of integers including the empty sequence called ;:We use jvj D n
for v D .v1; v2; : : : ; vn/ D v1v2 : : : vn suppressing the root ;: V is a (genealogical)
graph with directed edges .v; vi/; v 2 V; i 2 N.
.G;	/ is a measurable monoid with a grave. (A monoid is a semi group with a

neutral element (e D e 	 g D g 	 e for all g 2 G). A grave is an element 4 2 G
such that 4 D 4 	 g D g 	 4.)

Each edge .v; vi/ carries as weight Lv;vi a random variable with values in G:
Define on every path .v; vw/ a weight (length) Lv;vw recursively by

Lv;vwi D Lv;vw 	 Lvw;vwi

For notational reasons we use also .v; v/ as path and define Lv;v as the neutral
element e:

The object .V;L;G;	/ is called Weighted Branching Process (WBP) if
.Lv;vi/i2N, v 2 V are iid rvs. For specified edge weights we obtain a random
dynamical system indexed by a tree

Lv;x D Lv;w 	 Lw;x

v 
 w 
 x in genealogical order. Sometimes we specify only .Li/i2N or the
distribution of it. We then have to choose iid rvs in order to obtain a WBP.
More precisely we face a Markov chain indexed by a tree with transition kernel
G � �.GN/ 3 .x;A/ 7! P..x 	 Li/i 2 A/: On the other hand, given a transition
kernel on G � �.GN/, under very weak assumptions a dynamical system with these
transitions [10] exists. Our objects of interest will always be WBP even if we specify
only the distribution.

We suppress the root ; and grave valued objects whenever possible. The picture
above shows all v such that L;;v DW Lv ¤ 4: These Lv are observable. We keep the
common interpretation of offspring, descendant, ancestor, child, mother and so on.

Ex: Free Semi group: If Li are some fixed element of G then Li; i 2 N; generate
G D fLv j v 2 Vg [ fe;4g as free semi group adding the neutral element and the
grave.

Here are some examples in the reals.
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Ex: Bienaymé-Galton-Watson (BGW): [9] Take G D f0; 1g with multiplica-
tion. 0 is the grave. Then the BGW process Zn D P

jvjDn Lv counts the number of
offspring in n-th generation. m D E

P
i2N Li is the average offspring.

Ex: Branching Random Walk (BRW): G D Œ0;1/ with multiplication.
Interesting objects are for example Zn D P

jvjDn Lv and supjvjDn Lv: In his Ph.D.
and a series of papers Biggins [14] introduced the branching random walk on .R;C/
and considered the asymptotic of the sum of weighted positions in n-th generation
and the rightmost particle. Taking the exponential function his setting corresponds
to a WBP on the positive reals with multiplication.

These examples can be extended to G the reals or complex numbers with
multiplication or to Hilbert spaces and so on. They include multi type branching
processes [9] or multi type branching random walk [15].

The interpretation of the above examples is as follows: One individual branches
and moves the children. Mathematically we interpret g 2 R as a map Tg W R !
R;Tg.x/ D xg and consider Lv.x/ as the value of the particle v starting the process
at the root with a particle of weight x. In general, without loss of generality, G is a
subset of some function space HH (always G D H does the job) with composition,
x 	 y D x ı y or x 	 y D y ı x: The algebraic description is by G acting right on
H D Hl via 	l W Hl � G ! Hl or left on H D Hr via 	r W G � Hr ! Hr. (Notice
the formal definition of a semi group acts right or left and our choice of the symbols
Hl;Hr;	l;	r inspired by the natural position of H:) Then Tg.x/ D x 	l g or g 	r x:
The symbol 	l corresponds to the interpretation of a particle starting at the root. The
symbol 	r is connected to some values at the boundary of V at 1; see examples
coming up. Also a combination x	l g	r y with values at the boundary of V is natural
(with the right formal modification).

The next examples concern self similar sets and random affine maps on vector
spaces. (Affine maps are not commutative.) It is the celebrated world of fractals
[11, 12].

Ex: Cantor set: Consider the iteration

Xn D 1

3
Xn�1 C 2

3
Bn;

where Bn; n 2 N, are independent Bernoulli distributed rvs with parameter
1=2. Plotting the sequence .Xn/n for the starting point x0 D 0 (or any) provides
(asymptotically) a picture of the Cantor set (explanation later). The sequence arises
from a somewhat degenerate WBP, G is generated by the affine maps R 3 x 7!
g1.x/ D x

3
and R 3 x 7! g2.x/ D xC2

3
with composition x 	 y D y ı x and enlarged

by the identity and the grave. G acts right on the reals H D R: Let Yv; v 2 V be
independent Ber.1=2/ rvs and put Lv;v1 D Yvg1 C .1� Yv/g2 and Lv;vi the grave for
i � 2: Only vertexes v consisting purely of 1’s get a non grave weight.
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Cantor set

For another description let G and H be as above. Define Lv;vi D gi for i D 1; 2

and the grave otherwise. Consider the range Kn WD fZn.x/ j x 2 Œ0; 1�g of Zn DP
jvjDn Lv . Then K WD \nKn is the Cantor set.
There are more interesting (deterministic) self similar examples. One is the

Sierpinsky triangle

Sierpinski triangle

Xn D AnXn�1 C Bn in R2. Here An is the matrix A WD
�
1=2 0

0 1=2

�
and Bn are iid

with values .0; 0/; .1=4; 1=2/; .1=2; 0/ taken with probability 1=3:
We mention also the Koch curve without explanation.

Koch curve
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Ex: Fern: Here is a picture of my favorite, the fern.

Fern

Draw the Xn; n 2 N with values in R2 satisfying the recursion Xn D AnXn�1CBn

with .An;Bn/ iid. The distribution of the random matrix A and the random vector is

��
0:02 0

0 0:27

�
;

�
150

0

��
;

�� �0:139 0:263
0:246 0:224

�
;

�
171

�10:8
��

;

��
0:16 �0:215
0:222 0:176

�
;

�
122:4

26:79

��
;

��
0:781 0:034

�0:032 0:739
�
;

�
32:25

81

��
;

with probability 0; 01I 0; 15I 0; 13I 0; 71:An explanation for such phenomena (even
in Hilbert spaces) is given in [16, 24].

Another big source of WBP examples arises by interval splitting.
Ex: Interval splitting: Consider the set G of intervals Œa; b/; 0 � a � b � 1;

Define the operation 	 on intervals by

Œa; b/ 	 Œc; d/ WD Œa C c.b � a/; a C d.b � a//:

We will use Iv;vi and Iv in the sequel instead of Lv;vi;Lv as before. Notice g 2 G is
identified with the map Tg.x/ D x 	 g and Hl D G: We use for simplicity right half
open intervals, but open, closed or left half open intervals are possible.

For the Cantor set let g1 WD Œ0; 1=3�; g2 WD Œ2=3; 1� and let G be generated by
g1; g2 under 	 adding the neutral element and the grave. Put Iv;vi D gi for i D 1; 2
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and the grave otherwise. Then

Zn WD [jvjDnŒ0; 1� 	 Iv D
3n

�1
2[

mD0



2m

3n
;
2m C 1

3n

�

is the Kn from above and provides in the limit the Cantor set K D \nZn D fx DP1
iD1

xi
3i j xi 2 f0; 2gg.

Ex: b-ary splitting: Split Œ0; 1/ into b intervals of equal length. Then Ii D Œ i�1
b ;

i
b /

for i � b: Notice Iv; jvj D n; is a partition of Œ0; 1/ for any n 2 N:

The next step of generality is a random partitioning Ii; i 2 N of the unit interval
Œ0; 1/: A self similar continuation (=a WBP on intervals) provides Iv; v 2 V . Define
another WBP .V;L;G;	/ on the reals (G D R) with multiplication. Objects of
interest are processes like Œ0; 1/ 3 t 7! Zn.t/ WD P

jvjDn 11Iv .t/Lv or functions of it.
For the Cantor set take a ternary splitting I1 D Œ0; 1=3�; I2 D .1=3; 2=3/; I3 D

Œ2=3; 1� and a positive WBP with L1 D jI1j; L3 D jI3j and 0 otherwise. Then the
˛ satisfying E

P
i L˛i D 1 is the Hausdorff dimension (˛ D ln 2

ln 3 ) and the function

R � A 7! limn!1
R A
0
.Zn.t//˛�1dt the Cantor measure (=˛-Hausdorff measure

restricted to the Cantor set [18]). The Cantor set is the support of the Cantor measure.
Ex: Mandelbrot Cascades: Let Iv; v 2 V; be an b-ary interval splitting as

above. Further take a WBP on G D Œ0;1/ with multiplication and weights, such
that Li is the grave for i > b: Let Fn be the �-field generated by Lv;vi; jvj < n; i 2
N and Gn be the �-field generated by Iv; jvj D n: The sequence Qn of measures
Qn.A/ D P

jvjDn Lv�.A/ on Gn are called Mandelbrot cascades for the measure
�: Under suitable assumptions [23, 26] the random measures Qn converge to some
random measure Q1 on the Borel �-field of the boundary of V at infinity.

Under the Lebesgue measure � and the assumption E
P

i Li D b is .Qn/n a
martingale measure, E.

R
fdQnC1 j Fn/ D R

fdQn for all f � 0 measurable with
respect to Gn [23]. Further Zn.t/ D b�n

P
jvjDn Lv11Iv .t/ is a martingale in n for

every t 2 Œ0; 1/ [23]. There are several extensions for different � and weakening
the assumptions leading to stochastic fixed point equations (SFE) on the reals (see
section on SFE) [17, 21, 23, 25, 26, 41] or to SFE for processes (see last section)
[13]. Most of them (if not all) are WBP and the limits appearing there are stochastic
fixed points.

The next example is from computer science, sorting and searching [38].
Ex: Binary Search Tree: Let H be the set of infinite sequences of different reals.

Define g1 W H ! H by g1.x/ D .xi1 ; xi2 ; : : :/ where i1 WD inffn > 1 j xn < x1g
and ij WD inffn > ij�1 j xn < x1g: g1.x/ is the subsequence of reals strictly smaller
than x1. Define g2 analogue replacing the < by > : Let G be generated by g1; g2
including the identity and the grave. Put Li D gi for i � 2 and otherwise the grave.
Let ˚.v/ be the first element in the vector Lv.x/: Then Tn.x/ WD fv 2 V j ˚.v/ 2
fx1; x2; : : : ; xngg together with the map Tn.x/ 3 v ! ˚.v/ is called the binary tree
(for x1; x2; : : : ; xn). Traversing from left to right through the tree Tn.x/ provides the
reals x1; x2; : : : xn in natural order.
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Ex: Phylogenetic trees: Given is the DNA-sequence of some individuals or
species living today. Find the phylogenetic tree of them [32]. The idea is, that
mutations appears seldom, but regularly. Model the mutations by a Poisson process
and take the Maximum-Likelihood estimator over all trees including mutations.
These empirical phylogenetic trees are reasonable good estimates close to estimates
with other methods.

13.2 Stochastic Fixed Point Equation

In general stochastic fixed point equations (SFE) are of the form

X
dD '..Xi/i/:

Here ';Xi; i 2 N, are independent and all Xi have the same distribution as X:
Ex: Max type: Take ', a random map with values in RN ! R; as the supremum

'..xi// D supi xi C B, where B is a rv [7, 40].
We consider here only affine maps ' on some vector space, i.e. SFE of sum type

X
dD
X

i2N
AiXi C B; (13.1)

whenever the above is well defined. Here the rvs ..Ai/i;B/; Xj; j 2 N are
independent and the Xj have all the same distribution as X. The distribution of
..Ai/i;B/ is given.

Many important distributions satisfy such a SFE in the reals.

Ex: Gauss: The equation X
dD X1p

2
C X2p

2
is uniquely solved by a Gauss

distribution N.0; �2/ for some 0 � �2 < 1:

Ex: Cauchy: The equation X
dD X1

2
C X2

2
is solved by a symmetric Cauchy(b)

distribution, (density x 7! b
�.b2Cx2/

) and by constants.
Ex: ˛-stable-distribution: ˛-stable distributions in R are the limits of linear

normalized sums of iid rvs. Alternatively X is ˛-stable distributed iff X C c
dD

aX1 C bX2 for all a; b 2 R satisfying jaj˛ C jbj˛ D 1 and some c 2 R. What
happens if we have the above SFE only for some specific a; b; c? Are the solutions
stable [6]?

Ex: BGW: Zn
mn converges a.e. to W and W satisfies

W
dD
X

i�N

1

m
Wi;

N the number of offspring.
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Ex: Quicksort: The running time X of the divide and conquer algorithm
Quicksort, correctly normalized [35], satisfies

X
dD UX1 C .1 � U/X2 C C.U/: (13.2)

Here U is uniformly distributed and C.x/ D 2x ln x C 2.1� x/ ln.1� x/C 1. The
solution is unique in the set L1, but there are more solutions [19] of (13.2).

The last example motivated the study of SFE as objects of its own interest.
Neininger [28] in a series of papers analyzed many more stochastic divide-and-
conquer algorithms, ending up with SFEs.

• Why are we interested solving (13.1) in distribution? There always exists rvs on
a common probability space satisfying

X D
X

i

AiXi C B:

The quick answer is, distributions are on lower level than rvs. Every rv has a
distribution, but for given distribution there are many rvs with that distribution.
More to come.

• Why are solutions of (13.1) called fixed point?
Consider the map K D K
 from distribution to distributions

K.
/
dD
X

i

AiYi C B;

..Ai/i;B/ has distribution 
 and is independent of all Yi
dD 
: Fixed points of

K are exactly the solutions of the SFE. Methods for dealing with K are e.g. the
contraction method [39] using the Wasserstein metric [36, 39] or Zolotarev metric
introduced by Neininger [28], Neininger and Rüschendorf [30]. If B D 0 then K
is called the smoothing transform [17, 21, 23].

• Where is the dynamic and connection to weighted branching processes?
Iterate the homogeneous SFE

X D
X

i

AiXi C B D
X

i

X

j

AiAijXij C
X

i

AiBi C B D : : :

This leads to a WBP, a genealogical tree (with possible infinite branches),
the mother passes her value randomly transformed to her children. We have
dependence within a family, but independence for families.
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13.3 Forward and Backward Dynamics

Without loss of generality we may take G as a subset of HH . The 	 is the
composition, but be aware of the order!

Forward Dynamics (Genealogy) Start with some value h 2 H at the root ; and
every vertex v gives its weight to her i-th child vi randomly transformed by the map
Lv;vi:

Formal: Let Hl be a set and G acts right on Hl via 	l W Hl � G 7! Hl: We obtain
h 	l Lv as the weight of v for starting weight h at the root. h might also be a rv
independent of everything else.

Ex: For G the reals with multiplication we usually identify a real number a with
the transformation R 3 x 7! Ta.x/ D ax: Therefore for the BGW starting with one
particle of weight 1 at the root we obtain the value 1 	l Lv D Lv which is either 0 or
1 with the interpretation dead or alive.

Ex: The descriptions of the Cantor set is the forward dynamic, starting with
points in the unit interval or the unit interval itself.

Backward Dynamics Now we look backwards in genealogical time. Give the
vertex v a weight Cv , take it back to the root Lv 	r Cv and consider the total weight
R D P

v2V Lv 	r Cv: Another procedure is, give vertexes v in n-th generation some
values Cv and define recursively Cw WD P

i2N Lw;wi 	r Cwi; jwj < n: Go all the way
back to the root and then take the limit n ! 1: Intuitively, the limit is like putting
some weight on the boundary of V and going back. More general, let the children
determine the weight of their mother and put some starting weight on the boundary
at infinity.

Formal: Let Hr be a set, G acts left on Hr via 	r W G � Hr 7! Hr and there
is a (random) function  W HN

r ! Hr: Put some values Cv 2 Hr on the n-th
generation jvj D n: Then on the n �1-th generation jwj D n �1 we have the weight
w 7!  ..Lw;wi 	r Cv/i/ 2 Hr: Continue this procedure up to the root. The standard
assumption on the input is ..Lv;vi/i;Cv/; v 2 V; are iid rvs.

Ex: As an example take the SFE

X
dD X1p

2
C X2p

2
(13.3)

uniquely solved by a Gauss distribution N.0; �2/ for some 0 � �2 < 1: Take a
WBP on R with Li D 1=

p
2 for 1 � i � 2 and 0 otherwise. Put some independent

N.0; �2/ rvs Cv; jvj D n on the n-th generation, and obtain Yv D P
jvwjDn Lv;vw 	r

Cvw for all jvj < n: All Yv; jvj < n for the tree vV are N.0; �2/ distributed. But if
we try to extend n to infinity and obtain as limit a normal distribution, there is the
difficulty, that in the limit one needs values at the boundary of V at infinity.
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Ex: Consider a BGW process and W the limit of the martingale Zn
mn , m D EZ1:

Then W satisfies

W D
X

i2N

Li

m
Wi D

X

jvjDn

Lv
mjvj Wv; (13.4)

where Wv is the martingale limit on the tree vV:

Endogenous or Non endogenous We call solutions of a SFE endogenous [1], if
they are measurable with respect to the corresponding WBP. Otherwise they are
called non endogenous. The solution W in example (13.4) is measurable as limit of
a martingale and solutions to (13.3) are not. For endogenous solutions we can easily
give a version with equality rather than in distribution simultaneous for all subtrees
vV: For non endogenous there exists such versions, but we have to put some values
at the boundary of V at infinity. This requires some techniques.

The forward and backward dynamics is connected to the forward and backward
view. Just for the case of simplicity we take G the reals with multiplication and
grave 0: We take the genealogical dynamics. Our object of interest is

Zn WD
X

jvjDn

Lv:

The Forward and Backward view is in analogy to Markov processes.
The forward equation is

Zn D
X

jvjDn�1
Lv
X

i

Lv;vi :

The forward view is on random variables. The forward structure is (often) a
martingale

Wn WD Zn

mn
�!n W;

m WD E
P

i Li. The forward result is a.e. convergence (probability theory).
The backward equation is

Zn D
X

i2N
LiZ

i
n�1;

where Zi
: is for the tree iV: The backward view is on measures. The backward

structure is an iteration on K D K
; K.
/
DD P

i LiXi. The backward result is
weak convergence (measure theory)

Kn.
0/ !n 
 D K.
/: (13.5)

The connection between both is Kn.ı1/
DD Zn:
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Analogous considerations hold for

Rn D
X

jvj<n

Lv 	r Cv;

..Lv;vi/i;Cv/; v 2 V; iid, Cv W ˝ ! G. The backward view is

Rn D
X

i

Li 	r Ri
n�1 C C:

With forward tools like Rn ! R point wise we obtain

R D
X

i

Li 	r Ri C C:

In case Rn ! R only converges in distribution we obtain only equality in
distribution.

13.4 SFE of Sum Type

In this section we consider solutions of (13.1) in the reals. Especially we are
interested in all solutions. We distinguish between the homogeneous sum type, B
is identically 0, and the non homogeneous sum type.

Let us start with the homogeneous sum type

X
dD
X

i

AiXi (13.6)

Consider a WBP on the reals G D R with multiplication and the .Li/i are distributed
like .Ai/i: Then Zn

mn ; Zn WD P
jvjDn Lv; m D E

P
i Li is under suitable assumptions

a martingale relative to the filtration An generated by Lv;vi; jvj < n; i 2 N: If
we consider positive weights Li and 0 < m < 1 then the positive martingale
Zn
mn converges a.e. to some W and W is an endogenous solution of the SFE

W
dD P

i
Li
m Wi: W might be identical 0; which is always a solution. Here is a

Kesten-Stigum analogue [9, 14, 27] deciding on W � 0: Define the function
.0;1/ 3 ˛ 7! m.˛/ D E

P
i jLij˛ 2 Œ0;1�: We use m D m.1/:

Theorem 13.1 (Biggins) Let .G;	/ be Œ0;1/ with multiplication, m < 1 and
m0.1/ exists and is finite. Then are equivalent

i) P.W D 0/ < 1

ii) EW D 1

iii) E.Z1 lnC Z1/ < 1 and m0.1/ < m ln m
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P.W D 0/ is either 1 or the extinction probability of the corresponding BGW. Some
results can be extended to real valued factors Li.

Usually non endogenous solutions are harder to obtain, [4–6, 8, 17, 21–23, 25]. A
final (almost) complete answer is a consequence of the Ph.D.-thesis of Meiners [8].
We treat only the the positive case, G D Œ0;1/: Let S be the set of all decreasing
left continuous functions f W RC ! Œ0; 1� satisfying f .0/ D 1 and the fixed point
equation

f .t/ D E
Y

i

f .tLi/ (13.7)

for all t: This problem corresponds to the SFE

Y
DD inf

i

Yi

Li
(13.8)

of infimum type. By convention put inf ; D 1 D x
0

D 1 for every x 2 G: The
correspondence is given by the survival function f .t/ D P.Y � t/: The connection
to the SFE (13.6) is: The Laplace transform '.t/ D E.e�tX/ of a solution X of the
SFE (13.6) is an element of S:

Here are some assumptions. A1) The smallest multiplicative closed group
generated by the support of all Li; i 2 N is G:

A2) P.
P

i 11Li>0 < 1/ D 1

A3) There is an ˛ � 1 such that m.˛/ D 1 and m.˛/ < m.ˇ/ for all ˇ < ˛.
A4) There is an ˇ < ˛ such that m.ˇ/ < 1.

Theorem 13.2 (Alsmeyer-Biggins-Meiners) Assume A1–A4 and G D Œ0;1/:

Then there exists a positive random variable Z not identically 0 solving the SFE

Z
DD
X

i

L˛i Zi: (13.9)

The non degenerate functions in S form exactly the parametrized family

f .t/ D E.e�Zht˛ /: (13.10)

h 2 .0;1/.

If we are interested in solutions X of (13.6) then use: A solution f 2 S (13.10) is
a Laplace transform iff ˛ � 1: Then X is of the form Z1=˛Y with Y a symmetric
˛-stable distribution. It is a mixture of symmetric ˛-stable distributions.

For G D R a similar result is known [5], solutions are again mixtures of ˛-stable
distributions.

We come now to non homogeneous solutions X
dD P

i AiXi C B and ask for all
solutions. Some endogenous solutions are easy to find via the contraction method
[39], a backward approach. See [2] for a recent overview.
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Consider the operator K D K
 (13.5) on probability distributions. Show K is a
strict contraction with respect to some suitable metric and use Banach Fixed Point
theorem. Suitable metrics are the Wasserstein [39] or Zolotarev metric [30], both [2]
with nice properties fitting the recursive structure,

dp.
; 
/ D inffkX � Ykp j X
dD 
; Y

dD 
g;

�p.
; 
/ D sup
f

jEf .X/� Ef .Y/j;

where Db pcf is Hölder . p � b pc/-continuous. There are more nice metrics [28].
The forward approach uses martingale theory. Consider a WBP on the reals G D

R with multiplication and take independent rvs ..Lv;vi/i;Cv/; v 2 V with the same
distribution as ..Ai/i;B/: Rn WD P

jvj<n LvCv is a martingale in case E.C/ D 0.
Under suitable conditions, like Lp-martingale p > 1 [3, 30, 39], Rn converges to
some R, which is a solution to the SFE (13.1).

Non endogenous Rüschendorf [40] characterized the general solution of the non
homogeneous SFE as the sum of one solution of the non homogeneous and the
general solution of the homogeneous [4, 22]. Under suitable assumptions the set of
all solution is given by

R C Z1=˛Y;

where .R;Z/;Y are independent, R D limn Rn;Z a solution of Z
DD P

i L˛i Zi and Y
an ˛-stable distribution to certain parameters.

In the example Quicksort we obtain R the Quicksort distribution, Z a constant,
since

P
i Li is identical 1 and Y a symmetric Cauchy distribution, which is 1-stable.

13.5 The Contraction Method

The contraction method, roughly described in the previous section, uses the operator
K D K
 (13.5). Under a suitable metric [33] Kn.
0/ will converge in distribution for
some starting measure 
0 to some fixed point 
 D K.
/: Examples are the Cantor
set description via affine maps, where Xn converges in distribution to the unique
invariant probability measure
 and the sequence .Xn/ comes close to every point in

the support of 
: The SFE is X
dD AX C B and Xn is ergodic [24] on the support of

X respectively 
: In this manner we obtain also a picture for the Sierpinsky triangle
and the fern.
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The real strength of the contraction method shows up for ‘dirty’ recursions which
appear a lot for random divide-and-conquer algorithms

X.n/
DD
X

i

Ai.I.n//Xi.I.n//C B.I.n//;

where .Ai.�//i;B.�/; I.n//;Xj; j 2 N are independent, I.n/ < n.
Assuming I.n/ !n 1; Ai.n/ !n Ai; B.n/ !n B and X.n/ ! X in distribution

we hope for X
dD P

i AiXi C B. The first step, usually the easy one, is to solve the
SFE, and the second is to show X.n/ !n X [29, 39] in some nice sense.

This approach led to the first running time analysis of a stochastic divide-and-
conquer algorithm [35]. Quicksort still serves as an icon since that time. The input
is a list of n different numbers and the output is the ordered list. We present the
version with random input (contrary to random pivot). Consider a binary tree and
put a sequence U1;U2; : : : ;Un of iid rvs with a uniform distribution to the root. Take
the first number U1 in the list, and put successively any number strictly smaller to
the vertex 1 and the others to the vertex 2, keeping the order of appearance. The
U1 remains at the root. Then recall the algorithm as long as any vertex has a list
of length at least 2. The final tree of occupied vertexes is the binary search tree
Tn D Tn.U1; : : : ;Un/; see the example.

