
Paper 123-26

1

Querying Star and Snowflake Schemas in SAS
Bart Heinsius, E.O.M. Data, Hilversum. The Netherlands

ABSTRACT
Star schemas, and sometimes snowflake schemas, are often
used in Data Warehouses as the storage structure for
dimensional data that is to be queried efficiently. In Data
Warehouses built using SAS Software, star and snowflake
schemas can also be implemented.

Star and snowflake schemas in SAS can be queried using SAS
SQL or the SAS DATA step. Tests have shown that using the
DATA step can result in significant performance gains over SQL.

This paper will discuss the use of star and snowflake schemas in
SAS and will look into the performance issues that arise. Then, a
number of techniques are discussed that address these issues.
They involve bitmap indexes and DATA step code generation
from dedicated metadata. Then, the Star Class is introduced,
which implements these techniques.

This paper should be of interest to Data Warehouse architects
and builders and to OLAP application builders working with SAS
Data Warehouses used for dimensional querying. An assumption
is made that the reader is familiar with dimensional modeling and
has a basic knowledge of BASE SAS software, SQL and
SAS/EIS software.

INTRODUCTION
Dimensional modeling techniques are often used for Online
Analytical Processing (OLAP) applications, such as the
Multidimensional Report object in SAS/EIS software. Dimensional
modeling allows for the analysis of facts (analysis variables) over
dimensions (class variables). Figure 1 shows an example of a
dimensional model on car sales.

Fact SALES

sales_pers_key
product_key
date_key
customer_key
number_sold
amount

Dimension
SALES_PERS

sales_pers_key
name
region
division
office

Dimension
PRODUCT

product_key
product_code
product_name
prod_type
prod_category

Dimension
CUSTOMER

customer_key
name
sex
age
job_name

Dimension
DATE

date_key
date
year
month
day

Figure 1. An example Star Schema.

The dimensional model depicted in Figure 1 is known as a Star
Schema. A dimensional model is a Star Schema when it has all
dimension tables joined directly to the fact table. The benefits of
using a star schema for querying lies in the fact that all dimension
tables are directly joined with the fact table and that the number
of joins that need to be performed to obtain the query result is
limited.

Another dimensional model that is sometimes used is the
Snowflake Schema. Snowflake schemas are like star schemas,

except that the constraint that every dimension table is directly
joined to the fact table is dropped. Figure 2 shows an example.

Fact SALES

sales_pers_key
product_key
date_key
customer_key
number_sold
amount

…

Dimension
CUSTOMER

customer_key
name
sex
age
jobcode_key

…

Dimension
JOBCODE

jobcode_key
job_name
job_category
job_sub_cat

…

Figure 2. An example Snowflake Schema.

Snowflake schemas are much less used than star schemas. It is
the author’s opinion that, in certain situations, snowflake schemas
are better suited than star schemas. In these situations, Data
Warehouse architects often still choose star schemas because
many relational database management systems (RDBMSs) have
problems optimizing queries on snowflake schemas. As you will
read further on in this paper, the SAS System can, with a little
help, very well optimize a query on a snowflake schema too.

Using SAS Software, you can create your own reports from both
star and snowflake schemas. The SQL Procedure provides an
easy method of querying your dimensional data.

Standard SAS software provides the Multidimensional Data
Provider (MDP) object. Through this object, SAS/EIS applications
like the Multidimensional Report object can report dimensional
data from several data sources, such as SAS data sets,
multidimensional databases (MDDBs), views on external RDBMS
files, and also from star schemas. Other applications like
Enterprise Reporter software, Enterprise Guide software, and
the Open OLAP Server can also use the MDP.

The MDP is a perfect tool for OLAP applications. Because a
dimensional model may contain a very large amount of data, the
often-requested crossings can be aggregated in SAS data sets or
in MDDBs, allowing optimal response times. As you drill down in
your data, the MDP may choose the star schema as the most
appropriate data source for a query.

