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Preface

This book should serve as a resource for students using Discrete Mathematics.
It contains two components intended to supplement the textbook.

First, we provide a review for each chapter of the textbook. In these, the
main definitions and results within each section are summarized. Since these
summaries average approximately one page per section, they should serve as a
useful study aid for students.

Second, we include the answers to the odd-numbered exercises from each
section and all of the exercises from the review sections. These answers generally
expand upon those listed in Appendix C of the textbook. However, for some
exercises, the answers given here may still require further expansion to obtain
the answers requested.

I wish to thank my many students who contributed to reducing the number
of errors in this work.

Kevin Ferland
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Chapter 1

Review Sheets

1.0 Chapter 0

In base s, a nonnegative integer n is represented in the form

n = akak−1 · · · a1a0, (in base s)

where the digits ak, ak−1, . . . , a1, a0 represent elements from {0, 1, . . . , s − 1}.
The corresponding value of n is determined by the equation

n = aks
k + ak−1s

k−1 + · · ·+ a1s
1 + a0s

0.

Base s Name
10 decimal
2 binary
8 octal
16 hexadecimal

Table 1.1: Common Number Systems

For any integer s ≥ 2, the base s representation of a number is obtained by
a sequence of divisions by s, each generating a remainder from 0, 1, . . . , s − 1.
When the quotient 0 is obtained, the base s representation is given by listing
the sequence of remainders in reverse order.

1
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1.1 Chapter 1

Section 1.1

Definition. A statement is a sentence that is either true or false, but not
both.

Form Translation
¬p not p (negation of p)
p ∧ q p and q
p ∨ q p or q
p→ q if p then q (p implies q)

Table 1: Basic Statement Forms

p q ¬p p ∧ q p ∨ q p→ q
F F T F F T
F T T F T T
T F F F T F
T T F T T T

Table 2: Truth Table Defining ¬,∧,∨, and →

Definition. (a) The exclusive or operation ⊕ is defined by
p⊕ q = (p ∨ q) ∧ ¬(p ∧ q).

(b) The if and only if operation ↔ is defined by
p↔ q = (p→ q) ∧ (q → p).
Note that iff is also used to denote ↔.

p q p⊕ q p↔ q
F F F T
F T T F
T F T F
T T F T

Table 3: Truth Table Defining ⊕ and ↔

Definition. (a) A tautology is a statement form that is always
true. We denote a tautology by t.

(b) A contradiction is a statement form that is always false. We
denote a contradiction by f .

A statement whose form is a tautology or contradiction is also said to be a
tautology or contradiction, respectively.
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Definition. Two statement forms p and q are logically equivalent, written
p ≡ q, if and only if the statement form p ↔ q is a tautology. We write p 6≡ q
when p and q are not logically equivalent.

Example. ¬(p→ q) ≡ p ∧ ¬q.
Example. p⊕ q ≡ (p ∧ ¬q) ∨ (¬p ∧ q).
Example. p→ q ≡ ¬p ∨ q.
Definition. Given the statement form p→ q,

(a) its converse is q → p.

(b) its contrapositive is ¬q → ¬p.

(c) its inverse is ¬p→ ¬q.
Example. An if-then statement is not logically equivalent to its converse but
is logically equivalent to its contrapositive.

Theorem (Basic Logical Equivalences).
Let p, q and r be statement variables. Then, the following logical equivalences
hold:

(a) ¬¬p ≡ p Double Negative
(b) (p ∧ q) ∧ r ≡ p ∧ (q ∧ r) Associativity

(p ∨ q) ∨ r ≡ p ∨ (q ∨ r)
(c) p ∧ q ≡ q ∧ p Commutativity

p ∨ q ≡ q ∨ p
(d) p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r) Distributivity

p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r)
(e) ¬(p ∧ q) ≡ ¬p ∨ ¬q De Morgan’s Laws

¬(p ∨ q) ≡ ¬p ∧ ¬q
(f) If p→ q, then [p ∧ q ≡ p] Absorption Rules

If p→ q, then [p ∨ q ≡ q]

Theorem (Interactions with Tautologies and Contradictions). Let p be a state-
ment variable. Then, the following logical equivalences hold:

(a) ¬t ≡ f
¬f ≡ t

(b) p ∧ t ≡ p
p ∨ t ≡ t

(c) p ∧ f ≡ f
p ∨ f ≡ p

(d) p ∧ ¬p ≡ f
p ∨ ¬p ≡ t

(e) t→ p ≡ p
p→ t ≡ t

(f) p→ f ≡ ¬p
f → p ≡ t
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Gate Inverter AND OR

Symbol P c
NOT S

P

Q
AND S

P

Q
OR S

Input-
Output
Table

P S
0 1
1 0

P Q S
0 0 0
0 1 0
1 0 0
1 1 1

P Q S
0 0 0
0 1 1
1 0 1
1 1 1

Table 4: Basic Gates

Section 1.2

Definition (Set Equality (Informal Version)). Two sets A and B are said to be
equal, written A = B, if and only if A and B contain exactly the same elements.

Definition. We define the sets of

integers Z
real numbers R
natural numbers N = {n : n ∈ Z and n ≥ 0},
positive integers Z+ = {n : n ∈ Z and n > 0},
negative integers Z− = {n : n ∈ Z and n < 0},
positive real numbers R+ = {x : x ∈ R and x > 0}, and
negative real numbers R− = {x : x ∈ R and x < 0}.

Definition (Subsets (Informal Version)). Let A and B be sets.

(a) We say that A is a subset of B, denoted A ⊆ B, if and only if
every element of A is also an element of B.

(b) When it is not the case that A ⊆ B, we write A * B.

(c) If A ⊆ B and B contains at least one element that A does not,
then we say that A is a proper subset of B and write A ⊂ B.