Let Y.n/ denote the total number of comparisons required to sort the input, which
has the interpretation of being proportional to the running time of the algorithm. The
backward view for the recursion provides

Y.n/ D Y1.I.n/� 1/C Y2.n � I.n//C n � 1;

Y1;Y2; I.n/ independent, Y1
DD Y2; I.n/ uniformly on f1; 2; : : : ; ng (=the rank of U1

under U1; : : : ;Un).
Then X.n/ WD Y.n/�EY.n/

nC1 satisfies

X.n/
DD I.n/

n C 1
X1.I.n//C n � I.n/

n C 1
X2.n C 1 � I.n//C C.I.n//:

Since I.n/
nC1 converges to a uniformly distributed rv U and C.I.n// !n C.U/ we

expect in the limit the Quicksort recursion

X
DD UX1 C .1 � U/X2 C C.U/:

There is a unique solution in Lp; p > 1; the Quicksort distribution.
Rem: Régnier [34] found that .X.n//n itself is an L2-martingale and X.n/

converges a.e. to a non degenerate limit. This is due to extremely nice properties
of the binary search trees.
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13.6 Process Valued WBP and SFE Solutions

We consider now processes X D X.t/t2Œ0;1� in Skorodhod space of càdlàg functions
D as solution of some SFE. Many of the examples are of the form, take an interval
splitting (WBP) Iv; v 2 V; of the unit interval and another WBP .V;L;G;	/.
Consider the stochastic process Zn D P

jvjDn 11IvLv in the limit. Examples are the
Mandelbrot Cascades or the Find process.

Here we take some G � DD with composition x	y D yıx. Since the intervals are
lexicographically ordered, we may interpret t as time. A typical example is .a; b/ 2
G given by a space transformation a 2 D and a time transformation b. The formal
description is .a; b/	 .c; d/ D .ac ı b; b ı d/ and .a; b/	r f D af ı b for f 2 D: Here
are some limiting examples for Zn and Rn D P

jvj<n Lv 	r Cv satisfying a SFE.
Ex: Brownian motion

X
dD .11t<1=2

X1.2t/p
2

C 1t�1=2.X1.1/C 1p
2

X2.2t � 1///t:

Ex: Find Find is an algorithm to find the l-th largest within n elements [20].

X
DD .11t<UUX1.

t

U
/C 11U�t.1 � U/X2.

t � U

1 � U
/C 1/t;

U uniformly distributed on Œ0; 1�
Ex: Quicksort process [38]

X
DD .11U>tUX1.1 ^ t

U
/C 11U�t.1 � U/X2.

t � U

1 � U
/C C.U; t//t;

C.x; t/ D C.x/C 211x�t..1� t/ ln.1 � t/C .1 � x/ ln.1 � x/C 1/

�.x � t/ ln.x � t/;

C.x/ D 1C 2x ln x C 2.1� x/ ln.1 � x/:

The Quicksort process is the unique solution of the above SFE with centered rvs
X.t/ having finite second moments for all t.

The splitting is obvious in all examples. The Brownian example is non endoge-
nous, since considering only t D 1 we are back to the corresponding SFE for the
normal distribution. The Find example is the limit of the rvs Rn D P

jvj<n 11Iv jIvj and
that solution is endogenous. The Quicksort process example looks like a splitting
with overlapping intervals within the same generation. Via a reformulation [38] this
example is of the form Rn D P

jvj<n 11IvLv 	r Cv for suitable random variables Cv
with values in D, a non overlapping splitting Iv of the unit interval by a uniformly
distributed rvs and Lv;vi is the obvious space-time transformation. The solution of
the SFE is endogenous.
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In general Knof (unpublished) considered in his Ph.D. overlapping splittings and
SFEs on D with equality for finite marginals only. Sulzbach [31] took an approach
via a functional contraction method using the Zolotarev metric.

Discrete Quicksort Process There is also a discrete Quicksort process version.
Conrado Martínez introduced Partial Quicksort: For a sequence of n different

reals find the smallest l reals in natural order. The procedure is: Recall Quicksort
always for the left most list with 2 or more elements. Publish first the smallest
number then second smallest and so on.

Observation: In order to find the l smallest numbers in order the algorithm does
only necessary comparisons.

Therefore consider l as time. Let Y.n; l/ be the number of comparisons for Partial
Quicksort. Then consider the normalized rv

X.n;
l

n
/ D Y.n; l/� EY.n; l/

n C 1

extended to D: They satisfying some ‘noisy’ fixed point equation on D, compare to
the discrete Quicksort. The best available and possible result is:

Theorem 13.3 (Roesler) Let Ui; i 2 N; be independent uniformly distributed rvs.
Then X.n; �/ converges almost surely to a specific version of the Quicksort process
in Skorodhod metric on D.
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Chapter 14
A Special Family of Galton-Watson Processes
with Explosions

Serik Sagitov and Alexey Lindo

Mathematics Subject Classification (2000): 60J80

14.1 Introduction

Consider a Galton-Watson process .Zn/n�0 with Z0 D 1 and the offspring number
distribution

pk D P.Z1 D k/; k � 0:

The properties of this branching process are studied in terms of the probability
generating function

f .s/ D p0 C p1s C p2s
2 C : : : ;

where it is usual to assume that f .1/ D 1, however, in this paper we allow for
f .1/ < 1 so that a given particle may explode with probability p1 D 1 � f .1/. The
probability generating function fn.s/ D E.sZn/ of the size of the n-th generation is
given by the n-fold iteration of f .s/

f0.s/ D s; fn.s/ D f . fn�1.s//; n � 1;
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and therefore it is desirable to have a range of probability generating functions f
whose iterations can be computed explicitly.

The best known case of explicit calculations is the family of linear-fractional
Galton-Watson processes with

f .s/ D p0 C .1� p0/
ps

1 � .1 � p/s
; s 2 Œ0; .1 � p/�1/;

representing the family of modified geometric distributions

pk D .1 � p0/.1� p/k�1p; k � 1;

fully characterized by just two parameters: p0 2 Œ0; 1/ and p 2 .0; 1�. In
Sect. 14.2 for each � 2 Œ�1; 1� we introduce a family G� of functions with explicit
iterations containing the linear-fractional family as a particular case. In Sect. 14.3
we demonstrate that all f 2 G� are probability generating functions with f .1/ � 1.
A Galton-Watson processes with the reproduction law whose probability generating
function belongs to G� will be called a theta-branching process.

The basic properties of the theta-branching processes are summarized in
Sect. 14.4, where it is shown that this family is wide enough to include the cases
of infinite variance, infinite mean, and even non-regular branching processes with
explosive particles.

Recall that the basic classification of the Galton-Watson processes refers to the
mean offspring number m D EZ1. Let q 2 Œ0; 1� be the smallest non-negative root
of the equation f .x/ D x and denote by

T0 D inffn W Zn D 0g

the extinction time of the branching process. Then q D P.T0 < 1/ gives the
probability of ultimate extinction. For m � 1 and p1 < 1, the extinction probability
is q D 1, while in the supercritical case m > 1, we have q < 1.

If f .1/ < 1, then the Galton-Watson process is a Markov chain with two
absorption states f0g and f1g. In this case the branching process either goes extinct
at time T0 or explodes at the time

T1 D inffn W Zn D 1g;

with

P.T1 � n/ D 1 � fn.1/; P.T1 < 1/ D 1 � q;

where the latter equality is due to fn.1/ ! q. In Sect. 14.5, using explicit formulas
for fn.s/ we compute the distribution of the absorption time

T D T0 ^ T1:
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Note that in the regular case, we have P.T1 D 1/ D 1 and therefore, T �
T0. Observe also that the case f .1/ < 1 has other, biologically more relevant
interpretations. For example in the multitype setting, T1 can be viewed as the time
of the first mutation event, see [7].

Also in Sect. 14.5 we consider a situation when the explosion of a single particle
has a small probability, so that T1 takes large values in explosion scenarios. We
show that in such a case the time to explosion can be asymptotically characterized
with help of a Gumbel distribution. In Sect. 14.6 we study the Q-processes for the
theta-branching processes extending the classical definition to the non-regular case.
Our explicit calculations demonstrate that in the non-regular case the behavior of a
branching process is more similar to that of the subcritical rather than supercritical
regular case. Using these results on the Q-processes we derive the conditional limits
of the theta-branching processes conditioned on non-absorption.

A remarkable property of the linear-fractional Galton-Watson processes is that
they can be embedded into the linear birth-death processes. In Sect. 14.7 we
establish embeddability of theta-branching processes.

14.2 Probability Generating Functions for Theta-Branching
Processes

Using an alternative parametrization for the linear-fractional probability generating
functions, we obtain

1

1 � f .s/
D a

1 � s
C c; s 2 Œ0; 1/; (14.1)

where

a D p

1� p0
; c D 1 � p

1 � p0
:

This observation immediately implies that the n-fold iteration fn of the linear-
fractional f is also linear-fractional

1

1 � fn.s/
D an

1 � s
C c.1C a C : : :C an�1/:

The key idea of this paper is to expand the family (14.1) by

.A � f .s//�� D a.A � s/�� C c; s 2 Œ0;A/; (14.2)

with the help of two extra parameters .A; �/ which are invariant under iterations.
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Definition 14.1 Let � 2 .�1; 0/ [ .0; 1�. We say that a probability generating
function f belongs to the family G� if

f .s/ D A � Œa.A � s/�� C c��1=� ; 0 � s < A;

where one of the following three options holds

.i/ a � 1; c > 0; � 2 .0; 1�; A D 1;

.ii/ a 2 .0; 1/; c D .1 � a/.1� q/�� ; q 2 Œ0; 1/; A D 1;

.iii/ a 2 .0; 1/; c D .1 � a/.A � q/�� ; q 2 Œ0; 1�; A > 1:

Definition 14.1 can be extended to the case � D 0 by the following continuity
argument: for a 2 .0; 1/

A � Œa.A � s/�� C .1 � a/.A � q/�� ��1=� ! A � .A � q/1�a.A � s/a; � ! 0:

Definition 14.2 We say a probability generating function f belongs to

• the family G0 if for some a 2 .0; 1/,

f .s/ D A � .A � q/1�a.A � s/a; 0 � s < A;

where either A D 1, q 2 Œ0; 1/, or A > 1, q 2 Œ0; 1�,
• the family f 2 G�1 if for some q 2 Œ0; 1� and a 2 .0; 1/,

f .s/ D as C .1 � a/q; 0 � s < 1:

Definition 14.3 A Galton-Watson process with the reproduction law whose prob-
ability generating function f 2 G� , � 2 Œ�1; 1�, will be called a theta-branching
process.

It is straightforward to see, cf. Sect. 14.4, that each of the families G� is invariant
under iterations: if f 2 G� , then fn 2 G� for all n � 1. The fact, that the functional
families in Definitions 14.1 and 14.2 are indeed consist of probability generating
functions with f .1/ � 1, is verified in Sect. 14.3.

Parts of the G� families were mentioned earlier in the literature as examples of
probability generating functions with explicit iterations. Clearly, G1 [ G�1 is the
family of linear-fractional probability generating functions. Examples in [10] leads
to the case A D 1 and � 2 Œ0; 1/, which was later given among other examples in
Chap. 1.8 of [8]. The case A D 1 and � 2 .0; 1/ was later studied in [9]. A special
pdf with � D �1=2,

f .s/ D 1 � .a
p
1 � s C 1 � a/2; a 2 .0; 1/;
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can be found in [2] on page 112, as an example of non-regular Galton-Watson
processes.

Notice that there is a version of linear-fractional Galton-Watson processes with
countably many types of particles, see [5]. It is an open problem to expand the theta-
branching processes with � 2 .�1; 1/ to the multitype setting.

14.3 Monotonicity Properties

It is straightforward to see that each f 2 G0 is a probability generating function with

f 0.s/ D .A � q/1�aa.A � s/a�1;

f .n/.s/ D .A � q/1�aa.1� a/ : : : .n � 1 � a/.A � s/a�n; n � 2;

and

p0 D A � .A � q/1�aAa;

p1 D .A � q/1�aaAa�1;

pn D pn�1
n � a � 1

nA
; n � 2:

Therefore, . pn/n�1 are monotonely decreasing with

pn D aAa.A � q/1�aA�n
nY

kD2

	
1 � 1C a

k



; n � 2;

so that pn � const � A�nn�1�a as n ! 1.

Proposition 14.1 Let � 2 .�1; 0/ [ .0; 1/ and f 2 G� . Then f is a probability
generating function with f .1/ � 1 such that

p0 D A � .aA�� C c/�1=� ;

p1 D a.a C cA� /�1�1=� ;

and for n � 2,

pn D aA�nC1

.a C cA� /
1C�
� nŠ

�
n�1X

iD1

	 cA�

a C cA�


i
Bi;n;
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where all Bi;n D Bi;n.�/ are non-negative and, for n � 2, satisfy the recursion

Bi;n D .n � 2 � i�/Bi;n�1 C .1C i�/Bi�1;n�1; i D 1; : : : ; n � 1;

with B0;n D Bn;n D 0 for n � 1, and B1;2 D 1C � .

Proof In terms of

�.s/ WD A � f .s/

A � s
D Œa C c.A � s/� ��1=� ; �0.s/ D c.A � s/��1�.s/1C� ;

we have

f 0.s/ D a�.s/1C� ;

f 00.s/ D .1C �/ac.A � s/��1�.s/1C2� ;

f 000.s/ D .1C �/.1 � �/ac.A � s/��2�.s/1C2�

C .1C �/.1C 2�/ac2.A � s/2��2�.s/1C3� :

and more generally,

f .n/.s/ D
n�1X

iD1
Bi;naci.A � s/i��nC1�.s/1C.iC1/� ; n � 2;

where Bi;n are defined in the statement. To finish the proof it remains to apply the
equality pn D f .n/.0/=nŠ

In the linear-fractional case we have pk � pkC1 for all k � 1. The next extension
of this monotonicity property was first established in [9].

Corollary 14.1 Let � 2 .0; 1/ and f 2 G� with A D 1. Then pk � pkC1 for all
k � 1.

Proof Put

g.s/ D .s � 1/f .s/ D �p0 C
1X

kD1
. pk�1 � pk/s

k

From

g.s/ D s � 1C .1 � s/2Œa C c.1 � s/� ��1=� ;

g0.s/ D 1C c.1 � s/�C1Œa C c.1 � s/� ��1�1=� � 2.1 � s/Œa C c.1� s/� ��1=�

D c.1� f .s//1C� C 2f .s/ � 1;
g00.s/ D .2� c.1C �/.1 � f .s//� /f 0.s/;
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we see that g00.s/ � 0, since

G.s/ WD 2 � c.1C �/.1 � f .s//� � 2 � c.1C �/.1 � p0/
� D 2 � c.1C �/

a C c
> 0:

Furthermore,

G0.s/ D c�.1C �/.1 � f .s//��1f 0.s/

is absolutely monotone (as a product of two absolutely monotone functions),
implying that g00.s/ is absolutely monotone, so that

k.k � 1/. pk�1 � pk/ � 0; k � 2:

14.4 Basic Properties of f 2 G�

In this section we distinguish among nine cases inside the collection of families
fG� g�1���1 and summarize the following basic formulas: fn.s/, f .1/, f 0.1/, f 00.1/. In
all cases, except Case 1, we have a D f 0.q/. The following definition, cf [3], explains
an intimate relationship between the Cases 3–5 with A D 1 and the Cases 7–9 with
A > 1.

Definition 14.4 Let A > 1 and a probability generating function f be such that
f .A/ � A. We call

Of .s/ WD f .sA/

A
D

1X

kD0
pkAk�1sk

the dual generating function for f and denote Oq D qA�1, so that Of .Oq/ D Oq. Clearly,
Of 0.Oq/ D f 0.q/.

Case 1: � 2 .0; 1�, a 2 .1;1/,

fn.s/ D 1 � Œan.1 � s/�� C .an � 1/d��1=� ; d 2 .0;1/:

The corresponding theta-branching process is subcritical with m D a�1=� . If
� 2 .0; 1/, then f 00.1/ D 1 and for � D 1 we have f 00.1/ D 2.a � 1/a�2d.
Case 2: � 2 .0; 1�, a D 1,

fn.s/ D 1 � Œ.1 � s/�� C nc��1=� ; c 2 .0;1/:

The corresponding theta-branching process is critical with either finite or infinite
variance. If � 2 .0; 1/, then f 00.1/ D 1 and for � D 1 we have f 00.1/ D 2c. This
is the only critical case in the whole family of theta-branching process.
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Case 3: � 2 .0; 1�, a 2 .0; 1/,

fn.s/ D 1 � �
an.1 � s/�� C .1 � an/.1 � q/��

��1=�
; q 2 Œ0; 1/:

The corresponding theta-branching process is supercritical with m D a�1=� . If
� 2 .0; 1/, then f 00.1/ D 1, and for � D 1we have f 00.1/ D 2a�2.1�a/.1�q/�1.
Case 4: � D 0, a 2 .0; 1/,

fn.s/ D 1 � .1 � q/1�an
.1� s/a

n
; q 2 Œ0; 1/:

The theta-branching process is regular supercritical with infinite mean.
Case 5: � 2 .�1; 0/, a 2 .0; 1/,

fn.s/ D 1 � �
an.1 � s/j� j C .1 � an/.1 � q/j� j�1=j� j

; q 2 Œ0; 1/:

The theta-branching process is non-regular with a positive

1 � f .1/ D .1 � a/1=j� j.1 � q/

and infinite f 0.1/.
Case 6: � D �1, a 2 .0; 1/,

fn.s/ D ans C .1 � an/q; q 2 Œ0; 1�:

If q D 1, then the theta-branching process becomes a pure death process with
mean m D a and f 00.1/ D 0. If q < 1, then the �-process is non-regular with a
positive

1 � f .1/ D .1 � a/.1� q/;

f 0.1/ D a and f 00.1/ D 0.
Case 7: � 2 .0; 1�, a 2 .0; 1/, A > 1,

fn.s/ D A � Œan.A � s/�� C .1 � an/.A � q/�� ��1=� ; q 2 Œ0; 1�:

If q D 1, then the corresponding theta-branching process is subcritical with the
offspring mean m D a and

f 00.1/ D .1C �/a.1 � a/.A � 1/�1:

If q 2 Œ0; 1/, the theta-branching process is non-regular with a positive

1 � f .1/ D .A � 1/.Œa C .1 � a/.A � q/�� .A � 1/� ��1=� � 1/;
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and

f 0.1/ D aŒa C .1 � a/.A � q/�� .A � 1/� ��1=��1;

f 00.1/ D .1C�/a.1�a/.A�q/��.A�1/��1ŒaC.1�a/.A�q/��.A�1/� ��1=��2:

We have f .A/ D A, and the dual generating function has the form of the Case 3:

Of .s/ D 1� Œa.1 � s/�� C .1 � a/.1� Oq/�� ��1=� :

Case 8: � D 0, a 2 .0; 1/, A > 1,

fn.s/ D A � .A � q/1�an
.A � s/a

n
; q 2 Œ0; 1�:

If q D 1, the theta-branching process is subcritical with the offspring mean m D
a and

f 00.1/ D a.1� a/.A � 1/�1:

If q 2 Œ0; 1/, the theta-branching process is non-regular with a positive

1 � f .1/ D .A � q/1�a.A � 1/a � .A � 1/;

and

f 0.1/ D a.A � q/1�a.A � 1/a�1;

f 00.1/ D a.1 � a/.A � q/1�a.A � 1/a�2:

We have f .A/ D A, and the dual generating function belongs to the Case 4:

Of .s/ D 1 � .1 � Oq/1�a.1 � s/a:

Case 9: � 2 .�1; 0/, a 2 .0; 1/, A > 1,

fn.s/ D A � �
an.A � s/j� j C .1 � an/.A � q/j� j�1=j� j

; q 2 Œ0; 1�:

If q D 1, then the theta-branching process is subcritical with the offspring mean
m D a and

f 00.1/ D .1 � j� j/a.1� a/.A � 1/�1:

If q 2 Œ0; 1/, the theta-branching process is non-regular with a positive

1 � f .1/ D Œa.A � 1/j� j C .1 � a/.A � q/j� j�1=j� j � .A � 1/;
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and

f 0.1/ D aŒa C .1 � a/.A � q/j� j.A � 1/�j� j�1=j� j�1 2 .0; 1/;
f 00.1/ D .1� j� j/a.1� a/.A � q/j� j.A � 1/�j� j�1

� Œa C .1� a/.A � q/j� j.A � s/�j� j�1=j� j�2:

With

f .A/ D A � .1 � a/1=j� j.A � q/ 2 .q;A/;

the dual generating function takes the form of the Case 5:

Of .s/ D 1 � Œa.1 � s/j� j C .1 � a/.1 � Oq/j� j�1=j� j:

14.5 Extinction and Explosion Times

Recall that T D T0 ^ T1, and in the regular case T D T0. In the non-regular case,
when f .1/ < 1, from

P.n < T0 < 1/ D q � fn.0/;

P.n < T1 < 1/ D fn.1/� q;

we obtain

P.n < T < 1/ D fn.1/� fn.0/:

For our special family of branching processes we compute explicitly the distribution
functions of the times T0;T1;T.

Cases 1–4. In these regular cases we are interested only in the extinction time:

P.n < T0 < 1/ D

8
ˆ̂
<

ˆ̂
:

a�n=� Œ1C d � da�n��1=� ; Case 1;
.1C cn/�1=� ; Case 2;
.1 � q/

�
Œ1 � an.1 � .1 � q/� /��1=� � 1

�
; Case 3;

.1 � q/Œ.1 � q/�an � 1�; Case 4:

Cases 5, 7, 9. In these cases

P.n < T0 < 1/ D .A � q/.Œ1 � an.1 � .A � q/�A�� /��1=� � 1/;
P.n < T1 < 1/ D .A � q/

�
1 � Œ1 � an.1 � .A � q/� .A � 1/�� /��1=�

�
;
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P.n < T < 1/ D .A � q/
n
Œ1 � an.1 � .A � q/�A�� /��1=�

� Œ1 � an.1 � .A � q/� .A � 1/�� /��1=�
o
:

Case 6. In this trivial case

P.n < T0 < 1/ D anq; P.n<T1 < 1/ D an.1 � q/; P.n < T < 1/ D an:

and for q 2 .0; 1/,

E.T0jT0 < 1/ D E.T1jT1 < 1/ D E.T/ D 1

1 � a
:

Case 8. In this case

P.n < T0 < 1/ D .A � q/Œ.A � q/�an
Aan � 1�;

P.n < T1 < 1/ D .A � q/Œ1 � .A � q/�an
.A � 1/an

�;

P.n < T < 1/ D .A � q/1�an
ŒAan � .A � 1/an

�:

Theorem 14.1 Consider a theta-branching process with � 2 .�1; 0� and A � 1.
Let � ! 0 and A ! 1 in such a way that

j� j � log
1

A � 1
! r; r 2 Œ0;1�:

Then for any fixed a 2 .0; 1/, q 2 Œ0; 1/, and y 2 .�1;1/,

lim
�!0

P.T1 � loga � � yjT1 < 1/ D e�way
;

where

� D
� j� j; r 2 .0;1�;

.log 1
A�1 /

�1; r D 0;
w D

�
1; r 2 f0g [ f1g;
1 � e�r; r 2 .0;1/:

The limit is a Gumbel distribution with mean log w��
log a , where � is the Euler–Masche-

roni constant.

Proof In view of

P.T1 � njT1 < 1/ D A � q

1 � q

�
1 � an.1� .A � 1/j� j.A � q/�j� j/

�1=j� j � A � 1

1� q
;
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it suffices to verify that

�
1 � �ay.1 � .A � 1/j� j/

�1=j� j ! e�way
:

Indeed, if r D 1, then .A � 1/j� j ! 0, and

�
1 � j� jay.1 � .A � 1/j� j/

�1=j� j ! e�ay
:

If r 2 .0;1/, then .A � 1/j� j ! e�r, and

�
1 � j� jay.1 � .A � 1/j� j/

�1=j� j ! e�ay.1�e�r/:

Finally, if r D 0, then

1 � .A � 1/j� j � j� j=�;

and therefore

�
1 � �ay.1 � .A � 1/j� j/

�1=j� j ! e�ay
:

Corollary 14.2 If A D 1 and � 2 .�1; 0/, then for any fixed a 2 .0; 1/ and q 2
Œ0; 1/,

lim
�!0

P.T1 � loga j� j � yjT1 < 1/ D e�ay
; y 2 .�1;1/;

If � D 0 and A D 1C e�1=� , � > 0, then for any fixed a 2 .0; 1/ and q 2 Œ0; 1/,

lim
�!0

P.T1 � loga � � yjT1 < 1/ D e�ay
; y 2 .�1;1/:

14.6 The Q-Process

As explained in Chap. I.14, [1], for a regular Galton-Watson process with transition
probabilities Pn.i; j/, one can define another Markov chain with transition probabil-
ities

Qn.i; j/ WD jq j�iPn.i; j/

�ni
; i � 1; ; j � 1;

where � D f 0.q/. The new chain is called the Q-process, and from

X

j�1
Qn.i; j/s

j D s

�niqi

d

ds
. f i

n.sq// D s � f 0
n.sq/

f 0
n.q/

�
	 fn.sq/

q


i�1
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we see that the Q-process is a Galton-Watson process with the dual reproduction
f .sq/

q and an eternal particle generating a random number � of ordinary particles

with E.s�/ D f 0.sq/
f 0.q/ , see [3]. The Q-process in the regular case is interpreted in [1]

as the original branching process “conditioned on not being extinct in the distant
future and on being extinct in the even more distant future”.