Generally speaking, star schemas allow better performance as
the query result gets smaller. If a query is submitted on a star
schema for which all data in the schema is needed, performance
will severely degrade. In these cases, the use of summary tables
or MDDBs will perform much better. For optimal performance,
you can use a combination of data sets, MDDBs, and a star
schema.

Data Warehousing and Solutions



2

DIMENSIONAL QUERYING
There are several strategies for resolving star or snowflake
schema queries. The response times you achieve will depend on
the query itself and on the strategy you choose. Some often-used
strategies are:

- Table scans. Using this method, the entire fact table is
scanned. Only those rows that comply to the where clause
are output to the result table.

- Using indexed table lookups. With this method, the following
steps are taken:

1. Choose one dimension table that has a condition on it
and subset it.

2. Join the result of step 1 with the fact table through
index lookup.

3. Join the result of step 2 with any other dimension tables
that have conditions on them using index lookup or
hashing and output only those rows that comply to the
conditions.

This method requires simple B-tree indexes on the primary
keys in the dimension tables and on the foreign keys in the
fact table. It is the most-used strategy in dimensional
querying.

- Using composite index lookups. In this method, a Cartesian
product is made of all dimension tables that have conditions
on them. The result containing all possible key combinations
is used to extract the rows from the fact table, using the
appropriate composite fact table index.

- Using bitmap indexes. When subsets are requested on low-
cardinality columns, the use of bitmap indexes can enhance
performance significantly over the use of B-tree indexes.

- Using a combination of simple, composite, and/or bitmap
indexes. This method combines all available indexes to
compose a list of observation numbers to fetch from the fact
table.

Not all of the strategies listed above are available in every
environment. For instance, BASE SAS Software does not provide
bitmap indexes. Also, without tweaking your SQL code, SAS SQL
will never use the method of composite index lookups because it
will always try to avoid creating any Cartesian product.

DIMENSIONAL QUERY PERFORMANCE
The most important factor in dimensional query performance is
the number of times the hard disk is accessed for resolving a
query. The more accesses made, the slower the query will run.
Therefore, optimization of dimensional query performance
focuses on minimizing disk reads and writes. This can be
translated to, to a certain extent, minimizing the number of rows
fetched from the fact table.

As an example, if you wanted to know the total number of cars
sold to female customers on January 3, 2000, you could write the
following SQL query:

select sum(number_sold) as number_sold
from fact_sales a
, dimension_date b
, dimension_customer c
where b.date = '03jan2000'd
and c.sex = 'F'
and a.date_key = b.date_key
and a.customer_key = c.customer_key
;

If the SAS SQL optimizer processes this query as follows:
1. Obtain all CUSTOMER_KEYs through subsetting

DIMENSION_CUSTOMER on SEX = 'F'
2. Join the result of step 1 with FACT_SALES
3. Join the result of step 2 with DIMENSION_DATE and subset

the result on DATE = '03jan2000'd.
the query will not perform very well because, assuming half of
your customers are male and the other half female,
FACT_SALES would be joined with half of all
CUSTOMER_KEYs, which would then be joined with
DIMENSION_DATE to obtain only those sales dated '03jan2000'd

If the optimizer selects:
1. Obtain all DATE_KEYs through subsetting

DIMENSION_DATE on DATE = '03jan2000'd
2. Join the result of step 1 with FACT_SALES
3. Join the result of step 2 with DIMENSION_CUSTOMER and

subset the result on SEX = 'F'.
the query will perform much better. Assuming '03jan2000'd is only
one of many dates on which a car was sold, FACT_SALES would
only be joined with a few DATE_KEYs, which would then be
joined with DIMENSION_CUSTOMER to obtain only those sales
to customers with SEX = 'F'.

The amount of fact table disk read operations can sometimes be
further decreased using one of the other strategies mentioned
before. This depends on the type of query, the columns that have
conditions on them, the conditions themselves, the available
indexes, the table sort order, data set page size, and others.

CHOOSING THE BEST QUERY STRATEGY
Not all query strategies are available in every environment. Also,
not all of them perform evenly well in every case. Without
discussing all the pros and cons of each strategy, table scans, for
instance, are often a ‘last resort’ if all other strategies fail to
deliver good performance. Composite index lookups can be very
fast, but when the Cartesian product that is created becomes
large, this method can result in terrible response times.