Definition (Interval Notation). Given real numbers a and b, define the inter-
vals

(a, b) = {x : a < x < b},
[a, b] = {x : a ≤ x ≤ b},
[a, b) = {x : a ≤ x < b},
(a, b] = {x : a < x ≤ b},

(a,∞) = {x : a < x},
[a,∞) = {x : a ≤ x},

(−∞, b) = {x : x < b}, and
(−∞, b] = {x : x ≤ b}.
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Definition. The empty set, denoted ∅, is the unique set that contains no
elements.

Theorem (∅ is Smallest). Given any set A, we have ∅ ⊆ A.

Definition (Cardinality (Informal Version)). The cardinality of a set A, de-
noted |A|, is the number of elements in A.

Definition (Finiteness (Informal Version)). A set A is said to be finite if and
only if |A| is a natural number. A set that is not finite is said to be infinite.

Section 1.3

Definition (Universal Statements). The statement

∀ x ∈ U , p(x)

is defined to be true if and only if, for every value of x ∈ U , the statement p(x)
holds. Consequently, it is false if and only if there is some x ∈ U for which p(x)
does not hold. The quantifier ∀ is read as “for every”, “for all”, or “for any”.

Definition (Existential Statements). The statement

∃ x ∈ U such that p(x)

is defined to be true if and only if, there exists some x ∈ U such that the
statement p(x) holds. Consequently, it is false if and only if, for every x ∈ U ,
p(x) does not hold. The quantifier ∃ is read as “there exists”, “there is”, or
“there are”.

Definition (Properties of Real Functions). A real function f is said to be

(a) constant if ∃ c ∈ R such that ∀ x ∈ R, f(x) = c.

(b) increasing if ∀ x, y ∈ R, if x < y, then f(x) < f(y).

(c) decreasing if ∀ x, y ∈ R, if x < y, then f(x) > f(y).

(d) nondecreasing if ∀ x, y ∈ R, if x ≤ y, then f(x) ≤ f(y).

(e) nonincreasing if ∀ x, y ∈ R, if x ≤ y, then f(x) ≥ f(y).

(f) periodic if ∃ p ∈ R+ such that ∀ x ∈ R, f(x+ p) = f(x).

(g) bounded above if ∃M ∈ R such that ∀ x ∈ R, f(x) ≤M .

(h) bounded below if ∃ L ∈ R such that ∀ x ∈ R, f(x) ≥ L.

We say that f is bounded if f is both bounded above and bounded below.
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Definition (Operations on Real Functions). Given a real number c and real
functions f and g, we define

(a) the constant multiple cf by ∀ x ∈ R, (cf)(x) = c · f(x).

(b) the product f · g by ∀ x ∈ R, (f · g)(x) = f(x) · g(x).

(c) the sum f + g by ∀ x ∈ R, (f + g)(x) = f(x) + g(x).

(d) the composite f ◦ g by ∀ x ∈ R, (f ◦ g)(x) = f(g(x)).

Proposition (Negating ∀ and ∃).

(a) ¬ [∀ x ∈ U , p(x)] ≡ ∃ x ∈ U such that ¬p(x)

(b) ¬ [∃ x ∈ U such that p(x)] ≡ ∀ x ∈ U ,¬p(x)

Section 1.4

Definition (Set Equality and Subsets (Formal Version)). Given sets A and B
whose elements come from some universal set U ,

(a) we say that A equals B, written A = B, if and only if
∀ x ∈ U , x ∈ A↔ x ∈ B.

(b) we say that A is a subset of B, written A ⊆ B, if and only if
∀ x ∈ U , x ∈ A→ x ∈ B.

Definition (Basic Set Operations). Given sets A and B (subsets of some uni-
versal set U),

(a) the complement of A, denoted Ac, is defined by
∀ x ∈ U , x ∈ Ac ↔ x 6∈ A (i.e. ¬(x ∈ A)).

(b) the intersection of A and B, denoted A ∩B, is defined by
∀ x ∈ U , x ∈ A ∩B ↔ x ∈ A and x ∈ B.

(c) the union of A and B, denoted A ∪B, is defined by
∀ x ∈ U , x ∈ A ∪B ↔ x ∈ A or x ∈ B.

(d) the difference of A minus B, denoted A \B, is defined by
∀ x ∈ U , x ∈ A \B ↔ x ∈ A and x 6∈ B.

(e) the symmetric difference of A and B, denoted A M B, is de-
fined by
∀ x ∈ U , x ∈ A M B ↔ x ∈ A ⊕ x ∈ B.

Definition. Given sets A and B,

(a) they are said to be disjoint if and only if A ∩B = ∅.

(b) the union A ∪ B is said to be a disjoint union if and only if A
and B are disjoint.
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Definition (General Products).

(a) Given sets A1, A2, . . . , An, the n-fold product A1×A2×· · ·×An
is given by A1 ×A2 × · · · ×An =
{(x1, x2, . . . , xn) : x1 ∈ A1, x2 ∈ A2, . . . , xn ∈ An}.

(b) The elements (x1, x2, . . . , xn) of A1 × A2 × · · · × An are called
ordered n-tuples (ordered pairs when n = 2).

(c) The n-fold product A×A× · · · ×A is denoted An.

Definition. Given a set A, the power set of A, denoted P(A), is the set of
subsets of A, P(A) = {B : B ⊆ A}. That is, ∀ B, B ∈ P(A)↔ B ⊆ A.