Exactly the same definition of the Q-process makes sense in the non-regular case,
only now the last interpretation should be based on the absorption time T rather than
on the extinction time T0. Indeed, writing Pj.�/ D P.�jZ0 D j/ we get for j � 1,

Pj.T > n/ D f j
n.1/� f j

n.0/;

and therefore,

Pi.Z1 D j1; : : : ;Zn D jnjT > n C k/ D Pi.Z1 D j1; : : : ;Zn D jn/
f jn
k .1/� f jn

k .0/

f i
nCk.1/� f i

nCk.0/
:

In the non-regular case, as k ! 1 we have fk.0/ ! q and fk.1/ ! q. Thus,
repeating the key argument of Chap. I.14, [1] for the derivation of the Q-process,

Pi.Z1 D j1; : : : ;Zn D jnjT > n C k/ ! Pi.Z1 D j1; : : : ;Zn D jn/
jnqjn

�niqi
;

we arrive in the limit to a Markov chain with the transition probabilities Qn.i; j/.
By Theorem 3 from Chap. I.11 in [1],

��nPn.i; j/ ! iqi�1
j; i; j � 1;

where Q.s/ D P
j�1 
jsj satisfies

Q. f .s// D �Q.s/; Q.q/ D 0:

In the critical case as well as in the subcritical case with
P1

kD2 pkk log k D 1 the
solution is trivial: Q.s/ � 0. Otherwise, Q.s/ is uniquely defined by the above
equation with an extra condition Q0.q/ D 1, so that the Q-process has a stationary
distribution given by

Qn.i; j/ ! jqj�1
j;

with

X

j�1
jqj�1
js

j D sQ0.sq/:
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These facts concerning Q.s/ remain valid even in the non-regular case. It is easy
see from (14.2) that for our family with � ¤ 0 and A > q, the generating function

Q.s/ D .A � s/�� � .A � q/�� ;

is determined by parameters .�;A/ and is independent of a D � . Similarly, for
� D 0 we have

Q.s/ D log
A � s

A � q
:

This leaves us with two cases when A D q D 1. In the critical Case 2 the answer is
trivial: Q.s/ � 0. In the subcritical Case 1, we have � D a�1=� and

.1 � f .s//�� C d D ��� Œ.1 � s/�� C d�;

which yields

Q.s/ D Œ.1 � s/�� C d��1=� :

From these calculations it follows, in particular, that for our family of branching
processes, in all subcritical cases, the classical x log x moment condition holds:

1X

kD2
pkk log k < 1:

Using these explicit formulas for Q.s/ we can easily find the conditional
probability distributions

lim
n!1 P.Zn D jjT > n/ D bj; j � 1:

For all cases, except the critical Case 2, we have

X

j�1
bjs

j D 1 � Q.sq/

Q.0/
:

Turning to the Case 2, recall that for any critical Galton-Watson process, there exists
a limit probability distribution

lim
n!1 P.Zn D jjT0 D n C 1/ D wj; j � 1;
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such that

X

j�1
wjs

j D lim
n!1

fn.sp0/� fn.0/

fn. p0/ � fn.0/
:

Since

fn.sp0/ D 1 � Œ.1 � s.1 � Œ1C c��1=� //�� C nc��1=� ;

we obtain

X

j�1
wjs

j D Œ1 � s.1 � Œ1C c��1=� /��� � 1

c
:

14.7 Embedding into Continuous Time Branching Processes

Recall that a Galton-Watson processes with generating functions fn is called
embeddable, if there is a semigroup of probability generating functions

FtCu.s/ D Ft.Fu.s//; t 2 Œ0;1/; u 2 Œ0;1/; (14.3)

such that fn.s/ D Fn.s/, n D 1; 2; : : :. Although not every Galton-Watson process
is embeddable, see Chap. III.6 in [1], in this section we demonstrate that all theta-
branching processes are embeddable.

Behind each semigroup (14.3) there is a continuous time Markov branching
process with particles having exponential life lengths with parameter, say, �. Each
particle at the moment of death is replaced by a random number of new particles
having a probability generating function

h.s/ D h0 C h2s
2 C h3s

3 C : : : :

For such a continuous time branching process .Zt/t2Œ0;1/ the probability generating
function Ft.s/ D EsZt satisfies

Z Ft.s/

s

dx

h.x/� x
D �t (14.4)

(see [6] for a recent account of continuous time Markov branching processes). Our
task for this section is for each f 2 G� to find a pair .h; �/ such that f .s/ D F1.s/.
We will denote by 
 D P1

kD2 khk the corresponding offspring mean number and by
q the minimal nonnegative root of the equation h.s/ D s which gives the extinction
probability of the continuous time branching process.



252 S. Sagitov and A. Lindo

Cases 1–3 For a pair � 2 .0; 1� and 
 2 .0; 1C ��1�, put

h.s/ D 1 � 
.1 � s/C 


1C �
.1 � s/1C� :

Taking successive derivatives of h it easy to see that it is a probability generating
function with h0.0/ D 0. Next we show that using this h as the offspring probability
generating function for the continuous time branching process we can recover f .s/
for the theta-branching processes as F1.s/ by choosing 
 and � adapted to Cases 1–
3.

Case 1. For a given pair a 2 .0; 1/ and d 2 .0;1/, put


 D .1C �/d

.1C �/d C 1
; � D Œ.1C ��1/d C ��1� ln a:

In this subcritical case, applying (14.4) we obtain for s 2 Œ0; 1/

�t D
Z Ft.s/

s

dx

.1 � 
/.1 � x/C 


1C� .1 � x/1C�
D
Z Ft.s/

s

d log 1
1�x

1 � 
C 


1C� e� log.1�x/
;

yielding the desired formula

Ft.s/ D 1 �
	

at.1 � s/�� C .at � 1/d

�1=�

:

Case 2. For a given c 2 .0;1/, put 
 D 1 and � D .1C ��1/c. Then by (14.4),
we get

Ft.s/ D 1 �
	
.1 � s/�� C ct


�1=�
:

Case 3. If
 > 1, then q D 1�. .
�1/.1C�/



/1=� and the proposed h can be rewritten
as

h.s/ D s C .1 � s/1C� � .1 � q/� .1 � s/

1C � � .1 � q/�
:

For a given pair a 2 .0; 1/ and q 2 Œ0; 1/ choosing

� D Œ.1C ��1/.1 � q/�� � ��1� ln a�1

and applying (14.4), we obtain

Ft.s/ D 1 � Œat.1 � s/�� C .1 � at/.1 � q/�� ��1=� :
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It is easy to see that f .s/ D F1.s/ covers the whole subfamily G� corresponding to
the Cases 1–3.

Notice that if � D 1, then h.s/ D 1 � 


2
C 


2
s2 generates the linear birth and

death process with h00.1/ D 
. If � 2 .0; 1/, then h00.1/ D 1.

Case 4 Consider a supercritical reproduction law with infinite mean

h.s/ D s C .1 � s/
ln.1 � s/ � ln.1 � q/

1 � ln.1 � q/
:

For h0 2 Œ0; 1/ this can be rewritten as

h.s/ D h0 C .1 � h0/
1X

kD2

sk

k.k � 1/
:

In this form with h0 D 0, the generating function h appeared in [4] as the
reproduction law of an immortal branching process. Earlier in [8], this reproduction
law was introduced as

h.s/ D 1 � .1 � h0/.1 � s/.1 � ln.1 � s//:

To see that the theta-branching process in the Case 4 is embeddable into the
Markov branching process with the above mentioned reproduction law, use the first
representation of h and apply (14.4). As a result we obtain for s ¤ q,

�t

1 � ln.1 � q/
D
Z Ft.s/

s

dx

.1 � x/.ln.1 � x/ � ln.1 � q//
D
Z Ft.s/

s

ln.1 � x/

ln.1 � q/ � ln.1 � x/

D lnŒln.1 � s/ � ln.1 � q/� � lnŒln.1 � Ft.s// � ln.1 � q/�:

Putting � D .1 � ln.1 � q// ln a�1, we derive

Ft.s/ D 1 � .1 � q/1�at
.1 � s/a

t
:

Cases 5, 7, 9. In these three cases the corresponding h and � are given by an
extension of the formulas for the Case 3:

h.s/ D sC .A � s/1C� � .A � q/� .A � s/

.1C �/A� � .A � q/�
; � D Œ.1C��1/A� .A�q/�����1� ln a�1:

Turning to Definition 14.4 we see that this h in the Case 7 is dual to the h in the
Case 3, and in the Case 9 it is dual to that of the Case 5.

Case 6. In this trivial case the corresponding continuous time branching process
is a simple death-explosion process with h.s/ D q and � D ln a�1.
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Case 8. Similarly to the Case 4 we find that the pair

h.s/ D s C .A � s/
ln.A � s/ � ln.A � q/

1C ln A � ln.A � q/
; � D .1C ln A � ln.A � q// ln a�1;

lead to

Ft.s/ D A � .A � q/1�at
.A � s/a

t
:

Observe that this h is dual to that of the Case 4.
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Chapter 15
Total Progeny of Crump-Mode-Jagers
Branching Processes: An Application
to Vaccination in Epidemic Modelling
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15.1 Introduction

In an epidemic context, the total number of infected individuals in a population is a
useful tool for public health authorities in order to determine the infection level of a
disease. Clearly, the total number of individuals that are infected is a key measure of
the impact of an epidemic on the population within which it is spreading. Further,
from an inferential viewpoint, surveillance systems typically provide more reliable
information on the total number of individuals infected than on the precise temporal
pattern of spread of an epidemic, so statistical analysis is often based on total infec-
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tion data. This chapter is concerned with the study of the total size of an outbreak
for epidemic models of diseases which follow an SIR (Susceptible–Infectious–
Recovered) scheme in a closed, homogenously mixing population or some of
its extensions, for example an SEIR (Susceptible-Exposed-Infectious-Recovered)
scheme. When the population is homogeneously mixing and the number of infected
individuals is small in relation to the total size of the susceptible population, it is
well known that the number of infected individuals in such an epidemic may be
well approximated by a single-type branching process, at least during its early stages
(see, for example, [6, Chap. 3]). This approximation has a long history going back to
the pioneering works of Bartlett [4] and Kendall [11], and can be made mathemat-
ically precise by considering a sequence of epidemics, indexed by the population
size, and showing convergence of the process of infected individuals to a branching
process as the population size tends to infinity (see, for example, [1], where such
convergence of a very general epidemic model to a Crump–Mode–Jagers (CMJ)
branching process—see [9]—is proved). Hence, we model the epidemic as a CMJ
branching process, Z D fZ.t/ W t � 0g, where Z.t/ denotes the number of infected
individuals at time t. Thus Z.0/, which we assume to be fixed, represents the number
of infected individuals at the beginning of the outbreak. Throughout the chapter, we
assume that Z is non-explosive, i.e., that P.Z.t/ < 1/ D 1 for any t 2 .0;1/.
Conditions which guarantee this property may be found in [9, Sect. 6.2].

A key tool in controlling the spread of an epidemic is vaccination and there
have been numerous mathematical studies of the effect of vaccination on disease
dynamics. The majority of such studies using stochastic models have been con-
cerned with the situation where a specified fraction of the population is vaccinated
prior to an outbreak, though see [10, Chap. 8], for examples of analysis of more
general vaccination policies in a deterministic setting. Recently, Ball et al. [3]
have developed a framework for analysing time-dependent vaccination policies for
epidemics which are modelled by a CMJ branching process. More specifically, a
vaccination process is described by a function ˛ W Œ0;1/ ! Œ0; 1�, such that ˛.t/
represents the proportion of the population which is immune at time t (t � 0).
Thus, since the population is homogeneously mixing, the probability that a contact
at time t is with a non-immune individual is 1 � ˛.t/. (Modelling an epidemic as a
CMJ branching process implies implicitly that changes in the susceptible population
owing to infection of individuals are ignored.) For perfect vaccines, i.e. ones which
confer lifelong immunity immediately with probability one, ˛.t/ is given by the
proportion of the population that has been vaccinated (i.e. the vaccination coverage)
by time t. For imperfect vaccines, the vaccination coverage is implicitly included
in the function ˛. For example, if the vaccine is all-or-nothing (i.e., it renders the
vaccinee completely immune with probability "I , otherwise it has no effect), then
˛.t/ D "I Q̨ .t/, where Q̨ .t/ is the vaccination coverage at time t. Note that ˛ is nec-
essarily nondecreasing in t if the immunity conferred by vaccination does not wane.

Given a CMJ branching process Z and a vaccination process ˛, we denote by
Z˛ D fZ˛.t/ W t � 0g the vaccinated version of Z, in which each birth in Z is
aborted independently, with probability ˛.t/ if the birth time is at time t. Note that
if a birth in Z is aborted in Z˛ , then none of the descendants in Z of the aborted
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individual appear in Z˛ . Hence, coupled realizations of Z and Z˛ may be constructed
by pruning, i.e. deleting individuals in Z and all of their descendants. In [3], such
coupling was used to prove stochastic monotonicity and continuity properties, with
respect to the vaccination process ˛, for functions defined on a CMJ branching
process, first in a general context, i.e. for generic functions, and then specialized to
the extinction time. However, these properties have not yet been explicitly obtained
for the total progeny. Thus, in this chapter we establish explicitly these properties
for the total number of infected individuals of the epidemic. To this end, we apply
the general results given in [3], since total progeny is monotonically decreasing
with pruning. In Sect. 15.2, we deduce the monotonicity and continuity properties
of the mean and quantiles of the total progeny. After that, in Sect. 15.3, we present a
simulated example, showing how to obtain in practice optimal vaccination policies
(based on the results given in the previous section) to control the spread of a disease.
The example is motivated by an outbreak of avian influenza virus in humans that
occurred in Indonesia in 2006.

We end the introduction by describing some notation that will be used in the
sequel. Let A be the space of all functions ˛ W Œ0;1/ ! Œ0; 1�. For any c 2 Œ0; 1�

and any t0 � 0, we define the function ˛t0
c 2 A by

˛t0
c .t/ D

(
0 if t < t0;

c if t � t0;

which means that a proportion c of the population is vaccinated at time t0. Thus, for
example, ˛0c denotes the constant function equal to c and ˛00 denotes the constant
function equal to 0. Moreover, let cinf D max.0; 1 � m�1/, where m is the offspring
mean for Z. Thus, if m > 1, then cinf is the critical vaccination coverage, i.e. the
minimum proportion of the population that should be vaccinated with a perfect
vaccine (at one single time) for the process to become critical, that is to assure
the epidemic will go extinct with probability one. Note that the offspring mean of
Z˛0cinf

is less than or equal to 1.
Also, for t0 � 0 and c 2 Œ0; 1�, let

A.c; t0/ D f˛ 2 A W ˛.t/ � c for all t � t0g:
Finally, for ˛; ˛0 2 A, write ˛ � ˛0 if ˛.t/ � ˛0.t/ for all t 2 Œ0;1/ and let

k˛ � ˛0k D supt2Œ0;1/ j˛.t/ � ˛0.t/j.

15.2 Monotonicity and Continuity Properties of Total
Number of Infected Individuals Depending
on Vaccination

For a given vaccination strategy, ˛ 2 A, we denote by N˛;z.1/ the total number
of births of the process Z˛ when Z.0/ D z, with z � 1, that is the total number of
infected individuals in an outbreak when the vaccination process is defined by ˛.
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This random variable is discrete, and in particular cases its probability distribution
can be derived. For example, when the proportion of immune individuals in the
population is constant with time, N˛;z.1/ follows the Borel-Tanner distribution in
some situations (see [8]). However, when a vaccination policy is time dependent, it
is not easy to obtain the probability distribution of N˛;z.1/ in a closed form.

Next we study monotonicity and continuity properties of the mean and quantiles
of the total number of infected individuals depending on the vaccination function ˛.
To this end, since individuals infect independently of each other, we have that

N˛;z.1/ D N.1/
˛;1.1/C N.2/

˛;1.1/C : : :C N.z/
˛;1.1/;

where N.i/
˛;1.1/ .i D 1; 2; : : : ; z/ are independent random variables with the same

distribution as N˛;1.1/. Hence

EŒN˛;z.1/� D z
N
˛ ;

where 
N
˛ denotes the expectation of N˛;1.1/, i.e. the mean number of infected

individuals when the outbreak starts with one infected individual and the vaccination
process is defined by ˛. Therefore, to analyze the behaviour of EŒN˛;z.1/�, for any
z, it is sufficient to study 
N

˛ . Applying Theorem 3.1 and an obvious extension of
Theorem 3.2(b) in [3], we deduce the following properties of 
N

˛ .

Theorem 15.1

(a) If ˛; ˛0 2 A satisfy ˛ � ˛0, then 
N
˛ � 
N

˛0

.
(b) Fix t0 � 0 and c 2 .cinf; 1�. Then, for each " > 0, there exists � D �."/ > 0

such that for all ˛; ˛0 2 A.c; t0/ satisfying k˛ � ˛0k � �,

j
N
˛ � 
N

˛0

j � ": (15.1)

Remark 15.1

(a) Notice that, under the conditions of Theorem 15.1, 
N
˛

t0
c
< 1. Indeed, it is easy

to obtain that, almost surely,

N
˛

t0
c
.1/ � N.t0/C

Z.t0/X

iD1
N.i/
˛0c ;1
.1/;

where N.t0/ represents the total number of new infections in .0; t0/. Therefore,


N
˛

t0
c

� EŒN.t0/�C EŒZ.t0/�
N
˛0c
:

The conditions which guarantee that the process is not explosive, imply that
EŒN.t0/� and EŒZ.t0/� are finite. Moreover, 
N

˛0c
is also finite since Z˛0c is a

subcritical process.
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(b) If Z is subcritical, so cinf D 0, then Theorem 3.2(b) in [3] implies that for each
" > 0, there exists � D �."/ > 0 such that (15.1) holds for all ˛; ˛0 2 A.

Notice that, in general, P.N˛;1.1/ � 
N
˛ / � 0:5, because of the skewness of the

distribution of the total progeny of the vaccinated CMJ branching process. Hence, if
the vaccination policy ˛ is applied, more than half of the outbreaks would have total
size less than the mean 
N

˛ , which may be sufficient protection for the population
as a whole if the infectious disease is not too harmful for individuals. On the other
hand, when the infectious disease is highly detrimental, we would like to control
with high probability the total number of infected individuals and consequently
consider vaccination policies based on quantiles of the total size distribution. Thus,
fix ˛ 2 A, and define, for 0 < p < 1,

xN
˛;p D inffx W P.N˛;z.1/ � x/ � pg;

with the convention that xN
˛;p D 1 if P.N˛;z.1/ � x/ < p for all x 2 Œ0;1/.

Thus xN
˛;p is the quantile of order p of the random variable N˛;z.1/. Since this

variable is not derived from N˛;1.1/, then the next result about the monotonicity
and continuity properties of xN

˛;p, deduced from Theorem 3.4 in [3], depends on z,
for any z > 0.

Theorem 15.2 Suppose that p 2 .0; 1/.
(a) If ˛; ˛0 2 A satisfy ˛ � ˛0, then xN

˛;p � xN
˛0;p.

(b) Fix t0 � 0 and ˛ 2 A.cinf; t0/, and let f˛ng be any sequence in A satisfying
˛ � ˛n for all n and limn!1 k˛n � ˛k D 0. Then limn!1 xN

˛n;p D xN
˛;p.

Remark 15.2

(a) Notice that Z
˛

t0
cinf

has offspring mean m until time t0, and offspring mean mcinf �
1 after time t0. Thus, since Z is non-explosive, the total progeny of Z

˛
t0
cinf

is

finite almost surely, and therefore P.N˛;z.1/ < 1/ D 1 and xN
˛;p < 1, for all

˛ 2 A.cinf; t0/ and p 2 .0; 1/.
(b) Since N˛;z.1/ is a discrete random variable for each ˛ and z, then xN

˛;p is a step
function depending on ˛.

Finally, from the above monotonicity and continuity properties of the mean and
quantiles of N˛;z.1/, and in the same way as it was described in Sect. 3.5 in [3], we
propose how to choose optimal ˛s based on the total number of infected individuals.
In particular, for fixed M, tv and p0, with M � 0, 0 � p0 � 1 and 0 � tv � p�1

0 , we
define the function ˛M;tv ;p0 , where, for s � 0,

˛M;tv ;p0 .s/ D

8
ˆ̂<

ˆ̂
:

0; if s � M

p0.s � M/; if M < s � M C tv

tvp0; if M C tv < s:

(15.2)
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This function describes the proportion of immune individuals in the population
when the vaccination process starts at time M, takes tv time units and the proportion
of individuals vaccinated per unit time is p0. In practice, M and p0 are usually known
before vaccination begins, in which case the vaccination function ˛M;tv ;p0 can be
parameterized through tv alone. Hence, for fixed M and p0, let ˛tv D ˛M;tv ;p0 and
A� D f˛tv W cinfp�1

0 � tv � p�1
0 g. Since A� is a subset of A.cinf;M C cinfp�1

0 /,
then Theorems 15.1 and 15.2 ensure that, for each b � 0 and p 2 .0; 1/, optimal
vaccination policies based on the mean and quantiles exist and are unique, provided
that f˛ 2 A� W z
N

˛tv
� bg and f˛ 2 A� W xN

˛tv ;p
� bg are non-empty. Then, we

denote by ˛tNopt;
;b
and ˛tNopt;p;b

, the corresponding optimal policies based on the mean

and quantiles, respectively, where

tN
opt;
;b D infftv W z
N

˛tv
� bg and tN

opt;p;b D infftv W xN
˛tv ;p

� bg:

Notice that these optimal policies depend on M and p0, which have been fixed
previously. Moreover, xN

˛
tNopt;p;b

;p � b, though equality is not guaranteed since

N˛
tNopt;p;b

;z.1/ is a discrete random variable. On the other hand, z
N
tNopt;
;b

D b, if

tN
opt;
;b > cinfp�1

0 .

15.3 Simulated Example

To illustrate how to obtain optimal vaccination strategies based on the mean and
quantiles of the total size of an outbreak, we present a simulation study which
has been motivated by an outbreak of avian influenza in humans that occurred in
Indonesia in 2006. The spread of this disease can be considered as an SEIR epidemic
and therefore its early spread can be approximated by a CMJ branching process. In
our simulations, we consider an offspring mean of 1.14, so the corresponding CMJ
process is supercritical and hence a vaccination strategy (or some other mitigation
measure) should be applied in order to control the outbreak. It is known (see
[15]) that for the transmission of avian influenza in humans, the latent period (the
period elapsing between infection of an individual and the beginning of his/her
infectious period) has a probable range of 3–7 days and the infectious period
has a probable range of 5–13 days. So, in our study we assume that the latent
and infectious periods are independent random variables which follow gamma
distributions with means 5 and 9, and shape parameters 23 and 19, respectively.
Hence, approximately 95 % of incubation periods are between 3 and 7 days and
approximately 95 % of infectious periods are between 5 and 13 days. Furthermore,
we assume that during the infectious period, infections occur according to a homo-
geneous Poisson process, independently of the duration of incubation and infectious
periods. Since the mean of the infectious period is 9 days and the offspring mean
is 1.14, we assume that this Poisson process has rate 1:14=9 D 0:126667. These
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kind of distributions are appropriate for latent and infectious periods, and for the
number of infections made by a typical infective (see for example [5, 7, 8] or [12]).
In [15], the spread of avian influenza in humans is modelled using a households
epidemic model (see [2]) and the local (i.e. within-household) basic reproduction
number R0 is estimated to be 1:14. For homogeneously mixing epidemic models, R0
is given by the offspring mean of the corresponding approximating CMJ branching
process (see [1]). The definition of R0 is more complicated for epidemic models
with household structure (see [13]). Moreover, it is possible for the epidemic in the
population at large to be subcritical when the local reproduction number is greater
than one, and vice versa. Thus, although our choice of 1.14 for the offspring mean
of the CMJ process used to model the early spread of the disease corresponds to the
estimate of the local reproduction number in [15], it may well not reflect the true
R0 for a homogeneously mixing model of avian influenza in humans. Finally, all the
simulations start with a single index patient.

Assuming the previous modelling and taking into account the kind of vaccination
policies defined by (15.2), we seek an optimal vaccination strategy belonging to the
set

A� D f˛M;tv ;0:01 2 A W M 2 N [ f0g; 13 � tv � 100g;

where, for s � 0,

˛M;tv ;0:01.s/ D

8
ˆ̂
<

ˆ̂
:

0; if s � M

0:01.s � M/; if M < s � M C tv

0:01tv; if M C tv < s:

We recall that M represents the number of days until the vaccination process
starts, 0.01 (1 %) determines the proportion of individuals vaccinated per day during
the vaccination process and tv indicates the duration of the vaccination process
(in days). Notice that 13 is the smallest value of tv such that the vaccinated
process becomes subcritical. On the other hand, when tv D 100, all individuals
are vaccinated during the vaccination process, minimizing the propagation of the
virus.

The left plot in Fig. 15.1 shows the behaviour of
N
˛M;100;0:01

, for M 2f0; 1; : : : ; 21g,
which has been estimated by using the Monte-Carlo simulation-method described
in Sect. 3.5 in [3]. Specifically, we have simulated 10,000 processes and from them
we have estimated 
N

˛M;tv ;0:01
, for each M 2 f0; 1; : : : ; 21g and tv 2 f13 C k W k D

0; 1; : : : ; 87g. Notice that, by Theorem 15.1(a), when M increases the mean of the
total number of infected individuals also increases. We observe that for M greater
than 11 (vertical dotted line in the plot), the mean of the total number of new infected
individuals in an outbreak started with one infected individual is greater than 7
(horizontal dotted line in the plot), the size of the outbreak detected in Indonesia (see
[15]). Hence, for each M 2 f0; 1; : : : ; 11g, the optimal duration of the vaccination
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Fig. 15.1 Left: Behaviour of estimated value of 
N

˛M;100;0:01
depending on M. Right: Behaviour of

estimated value of 
N
˛11;tv ;0:01

depending on tv

Table 15.1 Estimated optimal duration of vaccination depending on M

M 0 1 2 3 4 5 6 7 8 9 10 11

tN
opt;M;
;7 29 31 32 33 33 35 36 38 38 42 45 53

based on the mean, tN
opt;M;
;7, is given by

tN
opt;M;
;7 D infftv W 
N

˛M;tv ;0:01
� 7g:

Table 15.1 shows the estimated optimal duration of vaccination depending on the
number of days until the vaccination process starts. One can observe that these
optimal durations increase when M increases.

Now, we focus our attention on M equal to 11 (the most unfavourable situation).
The right plot in Fig. 15.1 shows the behavior of the estimates of 
N

11;tv ;0:01
, which

decrease in a continuous way when tv increases, by Theorem 15.1. We find
that the optimal duration of vaccination, again to guarantee a mean number of
infected individuals no greater than 7, is 53 days (which means that at the end of
the vaccination process, we have vaccinated 53 % of susceptible individuals), so
vaccination ceases 64 days (more than 2 months) after the start of an outbreak. The
left plot in Fig. 15.2 shows the distribution of the total number of infected individuals
in the outbreak after applying this optimal vaccination procedure. Obviously,
although the mean of this distribution is 7 (dotted line in the plot), there exists a
positive probability that more than seven individuals are infected by the virus, which
is less than 0.5, because of the skewness of the distribution. Indeed, xN

˛11;53;0:01;0:703
is

estimated by 7, that is, vaccinating 53 % of susceptible individuals guarantees that
at least 70.3 % of new outbreaks infect no more than seven individuals. Table 15.2
quantifies this probability as well as the probabilities of being no greater than other
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Fig. 15.2 Left: Histogram of simulated total number of new infected individuals for M D 11 and
tv D 53. Right: Histogram of simulated time to extinction for M D 11 and tv D 53

Table 15.2 Estimated probabilities of the total number of infected individuals, after applying
optimal vaccination policy ˛11;53;0:01

x 7 15 25 50 75 100

P.N˛11;53;0:01 .1/ � x/ 0.703 0.845 0.932 0.992 0.998 1

upper bounds. The greater that probability is, the greater will be the total number of
infected individuals. Hence, when the vaccination policy ˛11;53;0:01 is applied, more
than 90 % of new outbreaks infect no more than 25 individuals. Moreover, the right
plot in Fig. 15.2 shows the distribution of the time to extinction of outbreaks started
with one infected individual when one applies this policy. We estimate that 55.7 %
of the outbreaks become extinct before 32 days (dotted line in the plot), the observed
value for the outbreak detected in Indonesia (see [15]).