Using BASE SAS software and PROC SQL, you are limited to the
indexed table lookup, the composite index lookup, and the table
scan. In all three cases, you must depend on the SAS SQL
Optimizer and hope it makes the right decisions in resolving your
query.

If you use BASE SAS Software and the DATA step, you can use
the same strategies as you can with PROC SQL. The difference
with PROC SQL is that for the DATA step, you have to program
the decisions that the SAS SQL Optimizer would make for you in
PROC SQL, yourself. If you would know on forehand what the
best decisions were, this would be an advantage. You could write
your DATA step so that it would perform best. In many cases, this
would do a better job than PROC SQL. If you wouldn’t know what
the best decisions were, PROC SQL would probably do a better
job.

Apart from the three query strategies above, if you use the DATA
step SET statement with the POINT= option, you can read the
fact table using random (direct) access by observation number. If
you could assemble a list with the observation numbers you
require from the fact table and you use the POINT= option to
fetch them, that would give you the best performance, provided
you can assemble the observation number list in a reasonable
amount of time.

Data Warehousing and Solutions



3

Using the DATA step, you could also create your own bitmap
indexes and use those in assembling the observation number list.

BITMAP INDEXES
Where B-tree indexes are most appropriate for columns of high
cardinality (many different values), bitmap indexes are most
appropriate for columns of low cardinality. Typical examples of
such columns are gender codes and yes/no indicators. The basic
idea behind a bitmap index is to create a bit string where every
single bit indicates if a certain row in a table has a certain value
or not.

Some RDBMSs provide bitmap indexes. Base SAS Software
does not. This does not mean that bitmap indexing techniques
cannot be used within the SAS System. Using the DATA step,
you can create and exploit your own bitmap indexes.

As an example of bitmap indexing, take the table depicted in
Table 1. This table has five rows and two columns with low
cardinality.

Table 1. Sample table.

Obsnum Gender Prospect
1 M Y
2 F Y
3 F N
4 ? N
5 M Y

Table 2 shows the bitmap indexes on columns Gender and
Prospect. Every row in the bitmap indexes corresponds to a row
in the sample table. The bits in each row in the bitmap indexes
indicate whether the sample table row has the value specified in
the bitmap index column header, where ‘1’ indicates ‘yes’ and ‘0’
indicates ‘no’. So, from the first row in the bitmap indexes in
Table 2 you can see that row 1 in the sample table has Gender
‘M’ and Prospect ‘Y’, and that row 2 has Gender ‘F’ and Prospect
‘Y’.

Table 2. Bitmap indexes on Gender and Prospect.

Obsnum M F ? Y N
1 1 0 0 1 0
2 0 1 0 1 0
3 0 1 0 0 1
4 0 0 1 0 1
5 1 0 0 1 0

Gender Prospect

Querying using a bitmap index works as follows. If, for instance,
all rows are requested from the sample table that have gender =
‘F’, the Gender bitmap index can be used. By sequentially
scanning the index and checking which rows have the ‘F’ bit set
to one, all necessary sample table rows are obtained and can be
fetched from the sample table.

If all rows are requested that have gender = ‘F’ and prospect =
‘Y’, the Gender and Prospect bitmap indexes can easily be
combined. Each row for which the bitwise logical AND of the row
value and the bit string ‘01010’ returns TRUE, complies to the
condition and can be fetched from the sample table. This is
where the strength of bitmap indexes lie. Especially when a
query’s conditions include limits on several bitmap indexed
columns, the separate bitmap indexes can be combined to return
a relatively small subset of rows that need to be fetched from the
sample table.

Physically, the bits in the rows in all bitmap indexes are combined
and stored as numeric values. The bitmap indexes in Table 2
could be stored as follows:

Table 3. Physical storage of the bitmap index.