Theorem (Basic Set Identities). Let A,B and C be sets (in some universe U).
Then, the following identities hold:

(a) (Ac)
c

= A. Double Complement
(b) (A ∩B) ∩ C = A ∩ (B ∩ C). Associativity

(A ∪B) ∪ C = A ∪ (B ∪ C).
(c) A ∩B = B ∩A. Commutativity

A ∪B = B ∪A.
(d) A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C). Distributivity

A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C).
(e) (A ∩B)

c
= Ac ∪Bc. De Morgan’s Laws

(A ∪B)
c

= Ac ∩Bc.
(f) If A ⊆ B, then A ∩B = A. Absorption Rules

If A ⊆ B, then A ∪B = B.

Theorem (Interactions with U and ∅). Let A be a set (in some universe U).
Then, the following identities hold:

(a) Uc = ∅.
∅c = U .

(b) A ∩ U = A.
A ∪ U = U .

(c) A ∩ ∅ = ∅.
A ∪ ∅ = A.

(d) A ∩Ac = ∅.
A ∪Ac = U .

Section 1.5

Definition. (a) An argument form p1; p2; · · · ; pn; ∴ r is a
sequence of (premise) statement forms p1, p2, . . . , pn followed by a
(conclusion) statement form r (preceded by the symbol ∴ for “there-
fore”).
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(b) The argument form is considered to be valid if and only if the
statement form p1 ∧ p2 ∧ · · · ∧ pn → r is a tautology. Otherwise, it
is considered to be invalid.

Theorem (Basic Valid Argument Forms).
(a) p→ q Direct Implication

p
∴ q

(b) p→ q Contrapositive Implication
¬q
∴ ¬p

(c) p→ q Transitivity of →
q → r
∴ p→ r

(d) p→ r Two Separate Cases
q → r
p ∨ q
∴ r

(e) p ∨ q Eliminating a Possibility
¬p
∴ q

(f) p ∧ q In Particular
∴ p

(g) p Obtaining Or
∴ p ∨ q

(h) p Obtaining And
q
∴ p ∧ q

(i) p↔ q Substitution of Equivalent
p
∴ q

Theorem (Principle of Specification). If the premises

∀ x ∈ U , p(x) and

a ∈ U

hold, then the conclusion p(a) also holds.

Theorem (Principle of Generalization). From the following steps:

(i) Take an arbitrary element a ∈ U .

(ii) Establish that p(a) holds.

the conclusion ∀ x ∈ U , p(x) is obtained.
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1.2 Chapter 2

Section 2.1

Existential Statements. To prove a statement of the form

∃ x ∈ U such that p(x)

it suffices to present an example of a particular element x ∈ U for which p(x)
holds.

Counterexamples. A statement of the form ∀ x ∈ U , p(x) is disproved by
presenting an example of a particular element x ∈ U for which p(x) does not
hold. Such an example is called a counterexample.

Universal Statements for Small Universes. If a universe U has a very
small cardinality, then it may be reasonable to prove a statement of the form
∀ x ∈ U , p(x) by verifying p(x) for each individual element x ∈ U .

Section 2.2

If-Then Statements. To prove

∀ x ∈ U , p(x)→ q(x)

we suppose that p(x) is true and then show that q(x) must be true under that
assumption.

Subsets. To prove S ⊆ T , we suppose that we have an element x ∈ S and
show that we must have x ∈ T .

Example. For all sets A and B, A ∩B ⊆ A.

Example (Transitivity of the Subset Relation). Let A,B, and C be sets. If
A ⊆ B and B ⊆ C, then A ⊆ C.

Set Equalities. One method of proving S = T is to prove
∀ x ∈ U , (x ∈ S ↔ x ∈ T ) through a sequence of equivalences.

Proof-Writing Strategies.

� A natural start gets the ball rolling.

� Thinking backwards from our destination tells us how to proceed.

� Throughout, the unwinding of definitions provides the details with which
and for which we work.
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Section 2.3

If and Only If Statements. We can prove a statement of the form p ↔ q
by first proving p→ q and then proving q → p.

Set Equalities Revisited. We can prove S = T by proving S ⊆ T and
T ⊆ S.

Section 2.4

Proofs by Contradiction. We suppose that the negation of the desired state-
ment holds, and show that this leads to a contradiction.

Proving the Contrapositive. We can prove an if-then statement p→ q by
supposing ¬q and establishing ¬p.

Theorem (∅ is Well-Defined). There is a unique set with no elements, namely
∅.

Section 2.5

If, in the course of a proof, we have an “or” statement p∨q, then we can proceed
by considering the cases
Case 1 : p.
Case 2 : q.
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1.3 Chapter 3

Section 3.1

Definition. An integer n is said to be even if n = 2k for some integer k, and
odd if n = 2k + 1 for some integer k.

Definition. Given integers n and d, we say that d divides n, written d | n, if
n = dk for some integer k. In this case, we also say that n is divisible by d,
that n is a multiple of d, that d is a divisor of n, or that d is a factor of n.
When n is not divisible by d, we write d - n.

Example (Transitivity of the Divides Relation). Let a, b, and c be integers. If
a | b and b | c, then a | c.

Theorem. Let a, b ∈ Z with b > 0. If a | b, then a ≤ b.

Definition. An integer p is said to be prime if p > 1 and the only positive
divisors of p are 1 and p. An integer n > 1 that is not prime is said to be
composite.

An integer n > 1 is composite if and only if
∃ r, s ∈ Z such that r > 1, s > 1, and rs = n.

Definition. Given integers m and n not both zero, their greatest common
divisor, denoted gcd(m,n), is the unique integer d such that

(i) d > 0,

(ii) d | m and d | n, and

(iii) ∀ c ∈ Z+, if c | m and c | n, then c ≤ d.

Definition. Two integers m and n are relatively prime if gcd(m,n) = 1.

Example. Given any positive integer k, gcd(k, 0) = k.

Lemma. Let n be any integer. Then, n and n+ 1 are relatively prime.