For fixed p D 0:90, a high probability, xN
˛11;tv;0:01;0:90

decreases as a step function
in tv , according to Theorem 15.2. The left plot in Fig. 15.3 shows this behavior.
Finally, notice that, although ultimately all susceptible individuals are vaccinated,
at least 10 % of new outbreaks infect more than 20 individuals, since this particular
vaccination strategy takes a time (100 days) to be completely applied (in general,
because M > 0 and p0 ¤ 1). Moreover, since tN

opt;0:90;20 is estimated by 64, we
deduce that the optimal vaccination coverage is 64 %. The same behaviour is found
for p D 0:95, where tN

opt;0:95;29 is estimated by 55, see right plot in Fig. 15.3.

Remark 15.3 For the computer simulations, we used the language and environment
for statistical computing and graphics R (“GNU S”) (see [14]).
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Chapter 16
Inference for Emerging Epidemics Among
a Community of Households

Frank Ball and Laurence Shaw
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16.1 Introduction

Branching processes play a key role in the analysis of epidemic models. In the
early stages of an epidemic with few initial infectives in a large homogeneously-
mixing population, the probability that an infectious contact is with a previously
infected individual is very small, so the process of infectives is well approximated
by a branching process. Such an approximation has a long history going back to
Bartlett [8] and Kendall [15] and leads to the celebrated threshold theorem, which
broadly states that an epidemic with few initial infectives can take off only if the
initial susceptible population size is sufficiently large (see e.g. Whittle [18]). This
theorem holds for very general homogeneously-mixing epidemic models (see Ball
and Donnelly [5]) and has important practical applications, such as in determining
the critical vaccination coverage to prevent the occurrence of a large epidemic.

The above results extend to multitype populations but they require the population
to be locally, as well as globally, large, in the sense that if the population is
partitioned into groups, for example, by age, sex and/or geographical location,
then each of the groups, and not just the total population, must be large. However,
such an assumption is clearly unrealistic for most epidemics in human populations,
since such populations contain small groups, such as households, school classes
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and workplaces, in which transmission is likely to be enhanced. Consequently,
there has been a growing interest in epidemics among structured populations. One
approach is to develop complex simulation models; these have been widely used
to inform public health policy but can be difficult to interpret owing to their com-
plexity. Another approach is to develop models which capture key departures from
homogeneous mixing but are still analytically tractable. One such class of models
is household models (e.g. Becker and Dietz [9] and Ball et al. [7]), which assume
that the population is partitioned into households, with different transmission rates
for within- and between-household infections. Household structure is clearly highly
relevant for human populations and has significant impact on disease dynamics
and the performance of vaccination strategies. Further, epidemic data on emerging
infections are often collected at a household level (e.g. Cauchemez et al. [10] and
House [13]).

In order to evaluate the efficacy of mitigation strategies for an emerging epidemic
it is necessary to have estimates of parameters governing an epidemic model. For an
emerging homogeneously-mixing epidemic, Wallinga and Lipsitch [17] provided
a simple estimate of the basic reproduction number R0 (see e.g. Heesterbeek and
Dietz [12]) based on knowledge of the early exponential growth rate r of the epi-
demic and the generation interval for the disease. (In branching process terminology,
R0 is the offspring mean, r is the Malthusian parameter and knowing the generation
interval corresponds to knowing the reproduction kernel up to a multiplicative
constant.) Fraser [11] extended this methodology to household models but his
method requires knowledge of within-household transmission parameters, which
may well be unknown for a new emerging infection. Estimation of such parameters
is not straightforward as the emerging nature of the epidemic needs to be accounted
for correctly.

In a recent paper, Ball and Shaw [6] used the asymptotic theory of CMJ
(Crump-Mode-Jagers) branching processes, developed by Nerman [16], to provide
an estimator of the within-household infection rate from data collected during
an emerging infection; specifically, it was assumed that an estimate of the early
exponential growth rate r is available from general data on an emerging epidemic
and more-detailed household-level data are available in a sample of households.
The method is easily implemented numerically only for Markov epidemics, where
the infectious period follows an exponential distribution. For such epidemics, an
alternative but equivalent approach is via the asymptotic theory of continuous-time,
multitype Markov branching processes. The purpose of this chapter is to present
that approach and also, for Markov epidemics, a new way of calculating both the
total size distribution for a single-household epidemic and the threshold parameter
R� for the household model. For ease of exposition, we present the results within
the framework of a population of equally-sized households. Extension to unequal
household sizes is straightforward, cf. Ball and Shaw [6].

The remainder of the chapter is organised as follows. The household model,
its approximation by a CMJ branching process and associated threshold parameter
R� are described in Sect. 16.2. Estimation during the early stages of an emerging
epidemic is considered in Sect. 16.3. A basic method, which ignores the emerging
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nature of an epidemic is described in Sect. 16.3.1, where numerical illustrations
show that it can lead to biased estimates. The method using a multitype Markov
branching process is given in Sect. 16.3.2, together with simulations that show that
the method is feasible for realistic population sizes. For ease of exposition, we
assume that all infected households are observed; modification to the case when only
a sample of households is observed is straightforward, provided that the sampling
does not induce bias. A modified single-household epidemic process is described in
Sect. 16.4, where it is used to determine R� and the single-household epidemic total
size distribution, and also to show that the basic method becomes approximately
unbiased as r # 0. Some brief concluding comments are given in Sect. 16.5.

16.2 Household Model and Threshold Parameter

16.2.1 Model

Consider a closed population of N .D mn/ individuals, who reside in m households
each having size n. The epidemic is initiated by a small number individuals
becoming infected at time t D 0, with the other individuals in the population
all assumed to be susceptible. The infectious periods of infectives are distributed
according to a random variable I, having an arbitrary but specified distribution. We
assume that EŒI� D 1, which, provided EŒI� < 1, involves no loss of generality as
time can be linearly rescaled accordingly. Throughout its infectious period, a given
infective makes global contacts with any given susceptible in the population at the
points of a homogeneous Poisson process having rate �G

N and, additionally, it makes
local contacts with any given susceptible in the same household at the points of a
homogeneous Poisson process having rate �L. All the Poisson processes describing
infectious contacts (whether or not either or both of the individuals involved are
the same) and the random variables describing the infectious periods are mutually
independent. A susceptible becomes an infective as soon as it is contacted by an
infective (i.e. there is no latent period). An infective recovers at the end of its
infectious period and plays no further role in the epidemic. The epidemic terminates
when there is no infective remaining in the population.

16.2.2 Threshold Parameter R�

Suppose that the number of households m is large and the initial number of
infectives is small. Then, during the early stages of an epidemic, the probability
that a global contact is with an individual in a previously infected household is
very small. Thus the initial behaviour of the epidemic can be approximated by
a CMJ branching process, describing the proliferation of infected households, in
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which all global contacts are assumed to be with individuals who reside in fully
susceptible households. This approximation can be made exact by letting m tend
to infinity, with n fixed, and using a coupling argument (Ball [4]). More precisely,
a sequence of epidemic processes, indexed by m, and the limiting CMJ branching
process can be constructed on a common probability space .˝;F ;P/ so that, if
Aext and r denote respectively the extinction set and Malthusian parameter of the
branching process, then (i) for P-almost all ! 2 Aext, the branching process and the
process of infected households in the epidemic process coincide for all sufficiently
large m; and (ii) for any c 2 .0; .2r/�1/, for P-almost all! 2 ˝nAext these processes
coincide throughout the time interval Œ0; c log m� for all sufficiently large m. Let R�
be the mean number of global contacts that emanate from a typical single-household
epidemic. Then R� is a threshold parameter for the epidemic process, in that as
m ! 1, an epidemic with few initial infectives takes off with non-zero probability
if and only if R� > 1 (Ball et al. [7]).

To determine R�, consider a single-household epidemic, with initially one
infective, labelled 0, and n � 1 susceptibles, labelled 1; 2; � � � ; n � 1, and ignore
the effect of global contacts. For i D 0; 1; � � � ; n � 1, let Ii denote the length of
individual i’s infectious period, if i were to be infected, and let �i D 1 if i is infected
by the single-household epidemic and �i D 0 otherwise. Then, as m ! 1, the
total number of global contacts that would emanate from this household, if allowed,
follows a Poisson distribution with random mean �GA, where A D Pn�1

iD0 �iIi,
whence R� D �GEŒA�. Further, by exchangeability and noting that, for each
i D 0; 1; � � � ; n � 1, �i and Ii are independent,

R� D �GEŒZ�EŒI�;

where Z D �0 C �1 C � � � ; �n�1 is the total size (i.e. total number of individuals
infected, including the initial infective) of the single-household epidemic.

Let pbasic.ij�L/ D P.Z D i/ .i D 1; 2; � � � ; n/. Then (Ball [3, Eq. (2.5)]),

jX

iD1

 
n � i

j � i

!
pbasic.ij�L/

�..n � j/�L/i
D
 

n � 1

j � 1

!

. j D 1; 2; � � � ; n/;

where �.�/ D EŒexp.��I/� .� � 0/ is the moment-generating function of I.
This triangular system of linear equations enables pbasic.ij�L/ .i D 1; 2; � � � ; n/,
and hence also EŒZ�, to be calculated. An alternative method of calculating these
quantities when I has an exponential distribution is presented in Sect. 16.4.
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16.3 Estimation in the Early Stages of an Epidemic

16.3.1 Basic Method

Suppose one wishes to estimate �L for an epidemic that is observed whist it is still in
its initial stages and is therefore still mimicking the infected households branching
process outlined above. Assuming that individuals in each of the three possible
states (susceptible, infective and recovered) are distinguishable from one another,
let ax;y be the number of households in state .x; y/, i.e. containing x susceptibles and
y infectives, at the time when the epidemic is observed. By considering only the
households in which the single-household epidemic has ceased (i.e. where x < n
and y D 0), one can attempt to estimate �L by maximising the pseudolikelihood
function

Lbasic.�Lja/ D
nY

iD1
pbasic.ij�L/

an�i;0 :

Note that Lbasic is not a true likelihood as it assumes the epidemics in distinct
households are independent. We call this method basic MPLE.

This method of estimation is simple but does not use all of the information
available since households in which infectives are still present are not used.
A similar approach using all of the information available is to use maximum
pseudolikelihood estimation but with censoring on households in which there are
still infectives remaining. For i D 1; 2; � � � ; n, let qbasic.ij�L/ D Pn

jDi pbasic. jj�L/

be the probability that the total size of a single-house epidemic is at least i and let
bi D Pi

yD1 an�i;y be the number of observed households with n � i susceptibles and
at least one infective. The total size of an epidemic in such a household is at least i, so
�L may be estimated by maximising the (right-censored) pseudolikelihood function:

Lcensor.�Lja; b/ D
nY

iD1

h
pbasic.ij�L/

an�i;0qbasic.ij�L/
bi
i
:

This method, which we call censored MPLE, assumes that if a household is in state
.x; y/, with y � 1, when the epidemic is observed then the total size of the epidemic
in that household is at least z C y, where z D n � x � y is the number of recoveries
in the household when estimation is made. An alternative method, called censored
MPLE (recoveries only), assumes instead that the total size of the epidemic in such
a household is at least z C 1.

The performance of the basic and censored MPLE methods is illustrated in
Fig. 16.1, which considers simulated epidemics, with infectious period I following
an exponential distribution with mean one and infection parameters �G D 1:21

and �L D 0:64, initiated by a single infective in a population of m D 1; 000; 000

households, each having size 4. For each simulated epidemic that took off, estimates
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Fig. 16.1 Histograms of estimates of �L (true value 0:64 shown by vertical line) from 1000
simulated epidemics that took off using the basic and censored MLE methods outlined above

of �L were made after 1000 recoveries had occurred using the three methods
described above. Any epidemic not reaching 1000 recoveries was deemed not to
have taken off. A large value of m was used to ensure that the branching process
approximation of the epidemic is still accurate when estimation is made. The chosen
values of �L and �G broadly reflect the influenza example in Fraser [11].

It is clear from Fig. 16.1 that the basic MPLE method yields a gross underes-
timate of �L. This is because estimation is based on completed single-household
epidemics and smaller single-household epidemics are more likely than larger ones
to have finished at the time when estimation is made. The censored MPLE methods
perform better but note that the recoveries-only censored method still leads to
an appreciable underestimate of �L, while the other censored method leads to an
overestimate of �L. In order to obtain a more accurate estimate of �L, we exploit
the asymptotic behaviour of the CMJ branching process which approximates the
proliferation of infected households, introduced in Sect. 16.2.2, to determine the
approximate distribution of the state of a typical single-household epidemic when
estimation is made.

16.3.2 Multitype Birth-Death Process Method

16.3.2.1 The Infected Households Branching Process as a Multitype
Birth-Death Process

Suppose that the infectious period I follows an exponential distribution with mean 1.
Recall that individuals in the above-mentioned CMJ branching process correspond
to single-household epidemics. Let the type of an individual be given by the
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state .x; y/ of its associated single-household epidemic, where x is the number of
susceptibles and y is the number of infectives in the household and note that the type
of an individual in the branching process changes whenever a susceptible becomes
infected or an infective recovers in the corresponding single-household epidemic.
Define active individual types to be those in which y � 1. The approximating
branching process can be described by a multitype birth-death (B-D) process, S,
on the active individual types. Let T D f.x; y/ W x � 0; y � 1; x C y � ng denote the
type space of S.

Consider an individual in S of type .x; y/. Such an individual has an exponentially
distributed lifetime with rate y.1 C x�L/, during which it gives birth to type-
.n � 1; 1/ individuals at rate y�G as a result of infectives making global contacts
with susceptibles in previously uninfected households. Upon death, a type-.x; y/
individual produces a type-.x � 1; y C 1/ individual with probability x�L=.x�L C 1/,
otherwise it produces a type-.x; y � 1/ individual if y � 2 or no individual if y D 1,
since the recovery of the last remaining infective in a household causes a single-
household epidemic to cease. Note that the type space T has k D n.n C 1/=2

elements. Label the types 1; 2; � � � ; k, such that for i D 1; 2; � � � ; n, a type-.n � i; 1/
individual has label i. Figure 16.2 gives a graphical representation of a single-
household epidemic as a multitype B-D process for n D 3, using such a labelling
system for individual types.

Let � D Œ�ij� be the k � k birth-rate matrix of S, with �ij being the rate at
which a type-i individual gives birth to a type-j individual, and let diag.	/ be the
k � k diagonal death-rate matrix of the process, with consecutive diagonal elements
given by 	 D .
1; 
2; � � � ; 
k/, where 
i is the rate at which a type-i individual
dies. (Thus if i corresponds to the state.x; y/, 
i D y.1 C x�L/, �ij D y�G if

Fig. 16.2 Graphical representation of a single-household epidemic as a multitype B-D process for
households of size 3, where .x; y/ denotes the household state and type labels (shown as superfixes)
for the multitype B-D process are assigned as described in Sect. 16.3.2.1. The values on the arrows
represent transition rates between household states in the epidemic and the rate at which individuals
give birth to individuals of other types in the B-D process. Note that all labelled types also give
birth to individuals labelled as type-1 at rate y�G in the full model
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j corresponds to the state .n � 1; 1/, �ij D xy�L if j corresponds to the state
.x � 1; y C 1/, �ij D y if j corresponds to the state .x; y � 1/ and �ij D 0 for
all other j.) Let r.�L; �G/ be the maximal eigenvalue of A D � � diag.	/. Then
r.�L; �G/ is the Malthusian parameter of S and hence is also the early exponential
growth rate of the households epidemic, which we assume is observable. Let
v.�L; �G/ D .v1.�L; �G/; v2.�L; �G/; � � � ; vk.�L; �G// be the left-eigenvector of A
associated with r.�L; �G/, normalised such that

Pk
iD1 vi.�L; �G/ D 1.

For t > 0, let Y.t/ D .Y1.t/;Y2.t/; � � � ;Yk.t// denote the number of individuals of
each type from T alive at time t in S. It follows from Athreya and Ney [2], page 206,
that

e�r.�L;�G/tY.t/
a:s:��! Wv.�G; �L/ as t ! 1; (16.1)

where
a:s:��! denotes almost sure convergence and W � 0 is a random variable such

that W D 0 if and only if S becomes extinct. The normalised eigenvector v.�G; �L/

therefore gives the proportions of individuals of each type in S as t ! 1 when S
does not go extinct.

16.3.2.2 Estimating 
L

The vector v.�L; �G/ gives the proportions of each individual type in S still
remaining but it does not give explicit information concerning single-household
epidemics that have ceased before the epidemic is observed. For i D 1; 2; � � � ; n;
let QZi.t/ be the number of single-household epidemics that terminate before time t
with a total of i recoveries and define Zi.t/ similarly for the birth-death process S.
Note that any such household would have been in state .n� i; 1/ immediately before
the household epidemic ceased and hence would have finished as a type-i individual
in S. Hence, recalling that the recovery rate of infectives is 1, for large t

Zi.t/ �
Z t

0

Yi.u/du �
Z t

0

Wvi.�L; �G/er.�L;�G/udu D Wvi.�L; �G/

r.�L; �G/
.er.�L;�G/t � 1/:

Moreover, see e.g. Jagers [14], we have that

e�r.�L;�G/tZi.t/
a:s:��! W

vi.�L; �G/

r.�G; �L/
as t ! 1: (16.2)

Let v.x;y/.�L; �G/ D vi.�L; �G/, where i is the label of a type-.x; y/ individual in
S. For 0 � x < n; y � 0; x C y � n, define the function pmulti.x; yj�L; �G/ by

pmulti.x; yj�L; �G/ D
(

K.�L; �G/v.x;y/.�L; �G/ if y � 1;

K.�L; �G/
v.x;1/.�L;�G/

r.�G;�L/
if y D 0;

(16.3)
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where K.�L; �G/ is chosen such that
Pn�1

xD0
Pn�x

yD0 pmulti.x; yj�L; �G/ D 1. Noting
that only households that have been infected at some stage appear in S, (16.1)
and (16.2) show that the function pmulti gives the asymptotic (i.e. as t ! 1)
proportion of households in all possible single-household epidemic states assuming
the overall epidemic mimics the CMJ branching process. Assume that the early
exponential growth rate r of the epidemic is observed. In practice r is estimated and
there will be error in the estimation but we ignore that for the present method. Note
that for fixed �L, the growth rate r.�L; �G/ is a strictly increasing function of �G, so
if r is known, �L determines �G and we may write �G D �G.�L; r/. Recall that ax;y

is the number of households in state .x; y/ at the time the households epidemic is
observed. Then it follows from (16.3) that �L can be estimated by maximising the
pseudolikelihood function:

Lfull.�Lja; r/ D
n�1Y

xD0

n�xY

yD0
pmulti.x; yj�L; �G.�L; r//

ax;y :

Suppose that, as in the basic MPLE method, estimation is based only on
completed single-household epidemics. Then �L may be estimated by maximising
the pseudolikelihood function:

Lfinal.�Lja; r/ D
nY

iD1
pfinal.ij�L; �G.�L; r//

an�i;0 ;

where, writing vi for vi.�L; �G.�L; r// and using (16.3) with y D 0,

pfinal.ij�L; �G.�L; r// D vi

v1 C v2 C � � � C vn
.i D 1; 2; � � � ; n/: (16.4)

The estimator based on Lfull assumes that the exact state of a household is
observable but this may not be realised in practice. For example, it may not be
possible to distinguish between susceptibles and infectives with only recoveries
being observed. For i D 1; 2; � � � ; n, let Ai D f.x; y/ W x; y � 0; x C y D n � ig be
the set of household states in which there have been precisely i recoveries and let
ci D Pn�i

xD0 ax;n�i�x be the observed number of households with i recoveries. Then

qmulti.ij�L; �G/ D
X

.x;y/2Ai

pmulti.x; yj�L; �G/ .i D 1; 2; � � � ; n/

is the distribution of the ci in S as t ! 1. Thus, under the above assumptions, �L

may be estimated by maximising the pseudolikelihood function:

Lrec.�Ljc; r/ D
nY

iD1
qmulti.ij�L; �G.�L; r//

ci :
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The asymptotic behaviour of the above estimators (derived using the asymptotic
stable composition of the CMJ process) as the number of households m ! 1 is
investigated in Ball and Shaw [6]. For m D 1; 2; � � � , let tm denote the time when
estimation is made for the epidemic amongst a population of m households. Suppose
that (i) tm ! 1 as m ! 1 and (ii) tm � c log m for all sufficiently large m, for
some c < .2r/�1. The first condition ensures that, in the limit as m ! 1, the stable
composition of the CMJ branching process holds when estimation is made and the
second condition ensures that the coupling of the CMJ branching process and the
epidemic process still holds at that time. Recall that Aext denotes the extinction set
of the CMJ branching process. Suppose that a strongly consistent estimator of the
growth rate r is available. Then, for P-almost all ! 2 ˝ n Aext, the above estimators
converge to the true value of �L.

The above estimators are easily modified to allow for the rate of the exponential
distribution describing the infectious period to be unknown and also estimated
from the observed data. Further an exponentially distributed latent period can be
included in the model. In principle, phase-type distributions (see e.g. Asmussen [1,
Chap. III, Sect. 6]), can be used to permit more flexible modelling of infectious
and latent periods but the state space of the corresponding multitype B-D process
quickly becomes large. See Ball and Shaw [6] for further details of these, and other,
extensions using the CMJ approach.

In practice, populations are finite and hence the multitype B-D process approx-
imation of an epidemic eventually breaks down. Let T 0 D f.x; y/ W x � 0; y �
0; x C y < ng denote the type space of all active and formerly active individuals
in S. For .x; y/ 2 T 0, let Qax;y D ax;y=a be the proportion of contacted households
in state .x; y/ at the time of observation, where a D P

.x;y/2T 0

ax;y. The TV (total
variation) distance between the observed epidemic and the limiting distribution of
its approximating CMJ branching process is given by

D.a; �L; �G/ D
X

.x;y/2T 0

jQax;y � pmulti.x; yj�L; �G/j=2:

Figure 16.3 shows how D.a; �L; �G/ changes as epidemics progress. Specifically
epidemics with parameters �G D 1:21; �L D 0:64 and a unit-mean exponen-
tial infectious period in a population of 21,000 individuals were simulated for
populations partitioned into equally-sized households of 2; 4; 6 and 8 for the
left-hand plot, and populations of 5000, 10,000, 20,000 households of size 4
and a CMJ branching process made up of households of size 4 (representing an
infinite population) for the right-hand plot. Each graph is based on 1000 simulated
epidemics that took off. During a simulation, the distance D.a; �L; �G/was recorded
at regular timepoints based on the number of recovered individuals observed and
the mean TV distance at each timepoint over the 1000 simulations provided the data
points for the plots. Note that for a population of 21,000 individuals, D.a; �L; �G/

is minimised after approximately 500 recoveries have occurred regardless of the
household size used. Before this point the epidemics have not had long enough
in general to settle into behaviour resembling the asymptotic behaviour of the
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Fig. 16.3 Mean TV distances between the observed and asymptotic distribution of household
states as the number of recovered individuals observed increases. See main text for further details

CMJ branching process, whilst, after this point, global infectious contacts with
susceptibles in previously infected households begin to make the CMJ branching
process approximation break down. It is also worth noting the general pattern of
D.a; �L; �G/ increasing as household size increases. Initially this can be attributed
to the smaller state space in epidemics with smaller households reducing the number
of elements in the sum used to calculate D.a; �L; �G/ and allowing the epidemic
to settle into its approximate CMJ branching process behaviour more quickly. As
epidemics progress, the greater number of households in epidemics with smaller-
sized households also means that global infectious contacts with susceptibles in
previously infected households occur less frequently, so D.a; �L; �G/ remains small
for longer in populations split into smaller sized households. The right-hand plot
shows that as population size increases, the number of recoveries needed before the
CMJ branching process approximation begins to break down also increases. For an
infinite population, the mean TV distance converges towards zero as the number of
recoveries increases, as predicted by theory; the mean TV distance drops quickly to
about 0:05 but thereafter convergence is quite slow.

Figure 16.4 shows kernel density estimates of the distribution of the estimators
of �L using the multitype B-D methods after 500 recoveries have occurred. The
top panels use the same simulated epidemics that produced the size-2 and size-8
graphs in the left panel of Fig. 16.3, i.e. in a population of N=21,000 individuals.
The bottom panels use corresponding simulations for populations with N D 84; 000

individuals. First note that all three methods give estimates that are broadly centred
around the true value of �L, with the full pseudolikelihood method yielding the
estimator with the lowest variance since it uses the most information. When
N D 21; 000, there is a general overestimate owing to households being contacted
globally more than once, but this disappears when N D 84; 000. It is interesting
to note however, that the full and recovery pseudolikelihood methods seem to be
more accurate for populations split into larger household sizes, contrary to what
might be expected from Fig. 16.3. This can be explained by noting that small
adjustments in �L have a greater impact as household size increases, so larger
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values of D.a; �L; �G/ do not necessarily result in wildly inaccurate estimates of
�L if the TV distance D.a; �L; �G/ is still relatively small. The exception to this
rule is the completed households pseudolikelihood method, based on Lfinal, which
appears to lose far too much information by relying on completed single-household
epidemics only when household size increases to 8 and may also suffer from a lack
of completed single-household epidemics when only 500 recoveries have occurred
in a population split into large households.