Obsnum Value
1 18
2 10
3 9
4 5
5 18

The reason why sequentially scanning the bitmap index is much
faster than sequentially scanning the sample table or than using a
B-tree index is that the bitmap index is generally very small. From
Paul Dorfman’s SUGI25 paper [3], an 8 byte numeric SAS
variable can store 56 bits under OS/390 and 52 bits under
Windows NT. This means that a bitmap index on column Gender
with three distinctive values ‘F’, ‘M’, and ‘?’ on a 50,000 row table
will be about 23 KB, compared to around 400 KB for a B-tree
index.

Because several bitmap indexes can be combined in a single
physical file (data set), the method of storing the indexes as
shown in Table 2 may not always be efficient. An alternative is to
store it in a transposed format. This format ensures that with a
single disk read, you obtain as much index information as
possible. This format is shown in Table 4.

Table 4. Transposed bitmap index.

Obsnum --> 1 2 3 4 5

M 1 0 0 0 1

F 0 1 1 0 0

? 0 0 0 1 0

Y 1 1 0 0 1

N 0 0 1 1 0Pr
os

pe
ct

G
en

de
r

THE STAR CLASS
Because the optimal method of resolving a dimensional query
depends on so many factors, and since there are many different
query strategies available, the Star Class was developed. The
Star Class is a SAS/AF software class that manages star and
snowflake schemas and provides facilities for querying them
efficiently. It creates ‘intelligent’ data steps for every separate
query, using table scans, indexed table lookups, composite index
lookups, bitmap indexes, or combinations of the above where
appropriate, to deliver fast dimensional query performance.
Figure 3 depicts the Star Class architecture.

Methods of the Star Class are exposed through a SAS macro
interface, which makes them easily accessible outside the
SAS/AF environment.

Data Warehousing and Solutions



4

Star Schema

Star Class
Meta
data

Star
Class

Indexes

Intelligent
DATA step

SAS
Indexes

Data Result

Application

Query

SAS
Code

Figure 3. Star Class Architecture.

STAR CLASS METADATA
For the Star Class to be able to manage a star or a snowflake
schema, it needs metadata on the schema. This metadata is
acquired in three phases:

1. The Registration Phase
2. The Indexing Phase
3. The Analysis Phase
These phases are described below.

THE REGISTRATION PHASE
In the Registration Phase, the Star Class finds out the structure
of the schema. It identifies the fact table, the dimension tables
and primary and foreign keys. This is done, similar to the
SAS/EIS Distributed Dimensional Metadata facility, through an
SQL view on the schema, which is then registered.

For example, using the Car Sales Star Schema:

Contents of library:

fact_sales (data)
dimension_sales_pers (data)
dimension_customer (data)
dimension_product (data)
dimension_date (data)

You create a view star_schema_sales:

proc sql;

create view star_schema_sales as

select *
from fact_sales a
, dimension_sales_pers b
, dimension_customer c
, dimension_product d
, dimension_date e
where a.sales_pers_key = b.sales_pers_key
and a.customer_key = c.customer_key
and a.product_key = d.product_key
and a.date_key = e.date_key
;

quit;

You start off the registration phase by submitting the following
code from the program editor:

%starreg(schema = star_schema_sales)

You only execute this step when the structure of the star schema
changes.

THE INDEXING PHASE
To enhance query performance, the Star Class creates and/or
updates additional B-tree and/or bitmap indexes for your star or
snowflake schema. To do this, you submit the following code:

%staridx(schema = star_schema_sales)

You must execute this step every time the data in you star
schema has changed.

THE ANALYSIS PHASE
To enable the Star Class to generate ‘intelligent’ DATA steps, it
needs to gather information about the contents of the data in your
star or snowflake schema, such as cardinality, the distribution of
values in the data, and the availability of indexes. You start this
process through submitting the following code from the program
editor:

%staranly(schema = star_schema_sales)

You must execute this step every time the data in you star
schema has changed.

QUERYING SCHEMAS USING THE STAR CLASS
To query the star or snowflake schema using the Star Class, you
submit the %starqry macro from the program editor. For
example, to obtain a result data set containing the total number of
cars sold to women on January 3, 2000, you submit the following
code:

%starqry(schema = star_schema_sales
,selvars = sum(number_sold)
,grpvars =
,where = (date = ('03jan2000'd)

sex = ('F'))
)

Code like this is easy to write and can also be generated easily
by code generators.