Section 3.2

Theorem (Well-Ordering Principle for the Integers). Each nonempty subset of
the nonnegative integers has a smallest element.

Theorem (Existence of Prime Divisors). Every integer greater than 1 has a
prime divisor.

Theorem. There are infinitely many primes.

Theorem (Division Algorithm). Given any integer n and any positive integer
d, there exist unique integers q and r such that n = dq + r and 0 ≤ r < d.
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Definition. In the Division Algorithm, we say that q is the quotient and r
is the remainder upon division of n by d. We also write q = n div d and
r = n mod d.

Definition. Let x be any real number.

(a) The floor of x, denoted bxc, is the largest integer n such that
n ≤ x.

(b) The ceiling of x, denoted dxe, is the smallest integer n such that
x ≤ n.

Theorem. Let x be any real number.

(a) bxc is the unique value n ∈ Z such that n ≤ x < n+ 1.

(b) dxe is the unique value n ∈ Z such that n− 1 < x ≤ n.

Theorem. Given any integer n and positive integer d, bnd c = n div d.

Example (Check Digit Formulas).

(a) In a Universal Product Code (UPC) number

d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12

d12 is determined by the requirement that

[3(d1+d3+d5+d7+d9+d11)+d2+d4+d6+d8+d10+d12] mod 10 = 0.

(b) In an International Standard Book Number (ISBN)

d1 − d2 d3 d4 d5 d6 d7 d8 d9 − d10

d10 is determined by the requirement that

[10d1+9d2+8d3+7d4+6d5+5d6+4d7+3d8+2d9+d10] mod 11 = 0.

The binary linear codes we consider in this book are constructed as fol-
lows. Given a message, encoded as a binary string b1b2 . . . bk, a binary linear
code specifies a code word b1b2 . . . bkbk+1 . . . bn by appending parity check
digits, which are determined by the sum of some of the binary digits in the
message. The weight w of a binary linear code is the minimum number of
ones that appear in a nonzero code word. In the method of nearest neighbor
decoding, we use the first k digits of the code word b1b2 . . . bn differing from
c1c2 . . . cn in the fewest number of digits.

A shift cipher has the form y = (x+b) mod n for some choice of an integer
b. To decrypt a message, the formula x = (y − b) mod n is used.
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Section 3.3

Theorem (Expressing the GCD as a Linear Combination). Given integers m
and n not both zero, there exist integers x and y such that gcd(m,n) = mx+ny.

Corollary. Two integers m and n are relatively prime if and only if there exist
integers x and y such that mx+ ny = 1.

Theorem (GCD Reduction). Let n and m be integers such that n ≥ m > 0.
Write n = mq+r where q, r ∈ Z with 0 ≤ r < m. Then, gcd(n,m) = gcd(m, r).

Algorithm 1 Euclid’s Algorithm for finding gcd(n,m)

Let n,m ∈ Z+ with n ≥ m.

Algorithm.
While m > 0,

\begin

Let r = n mod m.
Let n = m.
Let m = r.
\end.

Return n.

Theorem (Euclid’s Lemma). Let m,n, and c be integers. If c | mn and
gcd(c,m) = 1, then c | n.

Section 3.4

Definition. A real number r is said to be rational if r = a
b for some integers

a and b with b 6= 0.

Theorem. Z ⊆ Q.

Theorem 1.1 (Field Properties of Q). Let r, s ∈ Q. Then,

(a) 0, 1 ∈ Q.

(b) r + s ∈ Q.

(c) −s ∈ Q.

(d) rs ∈ Q.

(e) if s 6= 0, then 1
s ∈ Q.

Theorem 1.2 (Expressing Rational Numbers in Lowest Terms). Given r ∈ Q,
there exist unique a, b ∈ Z such that b > 0, gcd(a, b) = 1, and r = a

b . That is,
a
b expresses r in lowest terms.



14 CHAPTER 1. REVIEW SHEETS

Theorem 1.3 (When Decimals are Rational). A real number written in decimal
form represents a rational number if and only if the decimal part is either finite
or repeating. Moreover, a rational number r = a

b written in lowest terms has a
finite decimal expansion if and only if 2 and/or 5 are the only prime divisors of
b. Otherwise, the decimal part of r repeats.

Definition. A real number that is not rational is said to be irrational.

Theorem.
√

2 is irrational.

Theorem (Rational Roots Theorem). Let n ∈ Z+ and let
f(x) = cnx

n+cn−1x
n−1 + · · ·+c1x+c0 be a polynomial with integer coefficients

cn, cn−1, . . . , c1, c0 such that cn 6= 0. If r is a rational root of f (i.e. r ∈ Q and
f(r) = 0), then r = a

b for some a, b ∈ Z such that a | c0 and b | cn.

Definition. A real number r is said to be algebraic if r is a root of a polynomial
with integer coefficients. Real numbers which are not algebraic are said to be
transcendental.

Section 3.5

Definition. Given integers a, b, and n with n > 1, we say that a is congruent
to b modulo n, written a ≡ b (mod n), if n | (a− b).

Theorem (Congruence is an Equivalence Relation). Let a, b, and n be integers
with n > 1.

(a) a ≡ a (mod n).

(b) If a ≡ b (mod n), then b ≡ a (mod n).

(c) If a ≡ b (mod n) and b ≡ c (mod n), then a ≡ c (mod n).

Theorem (Arithmetic Properties of Congruence). Let a1, a2, b1, b2, and n be
integers with n > 1. If a1 ≡ a2 (mod n) and b1 ≡ b2 (mod n), then

(a) a1 + b1 ≡ a2 + b2 (mod n), and

(b) a1b1 ≡ a2b2 (mod n).