16.4 Modified Single-Household Epidemic

In this section, still assuming that the infectious period I follows a unit-mean expo-
nential distribution, we describe a modification of the single-household epidemic
model, which we use to (i) give new derivations of both R� and the total size
distribution pbasic.ij�L/ .i D 1; 2; � � � ; n � 1/, and (ii) prove that, if �L is held fixed,
then, for i D 1; 2; � � � ; n, qmulti.ij�L; �G/ ! pbasic.ij�L/ as r # 0.

The basic idea of the modified process is that whenever the single-household
epidemic process terminates, it enters the graveyard state, where it remains for a
time that is exponentially distributed with mean one before returning to the initial
state of n � 1 susceptibles and 1 infective. The modified process is a positive
recurrent continuous-time Markov chain and the properties referred to above all
follow easily from its stationary distribution.
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16.4.1 Derivation of Total Size Distribution and R�

The state space of the modified process is QT D T [ G, where G is the graveyard
state and, as previously, T D f.x; y/ W x � 0; y � 1; x C y � ng. Give the states in
T the labels 1; 2; � � � ; k, precisely as in Sect. 16.3.2.1, and give the graveyard state
G the label k C 1. Partition QT D E [ B [ C [ G, where E D f1g (the initial state
.n � 1; 1/ of the single-household epidemic), B D f2; 3; � � � ; ng (the other states
with exactly 1 infective), C D fn C 1; n C 2; � � � ; kg (the states with � 2 infectives)
and G D fk C 1g (the graveyard state). Let fW.t/g D fW.t/ W t � 0g denote the
modified process, using this labelling of states. Let Q D Œqij� be the transition-rate
matrix of the continuous-time Markov chain fW.t/g. Thus Q is the .k C1/� .k C1/

matrix with off-diagonal elements qij giving the transition rate of fW.t/g from state
i to state j and diagonal elements qii D �Pj¤i qij. Partition Q into

Q D

2

66
4

qEE 0 qEC qEG

0 QBB QBC qBG

0 QCB QCC 0

qGE 0 0 qGG

3

77
5 ;

where, for example, the .n � 1/� .n � 1/matrix QBB corresponds to transitions that
remain within B (note that QBB is diagonal since transitions between distinct states
in B are not possible) and the .n �1/� .k �n/matrix QBC corresponds to transitions
from B to C. (Throughout the chapter, 0 denotes a (column or row) vector of zeros
and 1 denotes a column vector of ones, the dimensions of which are apparent from
their context.)

Let � D .�1; �2; � � � ; �kC1/ denote the stationary distribution of fW.t/g, so � is
determined by

�Q D 0 and �1 D 1:

Partition � D .�E;�B;�C; �G/ in the obvious fashion.
The total size distribution pbasic.ij�L/ .i D 1; 2; � � � ; n � 1/ can be obtained from

� as follows. When fW.t/g leaves the graveyard state k C 1 it always goes to state
1. Thus, for i D 1; 2; � � � ; n, pbasic.ij�L/ is given by the equilibrium probability
that when fW.t/g enters G it does so from state i. Further, since qi;kC1 D 1 for
i D 1; 2; � � � ; n, it follows that this equilibrium probability is proportional to the
equilibrium probability that fW.t/g is in state i. Hence,

pbasic.ij�L/ D c�i .i D 1; 2; � � � ; n/; (16.5)

where c D 1=.�1 C �2 C � � � C �n/.
Turning to the threshold parameter R�, suppose that fW.t/g is in equilibrium and

let �G be the Markov-modulated Poisson process describing global contacts, whose
rate at time t is �GyW.t/, where yi is the number of infectives in the state having label
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i (i D 1; 2; � � � ; k) and ykC1 D 0. (Thus if .x; y/ 2 T has label i then yi D y.) Then
�G has intensity given by

�G .�EyE C �ByB C �CyC/ ;

where, for example, yB D .yj W j 2 B/> D .y2; y3; � � � ; yn/
>, with > denoting

transpose. Let �E be the point process describing the times when fW.t/g enters state
1. The intensity of �E is �kC1qkC1;1 D �G, since qkC1;1 D 1, so the mean time
between two successive entries of fW.t/g to state 1 is ��1

G . Now R� is the mean
number of points of �G between two successive entries of fW.t/g to state 1, so

R� D ��1
G �G .�EyE C �ByB C �CyC/ : (16.6)

16.4.2 Critical Epidemics, i.e. r D 0

The matrix A D � � diag.	/, see Sect. 16.3.2.1, is given in partitioned form by

A D
2

4
�GyE C qEE 0 qEC

�GyB QBB QBC

�GyC QCB QCC

3

5 :

Recall that v.�L; �G/ is the left-eigenvector of A associated with the eigenvalue
r.�L; �G/, normalised so that v.�L; �G/1 D 1. For ease of notation, write v for
v.�L; �G/ and r for r.�L; �G/.

Lemma 16.1 When r D 0, the corresponding left-eigenvector v of A is given by

v D .�E;�B;�C/=.�E C �B1 C �C1/:

Proof Expanding �Q D 0 in partitioned form yields

.�E;�B;�C/

2

4
0 qEC

QBB QBC

QCB QCC

3

5 D 0 and �EqEE C �GqGE D 0: (16.7)

Suppose that v D .�E;�B;�C/ and r D 0. Then, using the first equation in (16.7),
vA D 0 if and only if

�EqEE C �G.�EyE C �ByB C �CyC/ D 0: (16.8)

The second equation in (16.7) implies that �EqEE D ��G (recall that qGE D 1).
Also, R� D 1 when r D 0, so (16.6) gives �G D �G.�EyE C �ByB C �CyC/.
Thus (16.8) is satisfied and vA D 0, as required. ut
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Note that (16.4), (16.5) and Lemma 16.1 imply that, for i D 1; 2; � � � ; n,

pfinal.ij�L; �G.�L; r// ! pbasic.ij�L/ as r # 0;

so the basic method yields an approximately unbiased estimator if r is small.

16.5 Concluding Comments

When fitting household and other models to data on an emerging epidemic, the
data collected need to be modelled very carefully taking due account of the
emerging nature of the epidemic. We have demonstrated that the asymptotic theory
of continuous-time, multitype Markov branching processes provides a feasible
approach to modelling such data for Markov epidemics. The stable composition of
supercritical branching processes provides, in principle, a more flexible approach,
as it is not restricted to Markov models, but its implementation for non-Markov
models is generally difficult and an area for future research. Other important areas
for further research include developing approximate confidence intervals for the
estimates and extending the methodology to (i) multitype epidemics (for example,
to age-stratified populations with age-specific transmission rates), (ii) allow for
asymptomatic cases and (iii) incorporate information on temporal progression of
disease within households.
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Chapter 17
Extinction Probability of Some Recessive Alleles
of X-Linked Genes in the Context of Two-Sex
Branching Processes

Miguel González, Cristina Gutiérrez, Rodrigo Martínez, and Manuel Mota

Mathematics Subject Classification (2000): 60J80, 60J85

17.1 Introduction

It is well-known that the responsible of the sex-determination in humans and
some animal populations are a pair of chromosomes, X and Y. Females carry
XX chromosomes, while males have XY chromosomes. Certain characteristics or
diseases are due to genes linked to X chromosome, to Y chromosome or to both
sexual chromosomes. If a gene has a pair of alleles R and r, females and males of
various genotypes and/or phenotypes appear in the population. For example, a gene
linked to Y chromosome is only associated to males and two genotypes are possible
depending on allele (R or r) the male carries. Recently, some models describing the
evolution of the two genotypes defined by a Y-linked gene have been investigated
(see for example [1, 5–10]).

If the gene is linked to X chromosome, females and males of various genotypes
and/or phenotypes appear in the population. Specifically, we can find three geno-
types for females:

XRXR; XRXr; XrXrI
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and two genotypes for males

XRY; XrY:

Notice that, as usual in Genetics, genotype XRXr also represents the combination
XrXR.

If the allele R is dominant and the allele r is recessive two phenotypes are possible
for both, females and males: R phenotype (RR and Rr females and R males) and r
phenotype (rr females and r males). A general model to describe the evolution of
the number of carriers of the genotypes and phenotypes defined by the alleles of an
X-linked gene becomes very complex from a theoretical point of view.

An interesting situation occurs when one of the alleles is responsible for a serious
disorder or for a severe disease. If the dominant allele (R) is defective, all the carriers
are affected and most of them do not reach breeding age so it is rarely detected due to
its rapid elimination from populations. However, if the pernicious allele is recessive
(r), individuals with r phenotype do not last in the population, but heterozygous
carrier females are able to live and reproduce. They do not phenotypically express
the genetic condition but can pass r allele onto offspring. As example of such genes
one can find the responsible for hemophilia, Duchenne muscular dystrophy or other
genetic diseases (see [4] and references therein).

In this work we propose a branching model to describe the evolution of the
number of carriers of such recessive pernicious alleles in a population. Since the
r phenotype individuals, affected by a serious disorder, are hardly selected as mates,
it seems realistic to consider that only R phenotype individuals participate in the
mating phase. Therefore, in the proposed model two types of couples can be formed,
according to the genotype of the female: RR � R couples (homozygous female) and
Rr � R couples (heterozygous females), which will be referred as the genotypes of
the couples. Notice that as consequence of this assumption, rr females are not taken
into account in the model whereas r males are considered among the offspring of an
Rr � R couple but without participation in the subsequent mating.

We provide the definition of the model in Sect. 17.2. In Sect. 17.3, we study
the moments of the underlying random variables of the model and provide a
classification of states of the defined process. Section 17.4 is devoted to study
the fate of the recessive allele in the population, showing its extinction-explosion
dichotomy and providing conditions under which it eventually disappears. After
that, we investigate the fixation of the dominant allele in Sect. 17.5. In Sect. 17.6
we study the long term coexistence of both alleles in the population through
some conjectures that have been checked via simulation. The proofs of these
conjectures are open problems that can be viewed as a possible way to continue
the investigations. Finally, the proofs of the statements are relegated to Sect. 17.7
for a better reading of the chapter.
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17.2 The Model

In this section we provide the formal definition of the model. Previously, we give the
intuitive meaning of the different mathematical objects involved in the definition.

Mathematically, the model we introduce is a multitype two-sex branching model.
Thus, the modeling of such populations includes two phases: the reproduction and
the mating. Let us formulate the assumptions we make in relation to both phases,
providing also their intuitive interpretation.

17.2.1 Working Hypotheses: Reproduction

As pointed out above, we consider only two types of couples: RR � R and Rr � R
couples. At time of the reproduction we suppose that the total offspring of an
RR � R couple is a random variable on the non-negative integers with probability
distribution fpR

k gk�0. Analogously the total offspring of an Rr � R couple has
probability distribution fpr

kgk�0. These distributions are called reproduction laws
of the RR � R and Rr � R couples, respectively, and we denote by mR and mr their
respective means. We assume that the variances of these distributions are both finite.

With respect to the sex and the genotype of an offspring, in an RR � R couple the
female transmits an XR chromosome with probability 1. If we assume that a male
gives his XR chromosome with probability ˛ (0 < ˛ < 1) and his Y chromosome
with probability 1�˛, then an RR�R couple offspring is RR female with probability
˛ and R male with probability 1 � ˛.

In an Rr � R couple, this issue becomes a bit more complex. While the behaviour
assumed for the males is the same as described above, now an Rr female is supposed
to give her XR chromosome with probability ˇ (0 < ˇ < 1) and her Xr chromosome
with probability 1�ˇ. Hence, an offspring of an Rr�R couple is an RR female with
probability ˛ˇ, an Rr female with probability ˛.1 � ˇ/, an R male with probability
.1 � ˛/ˇ and an r male with probability .1 � ˛/.1 � ˇ/.

17.2.2 Working Hypotheses: Mating

We assume that every individual mates with only one individual of the opposite sex,
providing there is some of these individuals without a mate, i.e. a perfect fidelity
scheme (see e.g. [3]). Also, as pointed out above, we suppose rr females are not
taken into account and r males do not mate, i.e. RR and Rr females mate only with
R males. According this scheme, if the number of R males exceeds that of females,
the number of RR � R and Rr � R couples is, respectively, the same as the number
of RR and Rr females. On the other hand, if there are less R males than females, all
these males mate. Since the defective allele does not appear in the phenotype of Rr
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females, the R males make a blind choice of their mates, which is modeled through
the Hypergeometric distribution.

17.2.3 Mathematical Definition of the Model

In order to provide a formal definition of a model with such working hypotheses,
let us consider the following independent sequences of independent and identically
distributed, non-negative and integer valued random vectors:

f.FRR;RR�R
nl ;MR;RR�R

nl / W l D 1; 2; : : : I n D 0; 1; : : : g and

f.FRR;Rr�R
nl ;FRr;Rr�R

nl ;MR;Rr�R
nl ;Mr;Rr�R

nl / W l D 1; 2; : : : I n D 0; 1; : : : g:

• .FRR;RR�R
nl ;MR;RR�R

nl / represents the number of RR females and R males generated
by the lth RR � R couple of the nth generation.

• .FRR;Rr�R
nl ;FRr;Rr�R

nl ;MR;Rr�R
nl ;Mr;Rr�R

nl / represents the number of RR females, Rr
females, R males and r males generated by the lth Rr � R couple of the nth
generation.

The common distribution of the random variables FRR;RR�R
nl C MR;RR�R

nl (resp.
FRR;Rr�R

nl C FRr;Rr�R
nl C MR;Rr�R

nl C Mr;Rr�R
nl ) is fpR

k gk�0 (resp. fpr
kgk�0).

Moreover, the joint probability distribution of .FRR;RR�R
nl ;MR;RR�R

nl / given that
FRR;RR�R

nl C MR;RR�R
nl D k is multinomial with parameters k, ˛, 1 � ˛. Analogously,

the joint probability distribution of the vector .FRR;Rr�R
nl ;FRr;Rr�R

nl ;MR;Rr�R
nl ;Mr;Rr�R

nl /

given that the sum of its components is equal to k is multinomial with parameters k,
˛ˇ, ˛.1 � ˇ/, .1 � ˛/ˇ, .1 � ˛/.1 � ˇ/.

In what follows, for every n � 0, ZRR�R
n and ZRr�R

n denote the total number of
RR�R and Rr �R couples, respectively, at generation n. Also, FRR

n , FRr
n , MR

n and Mr
n

denote the numbers of RR females, Rr females, R males and r males, respectively,
at generation n.

We define the X-linked two-sex branching process, f.FRR
n ;FRr

n ;M
R
n ;M

r
n/gn�1,

and the associated sequence of mating units f.ZRR�R
n ;ZRr�R

n /gn�0, recursively as
follows:

• If, at generation n, there are ZRR�R
n couples of type RR � R and ZRr�R

n couples of
type Rr � R, then:

– The total offspring of the RR � R couples is

.FRR;RR�R
nC1 ;MR;RR�R

nC1 / D
ZRR�R

nX

lD1
.FRR;RR�R

nl ;MR;RR�R
nl /:
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– The total offspring of the Rr � R couples is

.FRR;Rr�R
nC1 ;FRr;Rr�R

nC1 ;MR;Rr�R
nC1 ;Mr;Rr�R

nC1 / D
ZRr�R

nX

lD1
.FRR;Rr�R

nl ;FRr;Rr�R
nl ;MR;Rr�R

nl ;Mr;Rr�R
nl /:

The number of RR females, Rr females, R males and r males at generation n C 1

is, respectively:

FRR
nC1 D FRR;RR�R

nC1 C FRR;Rr�R
nC1 ; FRr

nC1 D FRr;Rr�R
nC1 ;

MR
nC1 D MR;RR�R

nC1 C MR;Rr�R
nC1 ; Mr

nC1 D Mr;Rr�R
nC1 ;

and therefore, the total number of females and males in the .n C 1/st generation
is, respectively:

FnC1 D FRR
nC1 C FRr

nC1; MnC1 D MR
nC1 C Mr

nC1:

• Since monogamous mating is assumed and r males do not participate in the
mating phase, the number of couples formed by FnC1 females and MR

nC1 males
at generation n C 1 is

ZnC1 D ZRR�R
nC1 C ZRr�R

nC1 D minfFnC1;MR
nC1g:

Furthermore, if FnC1 � MR
nC1, i.e. there are less females than R males, then all

the females mate and therefore the number of couples of each genotype is equal
to the number of females of that genotype:

ZRR�R
nC1 D FRR

nC1; ZRr�R
nC1 D FRr

nC1:

Finally, if FnC1 > MR
nC1, i.e. there are more females than R males, then all these

males mate, and consequently they must choose blindly the genotype of their
mates. This blind choice is modeled through the Hypergeometric distribution:

ZRR�R
nC1 j.FRR

nC1;FRr
nC1;MR

nC1;Mr
nC1/ � Hypergeometric.MR

nC1;FnC1;FRR
nC1/;

ZRr�R
nC1 D MR

nC1 � ZRR�R
nC1 :
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17.3 Basic Properties of the Model

In this section, we study first some properties of the conditional moments of the
variables of the model. Some of these properties are used to prove asymptotic results
related to the extinction/survival of one of the alleles or of the population.

The following results can be deduced as an immediate consequence of the
definition of the model.

Proposition 17.1 The following equalities hold almost surely (a.s.):

(i) EŒ.ZRR�R
n ;ZRr�R

n /j.FRR
n ;FRr

n ;M
R
n ;M

r
n/� D .FRR

n ;FRr
n /min

˚
1;F�1

n MR
n

�
:

(ii) EŒFRR
nC1j.ZRR�R

n ;ZRr�R
n /� D ZRR�R

n ˛mR C ZRr�R
n ˛ˇmr:

(iii) EŒFRr
nC1j.ZRR�R

n ;ZRr�R
n /� D ZRr�R

n ˛.1 � ˇ/mr:

(iv) EŒMR
nC1j.ZRR�R

n ;ZRr�R
n /� D ZRR�R

n .1 � ˛/mR C ZRr�R
n .1 � ˛/ˇmr:

(v) EŒMr
nC1j.ZRR�R

n ;ZRr�R
n /� D ZRr�R

n .1 � ˛/.1 � ˇ/mr:

From the definition it is easily deduced that f.FRR
n ;FRr

n ;M
R
n ;M

r
n/gn�1 and

f.ZRR�R
n ;ZRr�R

n /gn�0, are homogeneous Markov chains. Our next objective is to
establish some properties involving the states of f.ZRR�R

n ;ZRr�R
n /gn�0 and whose

proof (which is omitted) is obtained by taking into account the multinomial scheme
of the reproduction laws and applying a standard procedure.

Proposition 17.2

(i) .0; 0/ is an absorbing state.
(ii) Every non-null state .i; j/ ¤ .0; 0/ is transient.

(iii) If pR
0 C pR

1 C pR
2 C pR

3 < 1 and pr
0 C pr

1 C pr
2 C pr

3 < 1, then the sets f.i; j/; i �
0; j > 0g and f.i; 0/; i > 0g are classes of communicating states and each state
leads to the state .0; 0/. Furthermore, the states belonging to the first set may
move to the other in one step.

Remark 17.1 From Proposition 17.2, it seems clear that the behaviour of the r allele
in the population is not the same as the behaviour of the R allele. In fact, it is
immediate to see that if in a generation there are no Rr�R couples in the population,
then r allele disappears from the population, that is

fZRr�R
n0

D 0g 
 fZRr�R
n0Cn D 0g; for every n > 0:

In this scenario, fixation of R allele occurs. In fact, the process fZRR�R
n0Cn gn�0 is

a Bisexual Galton-Watson Branching Process (BBP) with perfect fidelity mating
function and reproduction law fpR

k gk�0 (see [3]).
On the contrary, RR females and R males can be produced by RR � R and Rr � R

couples, so the R allele only disappears if the population becomes extinct.

According to previous remark, in our subsequent investigation it seems logical
to deal first with the recessive allele, r, and then to study the dominant allele, R.
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Henceforth, to simplify the notation, we denote P.�jZRR�R
0 D i;ZRr�R

0 D j/ by
P.i;j/.�/. Even .i; j/ is dropped from this notation if there is no ambiguity.

17.4 The Fate of the Recessive Allele in the Population

In this section we focus on studying the behaviour of the number of carriers of the
r allele. This study is made through the process fZRr�R

n gn�0, since FRr
k D 0 and

Mr
k D 0, for all k > n if ZRr�R

n D 0. Although that process is not a homogeneous
Markov chain, we establish in the following result that it shows the dual asymptotic
extinction-explosion behaviour, typical of many homogeneous branching processes:
the total number of couples of that genotype either goes to zero or undergoes
unlimited growth. Intuitively, this duality must be interpreted as the extinction or
persistence of the recessive allele.

According to this interpretation, the event fZRr�R
n ! 0g is called extinction of the

r allele, and the event fZRr�R
n ! 1g is called survival of the r allele.

Theorem 17.1 It is true that P.ZRr�R
n ! 0/C P.ZRr�R

n ! 1/ D 1:

In the following result, we show conditions for the event extinction of the r allele
to occur with probability one. These conditions are given in terms of the parameters
˛.1� ˇ/mr and .1� ˛/.1� ˇ/mr. Intuitively, they correspond to the mean number
of females and males, respectively, with r allele generated by an Rr � R-couple.

Theorem 17.2 Let i � 0; j > 0. Then P.i;j/.ZRr�R
n ! 0/ D 1 if at least one of the

following conditions is verified:

(i) ˛.1 � ˇ/mr � 1,
(ii) .1 � ˛/.1 � ˇ/mr < 1.

Remark 17.2 The case .1 � ˛/.1 � ˇ/mr D 1 is not considered explicitly in
Theorem 17.2. However, if ˛ � 0:5 and .1�˛/.1�ˇ/mr D 1, then ˛.1�ˇ/mr � 1,
and Theorem 17.2 (i) guarantees the extinction of the r allele. Therefore, it is the
case ˛ > 0:5 and .1 � ˛/.1 � ˇ/mr D 1 which is not covered by the result.

17.5 Fixation of the Dominant Allele in the Population

In this section we investigate the evolution of the number of carriers of the R allele
in the population when the r allele becomes extinct. Notice that R allele is present
in RR and Rr females, and R males, that are produced by both, RR � R and Rr � R
couples. If r allele is extinct only RR � R couples can produce individuals, so that
the fixation R allele (that is, its survival) depends only on this type of couples. This
implies that the study of the fixation of the dominant allele can be developed through
the process fZRR�R

n gn�0.
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However, as was pointed out in Remark 17.1, on the event fZRr�R
n ! 0g, the

process fZRR�R
n gn�0 evolves as a BBP with perfect fidelity mating and reproduction

law fpR
k gk�0, at least from one generation on (possibly different for each path).

Therefore, this process also presents the dual extinction-explosion behaviour on the
event extinction of the r allele, and the following result is established:

Theorem 17.3 It is verified that, almost surely,

fZRr�R
n ! 0g D fZRr�R

n ! 0;ZRR�R
n ! 1g [ fZRr�R

n ! 0;ZRR�R
n ! 0g:

Next we focus on each one of the events presented in the above result. To this
end, we use the term fixation of R allele for the set fZRr�R

n ! 0;ZRR�R
n ! 1g,

and extinction of the population for the set fZRr�R
n ! 0;ZRR�R

n ! 0g. We study
conditions for the first to occur with positive probability and for the second to have
a probability of one or less than one.

As was noted above, in this case the R allele behaves, from some generation on,
as a BBP with perfect fidelity mating. Hence, the theory developed in [3] can be
applied here, and one then immediately deduces the following result:

Theorem 17.4 Let i � 0; j > 0. Then P.i;j/.ZRr�R
n ! 0;ZRR�R

n ! 1/ > 0 if and
only if minf˛mR; .1 � ˛/mRg > 1:

Intuitively, this result states that a necessary and sufficient condition for the R
allele to have a positive probability of fixation is that both the female and the male
offspring per RR � R couple are on average greater than one, independently of the
values that take the parameters of the reproduction law of Rr � R couples. This is
due to the fact that the event fZRr�R

n ! 0g always has positive probability.
According to the definition of extinction of the population, this event, mathemat-

ically expressed as fZRr�R
n ! 0;ZRR�R

n ! 0g, occurs if from some generation on
there are no couples of any type. Now, we investigate under which conditions this
event occurs with probability one or less than one.

From Theorem 17.2 we deduce that if the average number of Rr females is less
than or equal to one or the mean number of r males stemming from an Rr�R couple
is less than one, then the r allele becomes extinct, so the extinction of the population
is equivalent to the extinction of RR � R couples. If it is also satisfied that the mean
number of females and males stemming from an RR � R couple is less than or equal
to one, Theorem 17.4 ensures that fixation of the R allele is impossible and from
Theorem 17.3 one deduces that the population becomes extinct almost surely.

There exists, however, a positive probability of survival of the population when
the mean numbers of females and males generated by an RR � R couple are greater
than one (see Theorem 17.4). Summarizing, we establish the following result:

Corollary 17.1 Let i � 0; j > 0. It is verified that

(i) If ˛.1 � ˇ/mr � 1 or .1 � ˛/.1 � ˇ/mr < 1 and minf˛mR; .1 � ˛/mRg � 1

then P.i;j/.ZRr�R
n ! 0;ZRR�R

n ! 0/ D 1:

(ii) If minf˛mR; .1 � ˛/mRg > 1 then P.i;j/.ZRr�R
n ! 0;ZRR�R

n ! 0/ < 1.
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17.6 Coexistence of Both Alleles in the Population

In this section we deal with the problem of finding conditions that guarantee
a positive probability of coexistence of both alleles in the population. Taking
into account Theorem 17.1, we understand by coexistence the event fZRR�R

n 6!
0;ZRr�R

n ! 1g. Since only Rr�R couples produce individuals carrying both alleles,
coexistence is equivalent to the event fZRr�R

n ! 1g. Considering the results of
Sect. 17.4 we assume that minf˛.1�ˇ/mr; .1� ˛/.1�ˇ/mrg > 1. In this scenario
we provide some conjectures that have been derived from reasonings based on
expected values and long term behaviour of the sequences involved in the X-linked
two-sex branching process and their validity have been checked computationally,
through simulated examples. In our discussion we differentiate the cases ˛ � 0:5

and ˛ < 0:5, though some results seem to hold in both situations.