BENCHMARKING
PROC SQL with simple primary and foreign key indexing is the
most-used method for querying star or snowflake schemas in
SAS. Therefore, to evaluate the performance of the Star Class, it
is compared to PROC SQL. For this benchmark, a real life star
schema was used with 3 million facts and 5 dimension. The

Data Warehousing and Solutions



5

queries shown in the table were a random selection of often
made end user queries.

Table 5. Benchmarking.

Query PROC SQL Star Class
1 2.97 2.29
2 1.09 1.21
3 1:18.92 0.59
4 3.28 5.12
5 1:28.42 42.30
6 30.75 0.67
7 1:03.90 19.78

From these results, you can see that sometimes, the Star Class
is much faster than PROC SQL is. In other cases the Star Class
and PROC SQL perform about equally and in other cases, the
Star Class is slower than PROC SQL. This can happen when the
strategy that PROC SQL uses by default, is the fastest strategy
available. In such cases, the Star Class is a bit slower because of
the overhead concerned with finding the best strategy.

USE OF THE STAR CLASS WITH SAS/EIS AND OTHER SAS
MODULES
As mentioned before, starting SAS version 6.12, star schemas
can be used as a data source in SAS/EIS. The Star Class
provides the SCL code for two method overrides that allow de
SAS/EIS Multidimensional Data Provider (MDP) to use the Star
Class for both regular queries and for SAS/EIS Detail Data.
Because of the rather inefficient way that standard SAS/EIS
handles Detail Data, especially on data that resides on remote
servers, the use of the Star Class greatly enhances its
performance.

Since the Star Class can be used by the SAS/EIS MDP, it can be
used in any SAS module that supports Distributed Dimensional
Metadata. Examples of this are:
- The Open OLAP Server
- The SAS/SHARE Data Provider
- Enterprise Reporter software version 2.0 and higher
- Enterprise Guide software

CONCLUSION
Dimensional modeling is an often-used technique for building
Data Warehouses. Star and Snowflake Schemas generally allow
for fast query performance. This performance however, greatly
depends on the query strategy that is used to resolve a query.

Since no two queries are the same and the performance of a
dimensional query depends on many factors, determining which
query strategy is the best for a particular query is not an easy
task. The SQL Procedure does its best, but cannot always
guarantee good response times.

The Star Class supports more query strategies than PROC SQL
and can make use of simple, composite, and bitmap indexes, and
combinations of those. In addition, it gathers information about
the structure and contents of the dimensional model. This allows
it to generate very efficient DATA step code for resolving queries,
often resulting in great performance benefits.

The Star Class can be integrated in the SAS/EIS
Multidimensional Data Provider, which enables it to be used in
any application that can access multidimensional SAS data.

REFERENCES
[1] Kimball, R., ed. (1998), The Data Warehouse Lifecycle
Toolkit, John Wiley & Sons, Inc.

[2] Shepard, M (1999), Building Star Schema With SAS
Software, SEUGI18 Proceedings.
[3] Dorfman, P.M. (2000), Private Detectives In A Data
Warehouse: Key-Indexing, Bitmapping, And Hashing, SUGI25
Proceedings.

CONTACT INFORMATION
Your comments and questions are valued and encouraged.
Contact the author at:

Bart Heinsius
E.O.M. Data
Oude Enghweg 16
1217 JC Hilversum
The Netherlands
Work Phone: +31 35 6220088
Fax: +31 35 6220106
Email: Bart.Heinsius@eomdata.nl

 Web: http://www.eomdata.nl

SAS and all other SAS Institute Inc. product or service names are
registered trademarks or trademarks of SAS Institute Inc. in the
USA and other countries. ® indicates USA registration.

Other brand and product names are registered trademarks or
trademarks of their respective companies.

Data Warehousing and Solutions


	SUGI 26 Title Page