Lemma. Given integers n and d with d > 1, we have n mod d ≡ n (mod d),
and, moreover, n mod d is the unique integer in {0, 1, . . . , d−1} congruent to
n modulo d.

Lemma (Modular Cancellation Rule). Let a, b1, b2, n be integers with n > 1.
Suppose that ab1 ≡ ab2 (mod n) and gcd(a, n) = 1. Then, b1 ≡ b2 (mod n).

Definition. Given a, n ∈ Z with n > 1, a multiplicative inverse of a mod-
ulo n is an integer c such that ac ≡ 1 (mod n).

Lemma. Given n ∈ Z with n > 1, an integer a has a multiplicative inverse
modulo n if and only if gcd(a, n) = 1.
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A linear cipher has the form y = (ax+b) mod n, for some choice of integers
a, b, and n. When a has a multiplicative inverse c modulo n, deciphering is
accomplished with x = c(y − b) mod n.

For RSA encryption, an integer n is known to the sender and receiver of
a secret message. Specifically, n is chosen by the receiver to be the product
of two (large) primes p and q. Also, the receiver picks an integer a that has
a multiplicative inverse c modulo m = lcm(p− 1, q − 1). The sender encrypts
a message x using y = xa mod n. The receiver decrypts the message using
x = yc mod n.

Theorem (Fermat’s Little Theorem). If p is a prime, a ∈ Z, and p - a, then
ap−1 ≡ 1 (mod p).

Corollary. Let n ∈ Z with n > 1.
If there exists a ∈ Z such that an 6≡ a (mod n), then n is not prime.

Given integers a and n > 1, the equivalence class of a modulo n is
[a]n = {k : k ∈ Z and k ≡ a (mod n)}. For all a, b ∈ Z, [a]n = [b]n if and only
if a ≡ b (mod n). We define Zn = {[a]n : a ∈ Z}.

Theorem (Zn Forms a Group Under +). Let n be an integer such that n > 1,
and let a, b, c ∈ Z. Then,

(a) ([a]n + [b]n) + [c]n = [a]n + ([b]n + [c]n), Associativity
(b) [0]n + [a]n = [a]n, Identity
(c) [−a]n + [a]n = [0]n. Inverse
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1.4 Chapter 4

Section 4.1

n factorial is defined by n! = n(n− 1)(n− 2) · · · 2 · 1. Given integers n and k
with 0 ≤ k ≤ n, the binomial coefficient is defined by

(
n
k

)
= n!

k!(n−k)! .

We express a sequence in the form {sn}n≥a and mean that our sequence
consists of the terms sa, sa+1, sa+2, sa+3, sa+4, sa+5, . . ., where a ∈ Z. That is,
the sequence has been indexed by the integers a, a+1, a+2, a+3, a+4, a+5, . . ..

An arithmetic sequence with given first term s0 and common difference
c is generated by the formula ∀n ≥ 0, sn = s0 + cn. A geometric sequence
with given first term s0 and multiplying factor r is generated by the formula
∀n ≥ 0, sn = s0r

n.

Example (Recursion in Arithmetic and Geometric Sequences).

(a) An arithmetic sequence is expressed recursively by specifying s0

and a constant c for which ∀n ≥ 1, sn = sn−1 + c.

(b) A geometric sequence is expressed recursively by specifying s0

and a constant r for which ∀n ≥ 1, sn = rsn−1.

Section 4.2

Given a sequence {sn}, the sum S = sa + sa+1 + sa+2 + · · · + sb−1 + sb is

represented in sigma notation as S =

b∑
i=a

si.

Theorem. Let a, b ∈ Z, let {sn} and {tn} be sequences, and let c ∈ R.

(a)

b∑
i=a

(si ± ti) =

b∑
i=a

si ±
b∑
i=a

ti.

(b)

b∑
i=a

csi = c

b∑
i=a

si.

Theorem. Let n ∈ Z with n ≥ 1. Then,

(a)

n∑
i=1

1 = n.

(b)

n∑
i=1

i =
n(n+ 1)

2
.

(c)

n∑
i=1

i2 =
n(n+ 1)(2n+ 1)

6
.
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(d)

n∑
i=1

i3 =

[
n(n+ 1)

2

]2

.

Theorem. Let r ∈ R with r 6= 1 and n ∈ Z with n ≥ 0. Then,

n∑
i=0

ri =
rn+1 − 1

r − 1
.

Theorem. Let m ≥ 1 and n ≥ 1 be integers. Then,

n∑
i=1

im =
(n+ 1)((n+ 1)m − 1)−

∑m−1
j=1

[(
m+1
j

)∑n
i=1 i

j
]

m+ 1
.

In product notation, the product P = sa · sa+1 · sa+2 · · · · · sb is represented

by P =

b∏
i=a

si.

Section 4.3

Outline (Proof by Mathematical Induction). To show: ∀ n ≥ a, P (n).
Proof by induction

1. Base cases:
Show: P (a), . . . , P (b) are true.

2. Inductive step:
Show: ∀ k ≥ b, if P (k) is true, then P (k + 1) is true.
That is,

(a) Suppose k ≥ b and that P (k) is true.

(b) Show: P (k + 1) is true.

Theorem (Principle of Mathematical Induction). Let a ≤ b be integers, and
let P (n) be an expression that depends on the free integer variable n. If

(i) P (a), . . . , P (b) hold, and

(ii) ∀ k ≥ b, if P (k) holds, then P (k + 1) holds,

then, the statement ∀ n ≥ a, P (n) holds.