17.6.1 Case ˛ � 0:5

If ˛ � 0:5, the couples produce on average less males than females, which
eventually should balance the population towards females. In consequence, one
could expect that MR

n � Fn for n large. Therefore, the number of couples of
each type would be determined by hypergeometric distribution which, jointly
with the conditioned moments calculated in Proposition 17.1, gives the following
approximations for large n:

ZRR�R
nC1 ' .FRR;RR�R

nC1 C FRR;Rr�R
nC1 /

MR
nC1

FnC1
' .˛mRZRR�R

n C ˛ˇmrZ
Rr�R
n /

MR
nC1

FnC1
;

(17.1)

ZRr�R
nC1 ' FRr;Rr�R

nC1
MR

nC1
FnC1

' ˛.1 � ˇ/mrZ
Rr�R
n

MR
nC1

FnC1
: (17.2)

Provided ZRr�R
nC1 ¤ 0, we can calculate the ratio between (17.1) and (17.2):

ZRR�R
nC1

ZRr�R
nC1

' mR

.1 � ˇ/mr

ZRR�R
n

ZRr�R
n

C ˇ

1 � ˇ : (17.3)

Taking limits as n tends to infinity on both sides of this expression, we can derive
our first conjecture:

Conjecture 17.1 On fZRr�R
n ! 1g, the sequence fZRR�R

n =ZRr�R
n g1

nD0 converges
almost surely to a constant � . Moreover, � D ..1�ˇ/mr �mR/

�1ˇmr if .1�ˇ/mr >

mR and � D 1 if .1 � ˇ/mr � mR.
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Intuitively, we claim that the growth of the numbers of RR � R couples is, at least,
of the same order as the number of Rr � R couples. Hence, as pointed out above, the
persistence of the r allele in the population is equivalent to the coexistence, and also
fZRr�R

n ! 1g D fZRR�R
n ! 1;ZRr�R

n ! 1g.
Using this conjecture, we can also find out the rates of growth of the sequences

fZRR�R
n g1

nD0 and fZRr�R
n g1

nD0, and therefore establish conditions under which coex-
istence holds. In fact, if we take again into account Proposition 17.1, it seems
reasonable to assume that

MR
nC1

FnC1
' 1 � ˛

˛

ˇmrZRr�R
n C mRZRR�R

n

mrZRr�R
n C mRZRR�R

n

: (17.4)

In the case .1 � ˇ/mr > mR, fZRR�R
n g1

nD0 and fZRr�R
n g1

nD0 have the same rate of
growth and the parameter � < 1 indicates the (odds) ratio between the numbers of
RR�R and Rr�R couples in the long term. Consequently, taking into account (17.2)
and (17.4), it should happen that

ZRr�R
nC1 ' �ZRr�R

n with � D
�
ˇmr C �mR

mr C �mR

�
.1 � ˛/.1 � ˇ/mr:

In the case .1 � ˇ/mr < mR, both sequences grow geometrically with dif-
ferent rates of growth and, in particular, fZRr�R

n g1
nD0 is negligible with respect to

fZRR�R
n g1

nD0, so the quotient in the right-hand side of (17.4) converges to .1 � ˛/=˛

and therefore, from (17.1) and (17.2) we can derive that

ZRR�R
nC1 ' .1 � ˛/mRZRR�R

n C .1 � ˛/ˇmrZ
Rr�R
n

and

ZRr�R
nC1 ' .1 � ˛/.1 � ˇ/mrZ

Rr�R
n :

Special attention deserves the case .1 � ˇ/mr D mR, where from (17.3) one
deduces that the quotient between the rates of growth of both sequences is of a
linear order, that is

ZRR�R
nC1 ' .n C 1/

ˇ

1� ˇ
ZRr�R

nC1 ;

so the rates of growth that one could expect for fZRr�R
n g1

nD0 and fZRR�R
n g1

nD0 are
..1 � ˛/.1 � ˇ/mr/

n and n..1 � ˛/.1 � ˇ/mr/
n�1, respectively.

The following conjecture summarizes the previous reasoning:

Conjecture 17.2 Assume ˛ � 0:5 and minf˛.1 � ˇ/mr; .1 � ˛/.1 � ˇ/mrg > 1,
and let i � 0, j > 0.
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(i) If .1 � ˇ/mr > mR, then P.i;j/.ZRR�R
n ! 1;ZRr�R

n ! 1/ > 0 if and only if
� > 1. Moreover, if � > 1, fZRR�R

n g1
nD0 and fZRr�R

n g1
nD0 grow at a rate of �n.

(ii) If .1 � ˇ/mr < mR, then P.i;j/.ZRR�R
n ! 1;ZRr�R

n ! 1/ > 0. Moreover,
fZRR�R

n g1
nD0 grows at a rate of ..1 � ˛/mR/

n and fZRr�R
n g1

nD0 grows at a rate of
..1 � ˛/.1 � ˇ/mr/

n.
(iii) If .1 � ˇ/mr D mR, then P.i;j/.ZRR�R

n ! 1;ZRr�R
n ! 1/ > 0. Moreover,

fZRr�R
n g1

nD0 grows at a rate of ..1 � ˛/.1 � ˇ/mr/
n and fZRR�R

n g1
nD0 grows at a

rate of n..1 � ˛/.1 � ˇ/mr/
n�1.

Remark 17.3 Notice that, according Conjecture 17.2(i), if � � 1 and .1 � ˇ/mr >

mR, then coexistence has null probability or equivalently P.ZRr�R
n ! 0/ D 1,

despite minf˛.1�ˇ/mr; .1�˛/.1�ˇ/mrg > 1. Moreover, applying Theorem 17.4,
either extinction or fixation of R allele occurs depending on whether minf˛mR; .1�
˛/mRg D .1 � ˛/mR � 1 or > 1. In the last case, the rate of growth of fZRR�R

n g1
nD0

is ..1 � ˛/mR/
n.

Next we show a simulated example that illustrate Conjecture 17.2(iii). We have
simulated an X-linked two-sex branching process with ˛ D 0:5, ˇ D 0:7, mr D 8

and, consequently, mR D .1 � ˇ/mr D 2:4 so Conjecture 17.1(i) is satisfied with
� D 1. Moreover, .1 � ˛/.1 � ˇ/mr D 1:2, greater than 1, so in fact we are under
the hypotheses of Conjecture 17.2(iii) and a positive probability of coexistence is
predicted.

We have simulated 80 generations of an X-linked two-sex branching process,
starting with ZRR�R

0 D 0 and ZRr�R
0 D 5 and taking as reproduction laws

for RR � R and Rr � R couples Poisson distributions with the means mR and
mr, respectively, as indicated above. In Fig. 17.1 left it is shown that the ratio
ZRR�R

n =.nZRr�R
n / approaches to ˇ=.1 � ˇ/ D 2:33 as n tends to 1. The middle

and right graphs are plots of flog.ZRR�R
n /g1

nD0 and flog.ZRr�R
n /g1

nD0, respectively.
Whereas the first sequence seems to grow parallel to the graph of the function
log.n/ C .n � 1/ log..1 � ˛/.1 � ˇ/mr/, the second one follows a line with slope
log..1�˛/.1�ˇ/mr/, which shows a growth of the number of RR �R couples with
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Fig. 17.1 Realizations of ZRR�R
n =.nZRr�R

n / (left plot), and log.ZRR�R
n / (middle plot) and

log.ZRr�R
n / (right plot) in a process, where both type of mating units have survived until generation
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a rate of n..1 � ˛/.1 � ˇ/mr/
n�1, slightly faster than the growth of the number of

Rr � R couples which is determined by ..1 � ˛/.1 � ˇ/mr/
n.

17.6.2 Case ˛ < 0:5

If ˛ < 0:5, the population balances eventually towards males, but since r males
do not participate in the mating, then we have to investigate when the number of R
males exceeds that of females in the long term.

Notice first that if the number of R males was eventually greater than the number
of females, Conjecture 17.1 seems to be still valid. Indeed, since the number of
couples would be determined by the number of females, with a reasoning similar to
that of previous subsection, we get for n large enough,

ZRR�R
nC1 ' FRR;RR�R

nC1 C FRR;Rr�R
nC1 ' ˛mRZRR�R

n C ˛ˇmrZ
Rr�R
n ; (17.5)

ZRr�R
nC1 ' FRr;Rr�R

nC1 ' ˛.1 � ˇ/mrZ
Rr�R
n ; (17.6)

and the quotient between these expressions leads again to (17.3), from which we
derive Conjecture 17.1.

So the key to find out the rates of growth of fZRR�R
n g1

nD0 and fZRr�R
n g1

nD0, and
therefore the coexistence of both genotypes is the balance between sexes jointly
with Conjecture 17.1. According to this conjecture, if .1� ˇ/mr � mR, fZRr�R

n g1
nD0

would be negligible with respect to fZRR�R
n g1

nD0 and the production of offspring
by Rr � R couples would not be relevant to establish the balance between sexes.
Moreover, since ˛ < 0:5 and RR � R couples only produce R males, the average
production of R males per couple exceeds that of females, which eventually would
cause a greater R number of males than females.

Therefore, in the case .1�ˇ/mr < mR, (17.5) and (17.6) can be used to derive that
the rates of growth of fZRR�R

n g1
nD0 and fZRr�R

n g1
nD0 are .˛mR/

n and .˛.1 � ˇ/mr/
n,

respectively. In the case .1 � ˇ/mr D mR, using the same arguments as for ˛ �
0:5, the rates of growth that one could expect for fZRr�R

n g1
nD0 and fZRR�R

n g1
nD0 are

.˛.1 � ˇ/mr/
n and n.˛.1 � ˇ/mr/

n�1, respectively.
A more complex situation seems to be .1 � ˇ/mr > mR, because in the long

term it is possible both, that the number of R males exceed that of females and
that the number of females exceed that of R males. Since .1 � ˇ/mr > mR,
by Conjecture 17.1, ZRR�R

n ' �ZRr�R
n with � finite and therefore, taking into

account (17.4), it seems reasonable to guess that Fn � MR
n if and only if

˛mR � C ˛mr � .1 � ˛/mR � C .1 � ˛/ˇmr;

or equivalently

.2˛ � 1/mR � C ˛mr � .1 � ˛/ˇmr: (17.7)
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Notice that, since ˛ < 0:5, 2˛ � 1 < 0 so (17.7) is a weaker condition than ˛mr �
.1 � ˛/ˇmr in order to guarantee that R males exceeds females in the long term.

Therefore, if (17.7) holds, we can use expressions (17.5) and (17.6) which, jointly
with Conjecture 17.1, lead us to guess that fZRR�R

n g1
nD0 and fZRr�R

n g1
nD0 have the

same rate of growth, which is .˛.1 � ˇ/mr/
n.

Finally, if (17.7) does not hold, then the number of females exceeds in the long
term that of R males and the behaviour of fZRR�R

n g1
nD0 and fZRr�R

n g1
nD0 should be

analogous to the case ˛ � 0:5, specifically the same as in Conjecture 17.2(i), with a
rate of growth of �n for both sequences.

We summarize all these guesses in the following conjecture

Conjecture 17.3 Assume ˛ < 0:5 and minf˛.1 � ˇ/mr; .1 � ˛/.1 � ˇ/mrg > 1,
and let i � 0, j > 0.

(i) If .1 � ˇ/mr > mR, then

a. If .2˛�1/�mRC˛mr � .1�˛/ˇmr then P.i;j/.ZRR�R
n ! 1;ZRr�R

n ! 1/ >

0. Moreover fZRR�R
n g1

nD0 and fZRr�R
n g1

nD0 grow at a rate of .˛.1 � ˇ/mr/
n.

b. If .2˛ � 1/�mR C ˛mr > .1 � ˛/ˇmr , then
P.i;j/.ZRR�R

n ! 1;ZRr�R
n ! 1/ > 0 if and only if � > 1.

Moreover, if � > 1, fZRR�R
n g1

nD0 and fZRr�R
n g1

nD0 grow at a rate of �n.

(ii) If .1 � ˇ/mr < mR, then P.i;j/.ZRR�R
n ! 1;ZRr�R

n ! 1/ > 0. Moreover,
fZRR�R

n g1
nD0 grows at a rate of .˛mR/

n and fZRr�R
n g1

nD0 grows at a rate of .˛.1�
ˇ/mr/

n.
(iii) If .1 � ˇ/mr D mR, then P.i;j/.ZRR�R

n ! 1;ZRr�R
n ! 1/ > 0. Moreover,

fZRr�R
n g1

nD0 grows at a rate of .˛.1�ˇ/mr/
n and fZRR�R

n g1
nD0 grows at a rate of

n.˛.1 � ˇ/mr/
n�1.

Notice that, according to Conjecture 17.3(i)b, if � � 1, .1�ˇ/mr > mR and .2˛�
1/�mR C˛mr > .1�˛/ˇmr , then the situation is analogous to that of Remark 17.3.
Now, in case of fixation of R allele, the rate of growth of fZRR�R

n g1
nD0 is .˛mR/

n.
Next we show a simulated example that illustrate Conjecture 17.3(i)b. Specif-

ically we have simulated an X-linked two-sex branching process with ˛ D 0:4

(biased sex ratios are not unusual, see for example [2]) , ˇ D 0:6, mR D 0:75

and mr D 8. With these values for the parameters we have that ˛.1 � ˇ/mr D
1:28, greater than 1. Also, 0:75 D mR < .1 � ˇ/mr D 3:2, so the conditions
of Conjecture 17.1(i) are satisfied with � D 1:96. Moreover 2:906 D .2˛ �
1/�mR C ˛mr > .1 � ˛/ˇmr D 2:88, so in fact we are under the hypotheses of
Conjecture 17.3(i)b with � D 1:271, greater than 1, so a positive probability of
coexistence is predicted.

We have simulated 50 generations of an X-linked two-sex branching process,
starting with ZRR�R

0 D 0 and ZRr�R
0 D 5 and taking as reproduction laws for RR � R

and Rr � R couples Poisson distributions with the means mR and mr, respectively,
as indicated above. In Fig. 17.2 left it is shown that the ratio between the number
of couples of both types approaches to � . The middle and right graphs are plots of
flog.ZRR�R

n /g1
nD0 and flog.ZRr�R

n /g1
nD0, respectively. Both sequences seem to grow
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Fig. 17.2 Realizations of ZRR�R
n =ZRr�R

n (left plot), and log.ZRR�R
n / (middle plot) and log.ZRr�R

n /

(right plot) in a process, where both type of mating units have survived until generation 50

following a line (dotted line) with slope log.�/, which shows the geometric growth
in the number of couples of both types, with a common growth rate defined by � .

Remark 17.4 For the computer simulations, we used the language and environment
for statistical computing and graphics R (“GNU S”) (see [11]).

17.7 Proofs

We first provide a necessary basic notation to prove the results. We start by denoting
as TRR�R

nC1 and TRr�R
nC1 the total number of individuals in generation n C 1 generated,

respectively, by the RR � R and Rr � R couples, n � 0:

TRR�R
nC1 D

ZRR�R
nX

iD1
.FRR;RR�R

ni C MR;RR�R
ni / and

TRr�R
nC1 D

ZRr�R
nX

iD1
.FRR;Rr�R

ni C FRr;Rr�R
ni C MR;Rr�R

ni C Mr;Rr�R
ni /:

We can deduce from the expressions above that the total number of individuals in
the .n C 1/th generation is

TnC1 D TRR�R
nC1 C TRr�R

nC1 D FnC1 C MnC1; n � 0:

It is easy to prove that the distributions of FnC1 and MnC1 given TnC1 are binomials
with parameters .TnC1; ˛/ and .TnC1; 1 � ˛/, respectively.

We denote by fR.s/ and fr.s/ the probability generating functions of the RR � R
and Rr � R couple reproduction laws, respectively. Recall that those reproduction
laws have finite means and variances.
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Finally, we introduce the �-algebras G0 D �.ZRR�R
0 ;ZRr�R

0 /,

Gn D �.ZRR�R
0 ;ZRr�R

0 ;FRR
k ;FRr

k ;M
R
k ;M

r
k;Z

RR�R
k ;ZRr�R

k ; k D 1; : : : ; n/; n � 1;

and Fn D �.Gn�1;FRR
n ;FRr

n ;M
R
n ;M

r
n/; n � 1: For any i; j � 0, recall that we write

P.i;j/.�/ for P.�jZRR�R
0 D i;ZRr�R

0 D j/, and now we introduce the notation E.i;j/Œ�� D
EŒ�jZRR�R

0 D i;ZRr�R
0 D j�.

17.7.1 Proof of Theorem 17.1

In order to prove that P.ZRr�R
n ! 0/ C P.ZRr�R

n ! 1/ D 1, we prove that the
probability of the complementary set is equal to 0. For that, it is enough to prove
that for all i0 � 1 and i; j � 0

P.i;j/.Z
Rr�R
n D i0; i.o./ D 0;

where i.o. stands for infinitely often. Taking a D P.FRr;Rr�R
01 D 0/, since 0 < ˛; ˇ <

1, and taking into account the multinomial scheme assumed in the reproduction of
the Rr � R couples, then a D fr.˛ˇC .1�˛// is positive and constant. We conclude
analogously to the proof of Theorem 3.1 in [5] that

P.i;j/.Z
Rr�R
n D i0; i.o./ D lim

m!1 P.i;j/.Z
Rr�R
n D i0 for at least m values of n > 0/

� lim
m!1.1 � ai/.1 � ai0/m�1 D 0:

17.7.2 Proof of Theorem 17.2

By Theorem 17.1, it is enough to prove that P.i;j/.ZRr�R
n ! 1/ D 0.

(i) Assume ˛.1�ˇ/mr � 1. From the definition of the model, ZRr�R
n � FRr

n for all
n � 1, and consequently, by using Proposition 17.1(iii) we obtain

EŒZRr�R
n jGn�1� � EŒFRr

n jGn�1� D ˛.1 � ˇ/mrZ
Rr�R
n�1 � ZRr�R

n�1 a.s.;

and one concludes that fZRr�R
n gn�0 is a non-negative supermartingale, and so

converges to a finite limit. Hence P.i;j/.ZRr�R
n ! 1/ D 0:

(ii) Assume 0 < .1�˛/.1�ˇ/mr < 1 and ˛ > 0:5 [otherwise the result is deduced
from (i)].
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For each N > 0 and for some positive constant A, we define the sequences of sets
Bk D fZRr�R

NCk � Ag, k � 0, and the stopping time

TN D
� 1 if infk�N ZRr�R

k > A
minfk � N W ZRr�R

k � Ag otherwise

such that Bk 
 fTN � N C kg:
Consider also the sequence of �-algebras {Gngn�0 as defined above. If we prove

that, for all k � 1,

EŒZRr�R
NCk jGNCk�1� � ZRr�R

NCk�1 a.s. on fZRr�R
NCk�1 > Ag; (17.8)

applying the Lemma 3 in [6], we obtain that fZRr�R
TN ^.NCk/gk�0 is a non-negative

supermartingale, with TN ^ .N Ck/ D minfTN ;N Ckg, and consequently converges
to a non-negative and finite limit. But, for every N, on the set f inf

k�N
ZRr�R

k > Ag,

ZRr�R
TN ^.NCk/ D ZRr�R

NCk a.s. for all k � 0, so the sequence on right-hand side also
converges to a non-negative and finite limit, hence

P.i;j/.fZRr�R
NCk ! 1g \ f inf

k�N
ZRr�R

k > Ag/ D 0;

and this would conclude the proof.
In order to prove (17.8), we simplify the notation and write n D N C k. Taking

into account that Gn�1 
 Fn; n � 1 and applying Proposition 17.1 (i), we have a.s.

EŒZRr�R
n jGn�1� D EŒEŒZRr�R

n jFn�jGn�1�

D EŒFRr
n IfFn�MR

n gjGn�1�C E



MR

n

Fn
FRr

n IfFn>MR
n gjGn�1

�
: (17.9)

Let us bound properly each of these summands.
For the first summand of (17.9), since we are assuming that Mn given Tn is

distributed according to a binomial scheme, we can apply a Chernoff type of
inequality, and have, for all n and l > 0,

P.Fn � MnjTn D l/ D P.Mn � l=2jTn D l/ � .2
p
˛.1 � ˛//l D al;

with a D 2
p
˛.1 � ˛/ < 1 as ˛ > 0:5. Then, due to the mutual independence of

the RR � R and Rr � R reproduction laws and that MR
n � Mn, n � 1,

P.Fn � MR
n jGn�1/ � P.Fn � MnjGn�1/

D EŒP.Fn � MnjTn/jGn�1�

� EŒaTn jGn�1� D EŒaTRR�R
n jGn�1�EŒaTRr�R

n jGn�1�

D fR.a/
ZRR�R

n�1 fr.a/
ZRr�R

n�1 � fr.a/
ZRr�R

n�1 a.s. (17.10)
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Therefore, applying (17.10), the Cauchy-Schwartz inequality, and taking into
account that the variances are assumed finite,

EŒFRr
n IfFn�MR

n gjGn�1� � EŒ.FRr
n /

2jGn�1�1=2P.Fn � MR
n jGn�1/1=2

� ZRr�R
n�1 fr.a/

ZRr�R
n�1 =2 a.s.; (17.11)

for some positive constant K1.
To bound the second summand of (17.9), given " > 0, define �1 D .1 � ˛/.1 �
ˇ/.mr C "/, and B" D 1 C 2"=m, where m D minfmR;mrg � " if mR ¤ 0 or
m D mr � " otherwise. We take " small enough such that 0 < �1B" < 1, m > 0,
mR � " > 0 (if mR ¤ 0) and ˇmr � " > 0.

For each n � 1, define the sets

AF;n D fjFn � .˛mRZRR�R
n�1 C ˛mrZ

Rr�R
n�1 /j � ˛"Zn�1g;

AMR ;n D fjMR
n � ..1 � ˛/mRZRR�R

n�1 C .1 � ˛/ˇmrZRr�R
n�1 /j � .1 � ˛/"Zn�1g;

AFRr ;n D fjFRr
n � ˛.1 � ˇ/mrZ

Rr�R
n�1 j � ˛.1 � ˇ/"ZRr�R

n�1 g:

Since there is no ambiguity, from now on n is dropped from the notation of these
sets. Define also D D AF \ AMR \ AFRr . With this notation we write

E



MR

n

Fn
FRr

n IfFn>MR
n gjGn�1

�

D E



MR

n

Fn
FRr

n IfFn>MR
n gIDc jGn�1

�
C E



MR

n

Fn
FRr

n IfFn>MR
n gIDjGn�1

�
a.s. (17.12)

Since the reproduction laws are assumed to have finite variances, an immediate
application of Proposition 17.1 and Chebyshev’s inequality gives

P.Ac
FjGn�1/ � C1

Zn�1
� C1

ZRr�R
n�1

a.s.; P.Ac
MR jGn�1/ � C2

Zn�1
� C2

ZRr�R
n�1

a.s.

and

P.Ac
FRr jGn�1/ � C3

ZRr�R
n�1

a.s.;

for certain positive constants C1, C2, and C3. Therefore, for some positive constant
C4,

P.DcjGn�1/ � C4
ZRr�R

n�1
a.s. (17.13)
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Now, applying (17.13) and the Cauchy-Schwartz inequality,

E



MR

n

Fn
FRr

n IfFn>MR
n gIDc jGn�1

�
� EŒFRr

n IDc jGn�1�

� EŒ.FRr
n /

2jGn�1�1=2P.DcjGn�1/1=2 (17.14)

� K2Z
Rr�R
n�1 .C5ZRr�R

n�1 /�1=2 D K3.Z
Rr�R
n�1 /1=2 a.s.;

for some positive constants K2, C5, and K3. Finally, on D, if mR ¤ 0,

E



MR

n

Fn
FRr

n I
fFn>MR

n g

IDjGn�1

�

� ˛.1� ˇ/.mr C "/ZRr�R
n�1

.1� ˛/..mR C "/ZRR�R
n�1 C .ˇmr C "/ZRr�R

n�1 /

˛..mR � "/ZRR�R
n�1 C .mr � "/ZRr�R

n�1 /
(17.15)

� .1� ˛/.1� ˇ/.mr C "/ZRr�R
n�1

.mR � "/ZRR�R
n�1 C 2"ZRR�R

n�1 C .mr � "/ZRr�R
n�1 C 2"ZRr�R

n�1

.mR � "/ZRR�R
n�1 C .mr � "/ZRr�R

n�1

� �1Z
Rr�R
n�1

�
1C 2"

m

�
D �1B"Z

Rr�R
n�1 a.s.;

with m D minfmR;mrg � ". And, if mR D 0,

E



MR

n

Fn
FRr

n IfFn>MR
n gIDjGn�1

�
� ˛.1 � ˇ/.mr C "/ZRr�R

n�1
.1 � ˛/.ˇmr C "/ZRr�R

n�1
˛.mr � "/ZRr�R

n�1

� �1Z
Rr�R
n�1

�
1C 2"

m

�
D �1B"Z

Rr�R
n�1 a.s.; (17.16)

with m D mr � ". In any case,

E



MR

n

Fn
FRr

n IfFn>MR
n gIDjGn�1

�
� �1B"Z

Rr�R
n�1 a.s. (17.17)

Summarizing, from (17.11), (17.12), (17.15) and (17.17), we deduce that

EŒZRr�R
n jGn�1� � .K1fr.a/

ZRr�R
n�1 =2 C K3.Z

Rr�R
n�1 /�1=2 C �1B"/Z

Rr�R
n�1 a.s.

Recall we have taken " such that �1B" < 1. Hence, since fr.a/ < 1, we can take
A > 0 large enough such that, for ZRr�R

n�1 > A,

K1fr.a/
ZRr�R

n�1 =2 < 1 � �1B"

and consequently the term in parentheses is less than 1. For this value of A, (17.8)
holds, and therefore the result is proved.
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Chapter 18
Two-Sex Branching Processes with Several
Mating and Reproduction Strategies: Extinction
Versus Survival

Manuel Molina, Manuel Mota, and Alfonso Ramos

Mathematics Subject Classification (2000): 60J80

18.1 Introduction

In the general context of stochastic modeling, the branching process theory provides
appropriate mathematical models to describe the probabilistic evolution of biologi-
cal populations whose sizes vary over time, due to random births and deaths, see for
details the monographs [3] or [5].