Section 4.4

Suppose we wish to prove by induction that ∀ n ≥ 1,

n∑
i=1

si = p(n). In the in-

ductive step, we split the sum

k+1∑
i=1

si into

(
k∑
i=1

si

)
+ sk+1 and use the inductive

hypothesis to substitute

k∑
i=1

si = p(k).
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Section 4.5

Outline (Proof by Strong Induction). To show: ∀ n ≥ a, P (n).
Proof by strong induction

1. Base cases:
Show: P (a), . . . , P (b) are true.

2. Inductive step:
Show: ∀ k ≥ b, if P (a), . . . , P (k) are true, then P (k + 1) is true. That is,

(a) Suppose k ≥ b and that P (i) is true for all a ≤ i ≤ k.

(b) Show: P (k + 1) is true.

Theorem (Principle of Strong Induction). Let a ≤ b be integers, and let P (n)
be an expression that depends on the free integer variable n. If

(i) P (a), . . . , P (b) hold, and

(ii) ∀ k ≥ b, if P (i) holds for each a ≤ i ≤ k, then P (k + 1) holds,

then, the statement ∀ n ≥ a, P (n) holds.

Definition. The expression of an integer n > 1 as a product of the form n =
pe11 · p

e2
2 · · · · · pemm , where m is a positive integer, p1 < p2 < · · · < pm are

primes, and e1, e2, . . . , em are positive integers, is referred to as the standard
factorization of n.

Theorem (Fundamental Theorem of Arithmetic). Every integer greater than
1 has a unique standard factorization.

The Fibonacci sequence {Fn}n≥0 is defined by F0 = 1, F1 = 1 and
∀ n ≥ 2, Fn = Fn−2 + Fn−1.

Example. ∀ n ≥ 2, Fn =
1√
5

(1 +
√

5

2

)n+1

−

(
1−
√

5

2

)n+1
.

Section 4.6

Pascal’s triangle (
0
0

)(
1
0

) (
1
1

)(
2
0

) (
2
1

) (
2
2

)(
3
0

) (
3
1

) (
3
2

) (
3
3

)(
4
0

) (
4
1

) (
4
2

) (
4
3

) (
4
4

)
...
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is characterized by the identities

∀ n ≥ 0,
(
n
0

)
=
(
n
n

)
= 1,

∀ n ≥ 2 and 1 ≤ k ≤ n− 1,
(
n
k

)
=
(
n−1
k−1

)
+
(
n−1
k

)
,

the second of which is known as Pascal’s identity.

Theorem (The Binomial Theorem). Let a, b ∈ R and n ∈ N. Then,

(a+ b)n =

n∑
i=0

(
n

i

)
an−ibi
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1.5 Chapter 5

Section 5.1

Definition. Given sets X and Y , a relation from X to Y is a subset R of
X×Y . When (x, y) ∈ R, we say that x is related to y (by R) and write x R y.
Similarly, (x, y) 6∈ R is denoted by x 6R y.

Definition. A relation on a set X is a relation from X to itself.

Definition. The inverse of a given relation R from a set X to a set Y is the
relation R−1 = {(y, x) : y ∈ Y, x ∈ X, and (x, y) ∈ R} from Y to X. That is,
∀ y ∈ Y, x ∈ X, y R−1 x if and only if x R y.

An arrow diagram for R from X to Y is constructed by representing the sets
X and Y in disjoint regions and drawing an arrow from an element x ∈ X to
an element y ∈ Y if and only if x R y.

Given a relation R on a finite set X, a directed graph, or digraph, for R is
obtained by displaying the elements of X and drawing an arrow from an element
x to an element y if and only if x R y.

A relation R from a finite set X to a finite set Y may be represented by a |X|
by |Y | matrix. For each x ∈ X and y ∈ Y , the entry in row x and column y is
assigned the value 1 if x R y and 0 if x 6R y.

Since a relation on R is a subset of R × R, its graph may be drawn in the
Cartesian plane.

Definition. A relation R on a set X is said to be

(a) reflexive if ∀ x ∈ X, x R x.

(b) symmetric if ∀ x, y ∈ X, x R y → y R x.

(c) antisymmetric if ∀ x, y ∈ X, x R y and y R x → x = y.

(d) transitive if ∀ x, y, z ∈ X, x R y and y R z → x R z.

Theorem. Let R be any relation on a set X. Suppose R is symmetric and
transitive and every x ∈ R has some y ∈ R to which it is related (i.e., ∀ x ∈
R,∃ y ∈ R such that x R y). Then, R is reflexive.

Section 5.2

Definition. A partial order relation or partial ordering on a set X is a
relation on X that is reflexive, antisymmetric, and transitive. In this case, we
say that X is a partially ordered set or poset (under R). Given a partial
order relation R on a set X and two elements x, y ∈ X, we say that x is
comparable to y (under R) if and only if x R y or y R x. Otherwise, x and y
are said to be incomparable.
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A Hasse diagram for a relation R on a set X is constructed as follows.

(1) Construct a digraph with the elements of X arranged so that all of the
arrows point upward.

(2) Delete all loops.

(3) Delete any arrows that follow from transitivity.

(4) Delete the direction indicators from the arrows.

Definition. A partial order relation R on a set X is called a total order
relation or linear order relation if every pair of elements is comparable. In
this case, we say that X is a totally ordered set or linearly ordered set
(under R).

Given a character set C, a word over C is a string x1x2 · · ·xn, where n ∈
Z+ and x1, x2, . . . , xn ∈ C. When C is partially ordered by some relation
�, we construct the lexicographic ordering E on the set of words over C.
Given ~x = x1x2 · · ·xm and ~y = y1y2 · · · yn, let k be the largest index such that
x1x2 · · ·xk = y1y2 · · · yk, and define ~xC ~y if either k = m < n or k < m,n and
xk+1 � yk+1. Take ~xE ~y precisely if ~xC ~y or ~x = ~y.

Definition. An equivalence relation on a set X is a relation on X that is
reflexive, symmetric, and transitive. Given an equivalence relation R on a set
X and two elements x, y ∈ X, we say that x is equivalent to y (under R) if
and only if x R y.