We focus here our interest on the development of stochastic processes to describe
the demographic dynamics of biological populations with sexual reproduction.
This research line was initiated by Daley [1] who introduced the bisexual Galton-
Watson branching process. By considering such a process as mathematical model
and assuming some specific mating strategies, he established conditions for the
extinction/survival of the population.

Taking Daley’s process as starting point, some population-size dependent two-
sex branching processes have been investigated in the literature [6–8] or [10]. These
processes describe populations where several mating and reproduction strategies
are feasible and, in each generation, one of them is implemented. The choice of the
mating and/or reproduction strategy is assumed to depend on the number of couples
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female-male in the population. However, it seems more realistic that mating and
reproduction (or both) are affected by the numbers of females and males in the
population. This novelty has been considered in a recent work by Molina et al.
[9] where a female-male population-size dependent two-sex branching process has
been introduced and, from a Bayesian outlook, some inferential problems have been
investigated.

The motivation behind this work is to continue the research about that new two-
sex branching process from a more theoretical point of view. Specifically, the main
results of the paper are related to the possible extinction/survival of populations
modeled by such a process. Previously, we provide a detailed description of the
probabilistic model.

18.2 The Model

Let us consider populations with sexual reproduction, i.e. individuals must form
couples female-male before reproduction. Several strategies for the mating are
feasible, depending on the current numbers of females and males. One of them
is implemented in each generation. Once formed the couples, there are several
reproduction strategies to produce new descendants. The choice of the reproduction
strategy depends also on the current numbers of females and males. Assume also
that in this reproduction phase the couples act independently of the others and, inside
a generation, all of them adopt the same strategy.

Denote by Nm and Nr the positive integers representing the numbers of mating
and reproduction strategies, respectively. We model mathematically the demo-
graphic dynamics of such biological populations as follows:

1. Let Ll; l D 1; : : : ;Nm, be functions, defined on N
2 and taking values in N, where

N denotes the set of non-negative integers. The role of Ll is to determine the
number of couples female-male formed in the population when the lth mating
strategy is considered. Each function Ll is assumed to be non-decreasing and
such that, Ll. f ; 0/ D Ll.0;m/ D 0, f ;m 2 N (if there are either no females or no
males in the population then it is not possible to form couples). These functions
will be referred as to mating functions.

2. Let f ph
k;jg.k;j/2N2 , h D 1; : : : ;Nr , be offspring probability distributions, ph

k;j
representing the probability that a couple produces k females and j males
when the hth reproduction strategy is considered. We denote by 	h and ˙h,
respectively, the mean vector and the covariance matrix of the hth offspring
probability distribution.

3. Let  and ' be functions defined on N
2 and taking values in the sets f1; : : : ;Nmg

and f1; : : : ;Nrg respectively. Their role is to determine, according to the numbers
of females and males in the population, the mating function and the offspring
probability distribution to be considered in the mating and reproduction phases,
respectively. In fact, if there are f females and m males in the population then
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Ll and f ph
k;jg.k;j/2N2 , where l D  . f ;m/ and h D '. f ;m/, are the corresponding

mating function and offspring probability distribution to be considered.
4. Let us define the two-sex branching process fXng1

nD0, where Xn D .Fn;Mn/ is
the random vector representing the numbers of females (Fn) and males (Mn) at
time (generation) n, in the form:

Assume that in a given generation n, the total number of females and males in
the population is given by Xn D .Fn;Mn/. Then, the mating strategy considered is
the strategy number ln WD  .Xn/. Consequently, Zn WD Lln.Xn/ couples are formed.
All these couples adopt the reproduction strategy number hn WD '.Xn/. Each of
them produces, independently of the others, a random number of females and males,
according to the offspring probability distribution f phn

k;jg.k;j/2N2 and then disappears.
As consequence, the vector representing the numbers of females and males in the
.n C 1/st generation, namely XnC1 D .FnC1;MnC1/, is determined as

XnC1 WD
ZnX

iD1

	
f hn
n;i ;m

hn
n;i



;

where . f hn
n;i ;m

hn
n;i/ are independent and identically distributed random variables such

that

P. f hn
n;1 D k;mhn

n;1 D j/ D phn
k;j; .k; j/ 2 N

2:

Initially, we assume f0 females and m0 males in the population, i.e. X0 D . f0;m0/ 2
N
2C, where NC denotes the positive integers.
It can be easily verified that fXng1

nD0 is a homogeneous Markov chain with state
space on N

2. In fact, if xn; xnC1 2 N
2, l D  .xn/ and h D '.xn/, then

P.XnC1 D xnC1jXn D xn/ D P

0

@
Ll.xn/X

iD1
. f h

n;i;m
h
n;i/ D xnC1

1

A D
	

Ph
xnC1


�Ll.xn/

with .Ph
x/

�j, j 2 N, x 2 N
2, representing the conventional convolution notation

concerning the offspring probability distribution f ph
k;jg.k;j/2N2 .

Remark 18.1 In addition to its theoretical interest, the two-sex branching process
described above has also practical implications. Really, it is appropriate to model
the probabilistic evolution of animal species characterized by a single reproductive
episode before death (semelparous species). For the particular case when only one
strategy is considered in the respective mating and reproduction phases, namely
Nr D Nm D 1, it is reduced to the bisexual Galton-Watson branching process
introduced in [1].

In the sequel, we shall study several theoretical questions about the two-sex
branching process described in Sect. 18.2. Specifically, Sect. 18.3 is devoted to
establish some basic properties about the underlying probabilistic model. Then,
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in Sect. 18.4, we include the main results of the work concerning the possible
extinction/survival of the population. To this end, we deal with the sequence
fg.Xn/g1

nD0 where g.�/ has the functional form

g. f ;m/ D a1f C a2m; a1 � 0; a2 � 0; a1 C a2 > 0; . f ;m/ 2 N
2: (18.1)

Some particular cases of biological interest are g. f ;m/ D f , g. f ;m/ D m,
or g. f ;m/ D f C m, corresponding to the numbers of females, males, or total
individuals, respectively.

18.3 Basic Properties

In this section we provide three results about the two-sex branching process
introduced. First, we determine the first and second order conditional moments of
the process. Then, in a second result, we establish its Markovian properties. Finally,
we use this last result to derive some conditions which guarantee the classical duality
extinction-explosion property in branching process theory.

Proposition 18.1 Let us consider the process fXng1
nD0. Let x 2 N

2, l D  .x/,
h D '.x/, and g.�/ as in (18.1). Then

(i) EŒXnC1jXn D x� D Ll.x/
h.
(ii) VarŒXnC1jXn D x� D Ll.x/˙h.

(iii) EŒg.XnC1/jXn D x� D Ll.x/g.
h/.
(iv) VarŒg.XnC1/jXn D x� D Ll.x/a˙ha0, with a D .a1; a2/ and a0 being the

transpose vector of a.

Proof It is derived from some straightforward calculations.

Definition 18.1 For x D . f ;m/ 2 N
2C, l D  .x/, h D '.x/, and g.�/ as in (18.1),

we define the rate

mg.x/ WD 1

g.x/
EŒg.XnC1/jXn D x� D Ll.x/g.
h/

g.x/
:

Remark 18.2 The rate mg.x/ will play an important role in the study concerning the
extinction/survival of the process. Note that, it is the product of two components.
The first one (Ll.x/=g.x/) is the ratio of couples per unity of “g.x/”, for instance,
ratio of couples per female (when g.x/ D f ), per male (when g.x/ D m), or per
individual (when g.x/ D f C m). The second one (g.
h/) is the expected offspring,
in terms of the functional g.x/, per couple. For example, expected female offspring
(when g.x/ D f ), expected male offspring (when g.x/ D m), or expected total
offspring (when g.x/ D f C m).

The next result provides a classification of the states of the process. We omit the
states x 2 N

2C such that Ll.x/ D 0, l D  .x/, which are trivially transient.
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Proposition 18.2 Let us consider the process fXng1
nD0.

(i) 0 D .0; 0/ is an absorbing state and . f ; 0/, .0;m/, f ;m 2 NC are transient
states.

(ii) Let x 2 N
2C and h D '.x/. If

maxf
1X

kD0
ph

k;0;

1X

jD0
ph
0;jg > 0; (18.2)

then x is a transient state.

Proof

(i) If, for some n 2 NC, Xn 2 f. f ; 0/; .0;m/; f ;m 2 Ng then XnCk D 0 for all k �
1. Hence, we deduce that 0 is an absorbing state and . f ; 0/; .0;m/; f ;m 2 NC
are transient states.

(ii) Let x 2 N
2C, l D  .x/ and h D '.x/.

If (18.2) holds, there exist k 2 N and/or j 2 N such that maxf ph
k;0; p

h
0;jg > 0.

Assume that ph
k;0 > 0. It is sufficient to verify that

P.XnC1 D .Ll.x/ k; 0/jXn D x/ > 0:

Now

P.XnC1 D .Ll.x/ k; 0/jXn D x/ D P

0

@
Ll.x/X

iD1
. f h

n;i;m
h
n;i/ D .Ll.x/ k; 0/

1

A

� P.. f h
n;i;m

h
n;i/ D .k; 0/ ; i D 1; : : : ;Ll.x// D .ph

k;0/
Ll.x/ > 0

and the proof is completed. By using a similar reasoning, we deduce the result
when it is assumed that ph

0;j > 0.

Previous result provides the key to establish the extinction-explosion property for
the process fXng1

nD0.

Proposition 18.3 Let us consider the process fXng1
nD0 and g.�/ as in (18.1) with

a1; a2 > 0. Assume that for all h 2 f1; : : : ;Nrg

maxf
1X

kD0
ph

k;0;

1X

jD0
ph
0;jg > 0:

Then

P. lim
n!1 Xn D 0/C P. lim

n!1 g.Xn/ D 1/ D 1: (18.3)



312 M. Molina et al.

Proof It is sufficient to prove that, for all C > 0,

P.lim sup
n!1

f0 < g.Xn/ � Cg/ D 0:

Now, writing x D . f ;m/, we have that g.x/ D a1f C a2m, with a1; a2 > 0. Hence,
there exists a finite number of states x 2 N

2C such that 0 < g.x/ � C. Therefore,

P.lim sup
n!1

f0 < g.Xn/ � Cg/ D
X

fxW 0<g.x/�Cg
P.lim sup

n!1
fXn D xg/: (18.4)

By applying Proposition 18.2(b), we derive that all the states x ¤ 0 are transient.
This implies that

P.lim sup
n!1

fXn D xg/ D 0:

Taking into account (18.4), we conclude the proof.

18.4 Extinction and Survival

We now investigate conditions which guarantee the almost sure extinction of the
population and conditions which ensure a positive probability for its survival. First,
we introduce the concept of probability of extinction.

Definition 18.2 Let x0 2 N
2C, x0 D . f0;m0/. We define the probability of

extinction of the process fXng1
nD0, started with f0 females and m0 males, by

q.x0/ WD P. lim
n!1 Xn D 0jX0 D x0/:

Since 0 is an absorbing state for fXng1
nD0, we derive that

q.x0/ D lim
n!1 P.Xn D 0jX0 D x0/:

By using the rate mg.x/ defined in the previous section, we establish the following
results.

Theorem 18.1 Let us consider the process fXng1
nD0 and g.�/ as in (18.1) such

that (18.3) holds and, for some g� � 0,

sup
fxW g.x/>g�g

mg.x/ � 1: (18.5)

Then q.x0/ D 1 for all x0 2 N
2C.
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Proof Consider the sequence of �-algebras fFng1
nD0, Fn WD �.X0;X1; : : : ;Xn/. We

will develop the proof in two steps.

First step. Assume g� D 0.

Using (18.5) and taking into account Proposition 18.1(b) and Remark 18.2, we
deduce that

EŒg.XnC1/jFn� D mg.Xn/g.Xn/ � g.Xn/: (18.6)

Thus fg.Xn/g1
nD0 is a non-negative supermartingale with respect to fFng1

nD0. Hence,
by the martingale convergence theorem, there exists a non-negative and finite
random variable W such that limn!1 g.Xn/ D W almost surely. Therefore, for
all x0 2 N

2C,

P.lim sup
n!1

g.Xn/ D 1jX0 D x0/ D 0:

From (18.3), we derive that q.x0/ D 1.

Second step. Assume g� > 0.

From the first equality of (18.6), we deduce that fg.XnC1/
�Qn

kD0 mg.Xk/
��1g1

nD0
is a non-negative martingale with respect to fFng1

nD0. Therefore, it converges almost
surely to some non-negative random variable W implying that the following equality
holds almost surely,

g.XnC1/ D W
nY

kD0
mg.Xk/C RnC1

nY

kD0
mg.Xk/; (18.7)

where lim
n!1 Rn D 0 almost surely. Now, using again (18.3), it is sufficient to prove

that

P. lim
n!1 g.Xn/ D 1/ D 0:

Note that, for each trajectory ! 2 f lim
n!1 g.Xn/ D 1g, there exists n! such that

g.Xk.!// � g�, for all k � n! . Consequently, for n > n! ,

nY

kD0
mg.Xk.!// �

n!Y

kD0
mg.Xk.!//

�
sup

fxW g.x/�g�g
mg.x/

�n�n!

�
n!Y

kD0
mg.Xk.!//
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Now, by (18.5), we have that the last term is almost surely finite. Therefore,
according to (18.7), we deduce that lim supn!1 g.Xn/ is almost surely finite, and
taking into account (18.3), it is almost surely null, which concludes the proof.

Remark 18.3 Suppose, for example, the case g.x/ D f . Taking into account
the interpretation of mg.x/ given in Remark 18.2, assume that, for every l 2
f1; : : : ;Nmg, the family of ratios of couples per female, namely fLl.x/=g.x/gx2N2

C

,

is bound. Let Cl WD supx2N2
C

Ll.x/=g.x/. Intuitively, Theorem 18.1 states that the
extinction of the two-sex population happens if the average number of females per
couple (for any reproductive strategy) do not exceed C�1

l , that is

max
h2f1;:::;Nrg

g.
h/ � min
l2f1;:::;Nmg

C�1
l :

Similar interpretations can be given for the cases g.x/ D m and g.x/ D f C m.

In order to investigate the possible survival of the population, given g.�/ as
in (18.1) and 
 > 1, we introduce the sequence of events fBk;
g1

kD0 where

Bk;
 WD fg.XkC1/ > 
g.Xk/g: (18.8)

In order to provide a result about the survival of the process, we previously establish
the following auxiliar lemma.

Lemma 18.1 Assume that there exists 
 > 1 such that

1X

kD0
sup

fxW g.x/>
kg.x0/g
P.Bc

k;
 j Xk D x/ < 1: (18.9)

Then P.limn!1 g.Xn/ D 1 j X0 D x0/ > 0.

Proof

P. lim
n!1 g.Xn/ D 1 j X0 D x0/ � P.\1

kD0Bk;
 j X0 D x0/

� P.B0;
 j X0 D x0/
1Y

kD1
inf

fxW g.x/>
kg.x0/g
P.Bk;
 j Xk D x/

� P.B0;
 j X0 D x0/
1Y

kD1
.1 � sup

fxW g.x/>
kg.x0/g
P.Bc

k;
 j Xk D x//;

which is strictly positive taking into account that P.B0;
 j X0 D x0/ > 0 and (18.9)
holds.

Now we shall determine some conditions which ensure the survival of the two-
sex population with a positive probability.
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Theorem 18.2 Let us consider the process fXng1
nD0, g.�/ of the form (18.1) and

g� � 0 such that

(i) inffxW g.x/>g�g mg.x/ > 1:
(ii) There exists � > 1 verifying that

1X

kD0
sup

fxW g.x/>
kg.x0/g
M�

g .x/
g.x/�

< 1 (18.10)

where

M�
g .x/ WD E Œ jg.XkC1/ � EŒg.XkC1/ j Xk D x�j� j Xk D x� :

Then, for all x0 2 N
2C with g.x0/ > g�,

P. lim
n!1 g.Xn/ D 1 j X0 D x0/ > 0:

Proof From .a/, there exist � > 1, g.:/ and g� > 0 such that for all x 2 N
2C with

g.x/ > g�, it is satisfied that mg.x/ � � > 1. Consequently,

E
�
g.XnC1/ j Xn D x

� D mg.x/g.x/ � �g.x/: (18.11)

Let " 2 .0; �� 1/ and 
 WD �� ". We consider the sequence fBk;
g1
kD0 as defined

in (18.8). According to Lemma 18.1, it will be sufficient to verify (18.9).
Let x 2 N

2C such that g.x/ > g�. By using (18.11) and Markov’s inequality, we
get that

P.Bc
k;
 j Xk D x/ D P .g.XkC1/ � .� � "/g.x/ j Xk D x/

� P .g.XkC1/ � EŒg.XkC1/ j Xk D x�� "g.x/ j Xk D x/

� P .jg.XkC1/ � EŒg.XkC1/ j Xk D x�j � "g.x/ j Xk D x/

� M�
g .x/

"�g.x/�
:

Now, applying (18.10), we deduce that (18.9) holds, which finishes the proof.

Remark 18.4 Condition (a) in Theorem 18.2 can be intuitively interpreted by a
reasoning similar to the considered in Remark 18.3. Take, for example, g.x/ D f .
Providing Dl WD infx2N2

C

Ll.x/=g.x/ > 0, for every l 2 f1; : : : ;Nmg, in order
to guarantee a positive probability of survival it is sufficient an average number
of females per couple greater (for any reproductive strategy) than D�1

l , for every
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l 2 f1; : : : ;Nmg, i.e.

min
h2f1;:::;Nrg

g.
h/ > max
l2f1;:::;Nmg

D�1
l :

With respect to the more technical condition (b) in Theorem 18.2, we remark here
that it is not a very strong condition. In fact, it is satisfied, for example, if M�

g .x/ D
O.g.x// as g.x/ tends to infinity. In such a case, it is easy to verify that the series
in (18.10) is dominated by

P1
kD0 
�k.��1/ which is convergent.

18.5 Conclusions

Notice that for the female-male population-size dependent two-sex branching pro-
cess studied in this work, the rate mg.x/ plays a similar role in the extinction/survival
of the population that the offspring mean for the classical Bienaymé-Galton-
Watson branching process. Many questions remains for research about this new
two-sex branching process, being necessary to complete both its probabilistic and
its inferential theory. In particular, much of the research associated with two-sex
branching processes has been concentrated on extinction probabilities. Significant
progress has been made on this topic. However, research on the time to extinction
has not been sufficiently investigated. This topic needs to be addressed with greater
intensity. Assuming non-extinction, it is also necessary to investigate results about
the limiting random variable. From an applied point of view, it is important to
explore new fields where the new two-sex branching process can be applied as
appropriate mathematical model, especially in semelparous species, which are
characterized by a single reproductive episode before death, see [2] or [4].
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Chapter 19
On Two-Type Decomposable Branching
Processes in Continuous Time and Time
to Escape Extinction
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19.1 Introduction

This paper is concerned with applications of branching models in different medical,
biological and environmental contexts where we find a general pattern of popu-
lations that, due to a small reproductive ratio of the individuals/cells, will extinct
after some time, but as a result of a random occurrence of mutations this trend
could be changed dramatically. Such populations are, for example, the viruses which
may become resistant after antibiotics treatment, some insects populations after
hybridization and others. Our leading example will be the appearance of cancer
cells after chemotherapy and we will now be interested in the most basic question
regarding the evolutionary dynamics of cancer cells: how long does it take for a
population to generate a single cell that will start a pathway with indefinite survival?
Or in other words what is the probability of success or failure of the anti-cancer
therapy? A typical situation of such populations is observed after chemotherapy
(see e. g. Iwasa et al. [6, 7] and Nowak [10] together with references therein). The
chemotherapy reduces the capacity of division of the cancer cells, which should lead
to the destruction of tumors. However, sometimes mutations in the cells provide
resistance to the therapy. This new type of cells has a higher reproduction and can
avoid extinction.
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Having in mind all the examples given above, it is of outstanding importance to
have good estimates of the probability of escaping extinction and related aspects,
such as the distribution of number of mutations which implies escaping extinction,
the distribution of waiting times until escape. It was done in discrete-time setting by
Serra and Haccou [12] and Serra [11] using discrete-time Galton–Watson branching
processes (GWBP) and as pointed out there mathematically discrete-time models
are much easier to handle than their continuous counterparts. In this paper we will
generalize and expand some of these estimates in continuous-time setting using age-
dependent branching processes. Although, that at first glance mathematically this
seems a methodological step, it turns out to be not that easy to tackle such problems
in a general setting.

Let us shortly remind that branching processes have been intensively studied
during the last decades. Classical references are the books of Harris [5], Athreya and
Ney [1], Jagers [8], and Mode [9]. For recent books, with emphasis on applications,
see Axelrod and Kimmel [2], Haccou et al. [4] and also Durrett [3], especially for
branching modeling in cancer. For a nice example of how branching processes can
be used to solve important problems in biology and medicine, the reader is referred
to the papers of Iwasa et al. [6, 7]. The close-related research related to the waiting
times to extinction are some results of the author reviewed in the paper [13].

This paper is organized as follows: Sect. 19.2 introduces the branching process
model with two types of cells in continuous time. Section 19.3 contains the main
results and proofs. In Theorem 19.1 we prove the basic functional equations for
probability generating function (p.g.f.) of the process itself. In Theorem 19.2 of
Sect. 19.3.2 we obtain the p.g.f. of both the number of mutations occurred up to time
t and the number of mutations to the escape type cells in the whole process. In the
reminder of this section we studied the distribution of the waiting time T; which is
actually the first moment in time when a mutation cell will start the lineage that will
never go extinct (Theorem 19.3). More precisely we obtain its distribution, which
is actually degenerate at infinity and the conditional expectation of T, conditioned
of being finite. As a consequence of the results in Theorem 19.3 we show how one
can obtain the probability of immediate escape from extinction in terms of modified
hazard function of the random variable T, conditioned in addition on non-extinction
of the process of type 1 cells, which have subcritical reproduction. Finally, we end
with some concluding remarks and topics for further research.

19.2 Formulation of the Model

We will first outline an age-dependent branching process with one type of cells.
Consider a cell proliferation process starting at time 0 with a single progenitor of
type 1 of age 0 whose life-length � has distribution G.t/ D P.� � t/, G.0C/ D 0,
i.e. Z.0/ D 1. With probability pk, k � 0, it produces at the end of its life k similar
cells of age 0, which reproduce independently with the same distribution of the
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life-length � and reproduction distribution f pk; k � 0g,
1X

kD0
pk D 1. Provided that

there is at least one offspring, the death-and-reproduction process is repeated, and
continues as long as individuals/cells exist. The single-type process fZ.t/; t � 0g
or the so-called Bellman–Harris branching process (BHBP) together with proper
biological applications is studied by Jagers [8] and more theoretically by Athreya
and Ney [1].

Now we present a two-type decomposable age-dependent branching model (also
known as BHBP with two types of cells) fZ0.t/;Z1.t/; t � 0g; where fZ0.t/; t � 0g
and fZ1.t/; t � 0g denote the number of cells of type 0 and type 1 at time t
respectively. Suppose that cells of type 1 are subcritical, i.e. have reproduction
mean m1; 0 < m1 < 1; and that each one of their descendants can mutate at
birth, independently of the others, to type 0 cells with probability u; 0 < u < 1:

Individuals/cells of type 0 are supercritical, i.e. have reproduction mean m0; 1 <

m0 < 1; and there is no backward mutation. Let us mention here that if no mutation
appear .u D 0/ then the process will be described by two independent classical
single-type BHBP.

By Gi.t/ D P.�i � t/; Gi.0
C/ D 0; i D 0; 1 we denote the distribution of the

life-lengths �i of the cells of type i, and by 
i the offspring of type i cells, i D 0; 1.
Let us introduce the following notations:

Fi.tI s0; s1/ D E.sZ0.t/
0 sZ1.t/

1 jZi.0/ D 1;Zj.0/ D 0; j ¤ i/; for i D 0; 1,
F.tI s/ D .F0.tI s/;F1.tI s//; s D .s0; s1/.

Unless stated otherwise, we assume that the process starts with just one cell of
type 1, i.e. Z0.0/ D 0 and Z1.0/ D 1. The p.g.f. of the offspring 
i of type i cells
will be denoted by fi.s/, i D 0; 1.

Similar results of the discrete version of the two-type branching process, i.e.
GWBP are obtained by Serra [11] and Haccou and Serra [12], where the distribution
of the waiting time to produce a cell that will escape extinction, is studied.

19.3 Main Results

19.3.1 Basic Functional Equation

In the following theorem we will obtain the basic functional equation for the p.g.f.
of the age-dependent branching process defined in Sect. 19.2.

Theorem 19.1 The p.g.f. F.tI s0; s1/ satisfies the following integral equations

F1.tI s0; s1/ D s1.1� G1.t//C
Z t

0

f1.uF0.t � yI s0/C .1� u/F1.t � yI s0; s1//dG1.y/;

(19.1)
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and

F0.tI s0; s1/ � F0.tI s0/ D s0.1 � G0.t//C
Z t

0

f0.F0.t � yI s0//dG0.y/; (19.2)

where

Fi.0I s0; s1/ D si; jsij � 1; i D 0; 1:

Proof We start with a derivation of the basic integral equation (19.1). A decompo-
sition of the sample space˝ in accordance with the life-length �1 and number 
1 of
offspring of the initial cell of type 1 suggests the relation:

F1.tI s0; s1/ D E

	
E.sZ0.t/

0 sZ1.t/
1 jZ1.0/ D 1;Z0.0/ D 0; f�1; 
1g/




D s1.1 � G1.t//

C
Z t

0

dG1.y/
1X

jD0
p1j

jX

kD0

 
j

k

!

E.sZ0.t�y/
0 uksZ1.t�y/

1 .1 � u/j�kjZ0.0/D k;Z1.0/ Dj � k/

D s1.1 � G1.t//

C
Z t

0

dG1.y/
1X

jD0
p1j

jX

kD0

 
j

k

!

uk.1 � u/j�k.E.sZ0.t�y/
0 jZ0.0/ D 1;Z1.0/ D 0//k�

.E.sZ0.t�y/
0 sZ1.t�y/

1 jZ0.0/ D 0;Z1.0/ D 1//j�k

D s1.1 � G1.t//C
Z t

0

f1.uF0.t � yI s0/C .1 � u/F1.t � yI s0; s1//dG1.y/;

where f p1k; k � 0g is the distribution of the offspring of type 1 cells. Equation (19.2)
is derived in a similar way. Notice that this equation is the integral equation obtained
for the classical BHBP. ut

Note that when G1 is the unit step function

G1.t/ D
�
0; for t < 1;
1; for t � 1;

then (19.1) reduces to a functional iteration formula for F.nI s0; s1/ obtained by
Serra in [11]; while if

G1.t/ D
�
0; for t < 0;
1� e��t; for t � 0;

then we have a two-type Markov branching process allowing mutations.
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Let us mention here that the result in continuous time is rather different from that
of Serra [11] using GWBP, where actually the p.g.f. of the process is reduced to the
single-type GWBP and after that is used significantly to study the distribution of the
number of mutations. On the other hand, here we would like to point out that using
Eqs. (19.1) and (19.2) one can study the asymptotic properties of the mean, variance
and higher moments of types 0 and 1 cells when t ! 1, which is left for a later
stage.

19.3.2 Number of Mutants and Probability of Extinction

Unless mutations occur, the process of interest will be a single-type subcritical
BHBP and it is the appearance of mutants that makes the study of such populations
an interesting task. That is why it is important to study the total number of mutations
that occur in the whole process. This random quantity will play a crucial role in
determining the extinction probability of the process.

Consider the random variable (r.v.) I.t/; t � 0; being the total number of mutants
produced until time t (inclusive), and let I be the r.v. that represents the number of
mutants in the whole process. By mutant we mean a cell of type 0; whose mother
is of type 1. It is obvious that the sequence of r.v. I.t/; t � 0; converges pointwise
to the r. v. I. In our next theorem, we use this convergence to establish a functional
equation for the p.g.f. of I, denoted by hI.s/:

Theorem 19.2 The p.g.f. hI.s/ of I and hI.t/.s/ of I.t/ satisfy the functional
equations

hI.s/ D f1.us C .1 � u/hI.s//; (19.3)

hI.t/.s/ D 1 � G1.t/C
Z t

0

f1.us C .1 � u/hI.t�y/.s//dG1.y/; (19.4)

for all s 2 Œ0; 1�.
Proof First we establish a recursive relation for the p.g.f. of the r.v. I.t/; t � 0. We
will use again a decomposition of the sample space ˝ in accordance with the life-
length �1 and the number of offspring 
1 of the initial cell of type 1: It is clear that

I.t/ D 0, if �1 > t with probability 1� G1.t/, and I.t/ D 
10 C

1�
10X

iD1
I.t � �1/, when

�1 � t, where 
10 2 Bi.
1; u/ is the number of mutations between the descendants
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and 
1 � 
10 is the number of type 1 cells, produced by the initial cell. Therefore

E.sI.t/jZ1.0/ D 1;Z0.0/ D 0/

D .1 � G1.t//s
0 C

Z t

0

dG1.y/E

0

B
BB
@

s


10C

1�
10X

iD0
Ii.t � y/

1

C
CC
A

D 1 � G1.t/C
Z t

0

dG1.y/E

0

BB
B
@

s
10 � s


1�
10X

iD0
Ii.t � y/

1

CC
C
A

D 1 � G1.t/C
Z t

0

dG1.y/E

2

6
6
6
4
E

0

B
B
B
@

s
10 � s


1�
10X

iD0
Ii.t � y/

1

C
C
C
A

j.
1; 
10/

3

7
7
7
5

D 1 � G1.t/C
Z t

0

2

4
1X

jD0
p1j

jX

kD0

 
j

k

!

uk.1 � u/j�ksk � Es
Pj�k

iD0 Ii.t�y/

3

5 dG1.y/

D 1 � G1.t/C
Z t

0

2

4
1X

jD0
p1j

jX

kD0

 
j

k

!

uk.1 � u/j�ksk � .hI.t�y/.s//
j�k

3

5 dG1.y/

D 1 � G1.t/C
Z t

0

f1.us C .1 � u/hI.t�y/.s//dG1.y/;

where Ii.t/ are independent identically distributed copies of I.t/ and hI.0/.s/ D 1:

After that, using the techniques of embedded generation process (see Athreya and
Ney, p. 141 [1]) we obtain that the result of the number of mutations in the whole
process proved by Serra [11] for Galton–Watson branching processes remains true
for age-dependent branching processes. ut

We now proceed to determine the probability of extinction. Using the notation

q0 D PŒZ0.t/ D Z1.t/ D 0 for some t > 0jZ0.0/ D 1;Z1.0/ D 0�;

q1 D PŒZ0.t/ D Z1.t/ D 0 for some t > 0jZ0.0/ D 0;Z1.0/ D 1�;

it follows, from the classical result on the extinction of branching processes, that q0
is the smallest root of the equation q0 D f0.q0/ in the interval Œ0; 1�: To determine
q1, notice that extinction of the process occurs if and only if all the supercritical
single-type BHBP starting from the mutants die out, since m1 < 1. Therefore, since
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there are I such processes, we have

q1 D EŒqI
0� D hI.q0/:

Then, we deduce that q1 < 1; since m0 > 1 and q0 < 1: Let us remind that
assuming small mutation rate u, Iwasa et al. [6, 7] provided approximations for
particular reproduction laws, namely for Poisson and geometric distributions. Their
results extend to even more complex scheme of mutations leading to branching
processes with more than two types of individuals.

19.3.3 Time to Escape Extinction

Now, we consider the r. v. T, which represents the time to escape extinction, i.e. the
first time in which a successful mutant is produced. By successful mutant we mean
a mutant that is able to start a single-type BHBP that allows indefinite survival. This
variable takes values in the set .0;C1�, with T D 1, if no successful mutant is
produced.

Theorem 19.3 The distribution of T has the following properties:

(i) P.T > t/ D hI.t/.q0/ � Qt; for t > 0;
(ii) P.T D 1/ D q1;

(iii) E.TjT < 1/ D 1

1 � q1

Z 1

0

ŒhI.t/.q0/ � q1�dt;

where Qt are defined by

Qt D 1 � G1.t/C
Z t

0

f1.uq0 C .1 � u/Qt�y/dG1.y/

with Q0 D 1.

Proof To prove (i), observe that T > t means that all mutants that occurred up to
time t were unsuccessful. Therefore,

P.T > t/ D E.qI.t/
0 / D hI.t/.q0/:

To prove (ii), observe that .T > t/t�0 # .T D 1/ and it implies

P.T > t/t�0 # P.T D 1/:

Then from (i)

lim
t!1P.T > t/ D lim

t!1 hI.t/.q0/
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and as I.t/ converges pointwise to I; it follows

P.T D 1/ D lim
t!1 hI.t/.q0/ D hI.q0/ D q1:

For proving (iii) observe that T > 0 and, therefore,

E.TjT < 1/ D
Z 1

0

.1 � P.T � tjT < 1//dt

D
Z 1

0

.1 � P.T � t;T < 1/

1 � q1
/dt

D 1

1 � q1

Z 1

0

.1 � q1 � P.T � t//dt

D 1

1 � q1

Z 1

0

.P.T > t/ � q1/dt

D 1

1 � q1

Z 1

0

.hI.t/.q0/ � q1/dt;

with hI.t/.s/ defined by equation (19.4). ut

19.3.4 Immediate Risk of Escape

Another natural characterization of the appearance of a successful mutant is the
probability of producing a successful mutant in a very short time interval dt after
time t; given that it has not been produced yet, called immediate risk of escape
extinction. We will show in this subsection how one can compute this probability
theoretically using the results of Theorem 19.3.

In general one could use the hazard function of the variable T; defined by P.T 2
.t; t C dt/jT > t/; but in this case we need to modify this function, as it is done
in discrete-time setting (see Serra and Haccou [12]). It is due to the fact that the r.
v. T has a defective distribution (T D 1 when no successful mutant is produced)
and in fact, if there are no subcritical individuals (i.e. of type 1) alive at time t; the
probability of producing a successful mutant immediately after this moment is zero.
That is why we will use the following modification of the standard hazard function:

g.t/dt D P.T 2 .t; t C dtjT > t;Z1.t/ > 0//: (19.5)
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We have

g.t/dt D P.T 2 .t; t C dt//

P.T > t;Z1.t/ > 0/

D P.T 2 .t; t C dt//

P.T > t/ � P.T > t;Z1.t/ D 0/
:

The probabilities P.T > t/ and P.T 2 .t; tCdt// are computed using Theorem 19.3.
The second term in the denominator satisfies the following recursive formula:

P.T > t;Z1.t/ D 0/ D P.T > t;Z1.t/ D 0j�1 < t/P.�1 < t/

C P.T > t;Z1.t/ D 0j�1 � t/P.�1 � t/

D
Z t

0

P.T > t;Z1.t/ D 0j�1 D y/dG1.y/

D
Z t

0

1X

jD0
p1j

jX

kD0

 
j

k

!

.uq0/
k
�
.1 � u/P.T > t � y;Z1.t � y/ D 0/

�j�k
dG1.y/

D
Z t

0

f1.uq0 C .1 � u/P.T > t � y;Z1.t � y/ D 0//dG1.y/;

using that �1 is the life-time and fp1k; k � 0g is the distribution of the offspring of
the initial cell of type 1 and clearly the second conditional probability term is equal
to 0:

Let us remind here that we receive the similar recursive formula as that
established by Serra and Haccou [12].

Indeed, from

P.T > t;Z1.t/ D 0/ D
Z t

0

f1.uq0 C .1 � u/P.T > t � y;Z1.t � y/ D 0//dG1.y/

(19.6)

when

G1.t/ D
�
0; for t < 1;
1; for t � 1;

we obtain that

P.T > n;Z1.n/ D 0/ D f1.uq0 C .1 � u/P.T > n � 1;Z1.n � 1/ D 0//; n � 1;

which is exactly the result in [12].
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So, the modified hazard function is given by

g.t/dt D P.T 2 .t; t C dt//

P.T > t/ � P.T > t;Z1.t/ D 0/

D Q0
tdt

Qt � P.T > t;Z1.t/ D 0/

where P.T > t;Z1.t/ D 0/ satisfies Eq. (19.6).

19.4 Concluding Remarks

First, we would like to conclude that this paper is the first step towards the expanding
of the theory and methods using continuous-time counterparts of the discrete-
time GWBP for different schemes leading to mutations. In the context of cancer
dynamics, resistance to the anti-cancer therapy and the possible appearance of
metastasis we are tackling the problems of the distribution of the first moment of
the occurrence of “successful” mutant together with the growth of the population
of the mutant cells. Let us mention here that once the results are proved for
models with one type of mutation, they could be extended to more than one type
and different mutation schemes, including backward and/or forward mutations.
Moreover, the branching models with continuous-time are more realistic and reveal
more adequately and accurately the behavior of cell populations with overlapping
generations.

Secondly, we found the analytical decisions in terms of p.g.f. of these r.v.s,
which could be used subsequently to derive their moments and corresponding
limit theorems for the BHBP driving the development of the real process, which
might be considered per se as an innovation in application of branching theory.
In this connection, the following questions for further research could be pointed
out: to study the distribution of the waiting time to attain certain levels of the
branching processes in continuous-time setting and to obtain limiting results for
its distribution.

Thirdly, we obtain also a theoretical formulae for immediate risk of avoiding
extinction that could be used later on for the comparison of the behavior of the
modified hazard function for different offspring distributions.

Finally, the results proved generalize the similar ones obtained by Serra [11],
Serra and Haccou [12] and those for the exponential models of growth developed
by Iwasa et al. [6, 7] and Durrett [3], as well.

Acknowledgements The research is partially supported by the National Fund for Scientific
Research at the Ministry of Education and Science of Bulgaria, grant No DFNI-I02/17 and by
Ministerio de Educación y Ciencia and the FEDER through the Plan Nacional de Investigación
Científica, Desarrollo e Innovación Tecnológica, grant MTM2012-31235. The author is grateful
to Prof. Kosto Mitov for his valuable support and helpful discussion in preparing the manuscript



19 On Two-Type Decomposable Branching Processes 329

and to the antonymous referee for the detailed remarks, advices and comments, which lead to the
significant improvement of the paper.

References

1. Athreya, K.B., Ney, P.: Branching Processes. Springer, Berlin (1972)
2. Axelrod, D.E., Kimmel, M.: Branching Processes in Biology. Springer, New York (2002)
3. Durrett, R.: Branching Process Models in Cancer. Springer, Cham (2015)
4. Haccou, P., Jagers, P., Vatutin, V.: Branching Processes: Variation, Growth and Extinction of

Populations. Cambridge University Press, Cambridge (2005)
5. Harris, T.E.: The Theory of Branching Processes. Springer, Berlin (1963)
6. Iwasa, Y., Michor, F., Nowak, M.: Evolutionary dynamics of escape from biomedical interven-

tion. Proc. Biol. Sci. Lond. B 270, 2573–2578 (2003)
7. Iwasa, Y., Michor, F., Nowak, M.: Evolutionary dynamics of invasion and escape. J. Theor.

Biol. 226, 205–214 (2004)
8. Jagers, P.: Branching Processes with Biological Applications. Wiley, New York (1975)
9. Mode, C.J.: Multitype Branching Processes: Theory and Applications. Elsevier, New York

(1971)
10. Nowak, M.A., Michor, F., Komarova, N.L., Iwasa, Y.: Evolutionary dynamics of tumor

suppressor gene inactivation. Proc. Natl. Acad. Sci. U. S. A. 101, 10635–10638 (2004)
11. Serra, M.: On waiting time to escape. J. Appl. Probab. 43, 296–302 (2006)
12. Serra, M., Haccou, P.: Dynamics of escape mutants. Theor. Popul. Biol. 72, 167–178 (2007)
13. Slavtchova-Bojkova, M.: Time to extinction in branching processes and its application in

epidemiology. Pliska Stud. Math. Bulg. 22, 101–126 (2013)



Index

A
Ancestral selection graph, 30
Associated random walk, 98, 108

B
Bayesian inference, 189
Birth-and-death process, 58, 65–71, 142
Branching processes

with immigration, 77–95, 135, 153
in random environment, 97–113, 210

Branching random walks, 16, 21, 223
Bruss-Duerinckx Theorem, 121

C
Cancer, 321, 322, 330
Cantor, 223–226, 229, 233
Carrying capacity, 140, 141, 144–146
Coalescence, 3–21, 23, 25, 30
Coalescent process, 24, 36
Conditional limit theorems, 100
Controlled branching processes (CBP), 78,

204, 210, 215
Crump-Mode-Jagers branching process,

169–184

D
Decomposable Bellman–Harris branching

process, 19
Demographics, 144, 145, 147, 148, 170, 176,

180, 309
Dependence, 110, 135, 139–142, 145, 148,

199, 212, 218, 228
Diffusion approximation, 78

Dirichlet process, 189, 192, 195, 197, 205
Discrete spectrum, 45
Dual process, 26–32, 35, 36

E
Early retirement, 126, 133
Embeddability, 241
Emerging epidemic, 271–285
Endogenous solutions, 230–232
Energy cascades, 16
Evolutionary operator, 41–54
Extinction probability, 99, 123, 124, 131, 140,

232, 240, 289–306, 325

F
Finite variance of jumps, viii
Fixed points, 148, 226–228, 232, 233, 236
Fluctuation limit, 78, 81

G
Galton–Watson process, 6, 20, 59, 128, 141,

149, 210, 212, 218, 239–256
Galton–Watson tree, 4–7, 13
General branching processes, 169
Gibbs sampler, 189, 191, 193–197, 205
Green function, 43, 48, 51, 54
Gumbel distribution, 241, 249

H
High level, 112–113
Hitting time, 59, 60
Household epidemic model, 274

© Springer International Publishing Switzerland 2016
I.M. del Puerto et al. (eds.), Branching Processes and Their Applications, Lecture
Notes in Statistics 219, DOI 10.1007/978-3-319-31641-3

331



332 Index

I
Immediate risk of escape, 328–330
Immigration, 57–62, 64, 77–95, 124,

135–136, 153–167, 190, 191,
197, 203–205

Influenza in humans, 264, 265

L
Limit theorems, 57, 58, 60–62, 78, 79,

81, 91, 100, 108, 111, 163–167,
214, 330

M
Mandelbrot cascades, 226, 235
Markov chain, 59–61, 67, 98, 104, 189, 195,

210, 212–214, 218, 222, 240, 245,
251, 282, 294, 295, 311

Minimum wage, 126, 134
Monte Carlo method, 196, 198, 265
Moran model, 28–33, 35
Multi-type�-coalescent, 23–36
Multitype Markov branching processes, 272,

285
Mutation, 25, 27, 28, 30, 32–36, 227, 241,

321–327, 330

N
Non-parametric statistics, 205
Numerical method, 169, 170, 182

O
Order statistics, 123

P
Parameter estimation, 204, 272
Poisson process, 153–155, 158, 227, 264, 273,

283
Power series family of distributions, 189

Q
Quicksort process, 235, 236

R
Random walk, 14, 16, 21, 42–44, 46, 57–72,

223
Recurrence, 65, 67, 122, 209–219
Renewal equations, 169–172, 179, 181, 182

S
SEIR epidemic, 264
Sexual reproduction, 139–149, 309, 310
Size-dependent branching processes, 140
Society structure, 123–125
Standard of living, 119, 120, 122, 123, 128,

129, 131
Stationary distribution, 26, 30, 33–35, 58, 62,

65–71, 282, 283
Statistical computing, 204, 267, 302
Stochastic fixed point equation, 226–228
Stopping times, 123, 304
Strong criticality, 77–95
Subcritical branching processes in random

environment, 97–113
Survival, 97, 100, 103, 106–108, 110, 111,

119–121, 123–125, 127, 128, 149,
171, 181, 188, 232, 294–296,
309–318, 321, 327

Survival probability, 97, 106, 110, 120, 124,
125, 128, 171

Susceptible-infectious-recovered (SIR)
epidemic, 259

Symmetric branching random walks, 42

T
Time to escape extinction, 327–328
Total progeny, 259–268
Transience, 209–219
Two-sex branching processes, 292, 297, 299,

301, 309–318

V
Vaccination policies, 260–264, 267
Varying environment, 61, 77–95
Viability selection, 28–35

W
Weighted branching process, 221–236

X
X-linked genes, 289–306


	Foreword
	Preface
	Contents
	List of Contributors
	Part I Coalescent Branching Processes
	1 Coalescence in Branching Processes
	1.1 Introduction: The Problem of Coalescence in Trees
	1.2 The Binary Tree Case
	1.3 Galton–Watson Trees
	1.3.1 Definition and the Problem
	1.3.2 Basic Results for Galton-Watson Trees

	1.4 Coalescence Results for Galton-Watson Trees
	1.5 Application of Coalescence Results to Branching Random Walks
	1.5.1 Supercritical Case
	1.5.2 Explosive Case
	1.5.3 Application to Energy Cascades

	1.6 Scaling Limits of Bellman-Harris Processes with Age Dependent Markov Motion: Supercritical and Critical Cases
	1.7 Some Extensions and Open Problems
	References

	2 A Multi-Type Λ-Coalescent
	2.1 Introduction
	2.2 Duality
	2.2.1 Duality with a Stationary Measure

	2.3 Multi-type Moran Model with Viability Selection
	2.3.1 Dual Process in the Moran Model

	2.4 Multi-type Λ–Fleming–Viot Process with Mutation and Selection
	2.5 Conclusion
	References


	Part II Branching Random Walks
	3 On the Number of Positive Eigenvalues of the Evolutionary Operator of Branching Random Walk
	3.1 Introduction
	3.2 BRW with Several Sources
	3.3 Spatial Configuration of Sources of Branching
	3.4 Proofs of Theorems
	References

	4 Branching Structures Within Random Walks and Their Applications
	4.1 Introduction
	4.2 Branching Structure for (1,1) Random Walk
	4.3 Branching Structure for Random Walk with Bounded Jumps
	4.3.1 (L,1) Random Walk
	4.3.2 (2,2) Random Walk

	4.4 Stationary Distribution for a Birth-and-Death Process with One-Side Bounded Jumps 
	4.5 Concluding Remarks
	References


	Part III Population Growth Models in Varying and Random Environments
	5 Some Asymptotic Results for Strongly Critical Branching Processes with Immigration in Varying Environment
	5.1 Introduction
	5.2 Main Results
	5.3 Estimations of Moments
	5.4 Proofs of the Main Theorems
	Appendix
	References

	6 Subcritical Branching Processes in Random Environment
	6.1 Introduction
	6.1.1 Weakly Subcritical Case
	6.1.2 Intermediately Subcritical Case
	6.1.3 Strongly Subcritical Case
	6.1.3.1 The Case β=1
	6.1.3.2 The Case β=0
	6.1.3.3 The Case β e (0,1) 


	6.2 Subcritical BPRE Attaining a High Level
	References


	Part IV Size/Density/Resource-Dependent Branching Models
	7 The Theorem of Envelopment and Directives of Control in Resource Dependent Branching Processes
	7.1 Introduction
	7.1.1 Society Obligation Principle
	7.1.2 Theorem of Envelopment and Related Results

	7.2 Main Definitions and Results
	7.3 Special Societies
	7.3.1 Limits of Growth Parameters
	7.3.2 Strongest-First Society
	7.3.3 The Envelope of Human Societies

	7.4 Macro-Economic Interest Versus Tools
	7.5 Local Models and Control
	7.6 The Global Model
	7.6.1 Bisexual and Asexual Reproduction
	7.6.2 RDBPs and φ-Branching Processes
	7.6.3 RDBPs and Population-Size Dependent Branching Processes

	7.7 Understanding Unexpected Implications
	7.7.1 Hidden Phenomena
	7.7.2 Discussion
	7.7.3 Immigration

	References

	8 From Size to Age and Type Structure Dependent Branching: A First Step to Sexual Reproduction in General Population Processes
	8.1 From Population Size Dependence to Age Structure Effects
	8.2 Process Structure
	8.3 Processes with Carrying Capacity
	8.4 Sexual Reproduction
	8.5 Future Challenges
	References


	Part V Age-Dependent Branching Models
	9 Supercritical Sevastyanov Branching Processes with Non-homogeneous Poisson Immigration
	9.1 Introduction
	9.2 Biological Motivation
	9.3 The Process and Its Equations
	9.4 Asymptotic Expansions for the Moments
	9.5 Limit Theorems
	References

	10 Crump-Mode-Jagers Branching Process: A Numerical Approach
	10.1 Introduction
	10.2 Preliminary Results
	10.3 Results
	Appendix
	References


	Part VI Special Branching Models
	11 Bayesian Analysis for Controlled Branching Processes
	11.1 Introduction
	11.2 Bayesian Analysis
	11.2.1 Analysis Based on the Entire Family Tree
	11.2.2 Analysis Based on Population Size in Each Generation: Gibbs Sampler
	11.2.3 Approaches to Prediction

	11.3 Simulated Example
	11.4 Concluding Remarks
	References

	12 Recurrence and Transience of Near-Critical Multivariate Growth Models: Criteria and Examples
	12.1 Introduction
	12.2 The Univariate Case Revisited
	12.3 Example: The Bisexual GW-Process
	12.4 The General Case
	12.5 Example: The Multivariate GW-Process
	References

	13 The Weighted Branching Process
	13.1 Weighted Branching Process
	13.2 Stochastic Fixed Point Equation
	13.3 Forward and Backward Dynamics
	13.4 SFE of Sum Type
	13.5 The Contraction Method
	13.6 Process Valued WBP and SFE Solutions
	References

	14 A Special Family of Galton-Watson Processes with Explosions
	14.1 Introduction
	14.2 Probability Generating Functions for Theta-Branching Processes
	14.3 Monotonicity Properties
	14.4 Basic Properties of f e Gθ
	14.5 Extinction and Explosion Times
	14.6 The Q-Process
	14.7 Embedding into Continuous Time Branching Processes
	References


	Part VII Applications in Epidemiology
	15 Total Progeny of Crump-Mode-Jagers Branching Processes: An Application to Vaccination in Epidemic Modelling
	15.1 Introduction
	15.2 Monotonicity and Continuity Properties of Total Number of Infected Individuals Depending on Vaccination
	15.3 Simulated Example
	References

	16 Inference for Emerging Epidemics Among a Community of Households
	16.1 Introduction
	16.2 Household Model and Threshold Parameter
	16.2.1 Model
	16.2.2 Threshold Parameter R*

	16.3 Estimation in the Early Stages of an Epidemic
	16.3.1 Basic Method
	16.3.2 Multitype Birth-Death Process Method
	16.3.2.1 The Infected Households Branching Process as a Multitype Birth-Death Process
	16.3.2.2 Estimating λL


	16.4 Modified Single-Household Epidemic
	16.4.1 Derivation of Total Size Distribution and R*
	16.4.2 Critical Epidemics, i.e. r=0

	16.5 Concluding Comments
	References


	Part VIII Applications in Biology and Genetics
	17 Extinction Probability of Some Recessive Alleles of X-Linked Genes in the Context of Two-Sex Branching Processes
	17.1 Introduction
	17.2 The Model
	17.2.1 Working Hypotheses: Reproduction
	17.2.2 Working Hypotheses: Mating
	17.2.3 Mathematical Definition of the Model

	17.3 Basic Properties of the Model
	17.4 The Fate of the Recessive Allele in the Population
	17.5 Fixation of the Dominant Allele in the Population
	17.6 Coexistence of Both Alleles in the Population
	17.6.1 Case α≥0.5
	17.6.2 Case α< 0.5

	17.7 Proofs
	17.7.1 Proof of Theorem 17.1
	17.7.2 Proof of Theorem 17.2

	References

	18 Two-Sex Branching Processes with Several Mating and Reproduction Strategies: Extinction Versus Survival
	18.1 Introduction
	18.2 The Model
	18.3 Basic Properties
	18.4 Extinction and Survival
	18.5 Conclusions
	References

	19 On Two-Type Decomposable Branching Processes in Continuous Time and Time to Escape Extinction
	19.1 Introduction
	19.2 Formulation of the Model
	19.3 Main Results
	19.3.1 Basic Functional Equation
	19.3.2 Number of Mutants and Probability of Extinction
	19.3.3 Time to Escape Extinction
	19.3.4 Immediate Risk of Escape

	19.4 Concluding Remarks
	References


	Index