Definition. Given an equivalence relation R on a set X, the equivalence class
(under R) of an element x ∈ X is the set {y : y ∈ X and y R x} of all elements
of X that are equivalent to x. It is denoted by [x]R, and the subscript is dropped
from our notation if the relation R is understood in context. A representative
of an equivalence class [x] is an element y ∈ [x].

Lemma. Let X be any set and R be any equivalence relation on X. For all
x, y ∈ X, y R x if and only if [y] = [x].

Theorem. Let X be any set and R be any equivalence relation on X. For all
x, y ∈ X, [y] 6= [x] if and only if [y] ∩ [x] = ∅.

Definition. Let A be a collection of sets from some universe U .

(a) The union of A, denoted
⋃
A∈A

A, is the set defined by ∀ x ∈ U ,

x ∈
⋃
A∈AA iff x ∈ A for some A ∈ A.

(b) We say that A is a collection of disjoint sets if ∀ A,B ∈ A, if
A 6= B, then A ∩B = ∅.

Definition. A partition of a set X is a collection A of disjoint nonempty
subsets of X whose union is X.
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Lemma. Given an equivalence relation R on a nonempty set X, the collection
of equivalence classes {[x] : x ∈ X} is a partition of X, called the partition
of X corresponding to R.

Lemma. Given a partition A of a set X, the relation R defined by x R y if and
only if ∃ A ∈ A such that x, y ∈ A. is an equivalence relation on X, called the
equivalence relation on X corresponding to A.

Theorem (Correspondence between Equivalence Relations and Partitions). Let
X be a set, R be an equivalence relation on X, and A be a partition of X. Then,
A is the partition of X corresponding to R if and only if R is the equivalence
relation on X corresponding to A.

Section 5.3

Definition. A function f from X to Y , denoted f : X −→ Y , is a relation
from X to Y such that each x ∈ X is related to a unique y ∈ Y . In this context,
we write f(x) = y in place of x f y or (x, y) ∈ f . When f is understood, we
may also write x 7→ y.

(a) When f(x) = y, so x 7→ y, we say that f maps the element x to
the element y or that y is the image of x (under f). We also say
that f maps the set X to the set Y . In fact, functions are sometimes
called maps.

(b) The domain of f is the set X. That is, domain(f) = X.

(c) The codomain, or target, of f is the set Y .

(d) The range, or image, of f is the set
range(f) = {y : y ∈ Y and f(x) = y for some x ∈ X}.

Definition. Given functions f : X −→ Y and g : W −→ Z such that the
range of f is a subset of the domain of g, their composite, denoted g ◦f , is the
function g ◦f : X −→ Z defined by the formula ∀ x ∈ X, (g ◦f)(x) = g(f(x)).

Theorem (Associativity of Function Composition).
Given any functions f : X −→ Y , g : Y −→ Z, and h : Z −→W ,
(h ◦ g) ◦ f = h ◦ (g ◦ f).

Definition. (a) A real polynomial function is a real function f
for which there are n ∈ N and cn, cn−1, . . . , c0 ∈ R such that
∀ x ∈ R, f(x) = cnx

n + cn−1x
n−1 + · · ·+ c1x+ c0.

(b) An exponential function is a real function f for which there
is some b ∈ R+ such that ∀ x ∈ R, f(x) = bx. The number
b is called its base. The function f(x) = ex is called the natural
exponential function.

The graph of a function f : X −→ Y is the set
{(x, y) : x ∈ X, y ∈ Y, and f(x) = y}.
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Test (Vertical Line Test). Let X,Y ⊆ R, and let R be a relation from X to Y .
Consider all vertical lines in R2. If every such vertical line intersects R at most
once, then R is a function. Moreover, each vertical line x = a should intersect
R exactly once if a ∈ X, and not at all if a 6∈ X.

Test (The Horizontal Line Range Test). Let X,Y ⊆ R, and let f : X −→ Y .
Consider all horizontal lines in R2. The range of f consists of all values b such
that the line y = b intersects the graph of f at least once.

Section 5.4

Definition. Given a set X, the identity function on X, denoted idX , is the
function idX : X −→ X given by the formula ∀ x ∈ X, idX(x) = x.

Lemma. Let f : X −→ Y be any function. Then, f ◦ idX = f and idY ◦ f = f .

Definition. Let a function f : X −→ Y be given.

(a) We say that f is one-to-one, or injective, if ∀ x1, x2 ∈ X,
if f(x1) = f(x2) then x1 = x2.

(b) We say that f is onto, or surjective, if range(f) = Y .

(c) We say that f is bijective if f is both one-to-one and onto. A
bijective function is said to be a bijection or a one-to-one corre-
spondence.

Test (Horizontal Line Tests). Let X ⊆ R, Y ⊆ R, and f : X −→ Y . Consider
all horizontal lines in R2 of the form y = b for some b ∈ Y .

(a) If every such horizontal line intersects the graph of f at most
once, then f is one-to-one.

(b) If every such horizontal line intersects the graph of f at least once,
then f is onto.

Theorem (Composition Preserves One-to-one and Onto). Let f : X −→ Y and
g : Y −→ Z be functions.

(a) If f and g are one-to-one, then g ◦ f is one-to-one.

(b) If f and g are onto, then g ◦ f is onto.

(c) If f and g are bijective, then g ◦ f is bijective.

Definition. Two functions f : X −→ Y and g : Y −→ X are said to be
inverses of one another if g ◦ f = idX and f ◦ g = idY .

Theorem. Let f : X −→ Y be any function.

(a) If f is a bijection, then f−1 is a function and f and f−1 are
inverses of one another.
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(b) If there is a function g : Y −→ X such that f and g are inverses
of one another, then f is a bijection and g = f−1.

Definition. If a function f : X −→ Y satisfies the hypotheses of either part (a)
or part (b) of the previous theorem, then the function f−1 defined by, ∀ x ∈ X
and y ∈ Y , f−1(y) = x if and only if f(x) = y is called the inverse function
for f .

The inverse of the exponential function f(x) = bx is the logarithm base b
function g(x) = logb(x). That is, ∀ x ∈ R and y ∈ R+, logb(y) = x if and only
if bx = y.

Definition. The natural logarithm function is the function ln : R+ −→ R
given by ∀ x ∈ R+, ln(x) = loge(x).

Section 5.5

Definition. Let a function f : X −→ Y be given.

(a) Given a subset S of X, the image of S under f is the set given
by f(S) = {t : t ∈ Y and f(s) = t for some s ∈ S}.

(b) Given a subset T of Y , the inverse image of T under f is the
set given by f−1(T ) = {s : s ∈ X and f(s) = t for some t ∈ T}.

Definition. Let U be some fixed universal set. Given a set I and a function
that assigns to each i ∈ I a set Ai in U , we say that I is the indexing set for
the indexed collection {Ai}i∈I of sets.

Definition. Let I be the indexing set for an indexed collection of sets {Ai}i∈I
from some universe U .

(a) The union of {Ai}i∈I , denoted
⋃
i∈I

Ai, is the set defined by

∀ x ∈ U , x ∈
⋃
i∈I

Ai ↔ x ∈ Ai for some i ∈ I.

(b) The intersection of {Ai}i∈I , denoted
⋂
i∈I

Ai, is the set defined

by ∀ x ∈ U , x ∈
⋂
i∈I

Ai ↔ x ∈ Ai for every i ∈ I.

Section 5.6

Definition. (a) Two sets A and B are said to have the same cardi-
nality if there is a bijection from A to B.

(b) Given n ∈ N, a set A is said to have cardinality n if A has the
same cardinality as the set {k : k ∈ Z and 1 ≤ k ≤ n}.
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(c) A set A is said to be finite, or to have finite cardinality, if A
has cardinality n for some n ≥ 0. Otherwise, A is said to be infinite.

Theorem (Common Cardinality is an Equivalence Relation). Let A, B, and C
be any sets in some fixed universal set U .

(a) A has the same cardinality as itself.

(b) If A has the same cardinality as B, then B has the same cardi-
nality as A.

(c) If A has the same cardinality as B and B has the same cardinality
as C, then A has the same cardinality as C.

Theorem (The Pigeon Hole Principle). If A is any set of cardinality n and B is
any set of cardinality m with n > m, then there is no one-to-one function from
A to B. That is, any function from A to B must send two distinct elements of
A to the same element of B.

Corollary. Let A be a set with cardinality n, and let m ∈ Z with m 6= n. Then,
A does not have cardinality m.

Definition. Let A be any set.

(i) A is said to be countably infinite if A has the same cardinality
as Z+.

(ii) A is said to be countable if A is finite or countably infinite.

(iii) A is said to be uncountable if A is not countable.

Theorem. R is uncountable.

Theorem. Q is countably infinite.

Theorem. All intervals containing more than one element (including the in-
terval (−∞,∞) = R) have the same cardinality.
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1.6 Chapter 6

Section 6.1

Theorem (Multiplication Principle). Let A be a set of outcomes we wish to
count. If there is a set of outcomes A1, and, for each outcome in A1, there is a
set of outcomes A2 such that

(i) each outcome from A can be uniquely characterized by a pair of
outcomes, the first from A1 and the second from its corresponding
set A2, and

(ii) for each outcome from A1, the number |A2| is the same,

then |A| = |A1| · |A2|.

General Multiplication Principle. Suppose that n ≥ 2 and each outcome
in a set A is uniquely characterized by a sequence of outcomes, one from each of
a sequence of sets A1, A2, . . . , An. If, for each 2 ≤ k ≤ n, the number |Ak| does
not depend on any of the sets Ai for 1 ≤ i ≤ k−1, then |A| = |A1|·|A2|·· · ··|An|.

Section 6.2

A permutation of a set of objects is an ordering of those objects.

Theorem. The number of ways to put n distinct items in order is n!.

Definition. A permutation of k objects from a set of size n is an ordered
list of k of the n objects. The number of permutations of k objects from n is
denoted P (n, k).

Theorem. Let n, k ∈ Z with 0 ≤ k ≤ n. Then,
P (n, k) = n(n− 1) · · · (n− k + 1) = n!

(n−k)! .

Definition. A combination of k elements from a set of size n is a subset of
size k.

Theorem. Let n, k ∈ Z with 0 ≤ k ≤ n. Given a set of n distinct elements, the
number of subsets of size k is given by the binomial coefficient

(
n
k

)
= n!

k!(n−k)! .

Section 6.3

Theorem (Addition Principle). Finite sets A and B are disjoint if and only if
|A ∪B| = |A|+ |B|.
Theorem (Complement Principle). Given a subset A of a finite universal set
U , |A| = |U| − |Ac|.
Theorem (Basic Inclusion-Exclusion Principle). Given finite sets A and B,
|A ∪B| = |A|+ |B| − |A ∩B|.
Corollary. Given subsets A and B of a finite universal set U , |Ac ∩ Bc| =
|U| − |A| − |B|+ |A ∩B|.
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Euler phi-function. For any positive integer n, the value φ(n) is defined to
be the number of integers from 1 to n that are relatively prime to n.

Section 6.4

An experiment is a specific task of consideration. The possible results of the
experiment are called outcomes, and the set S of all possible outcomes is called
the sample space for the experiment. A subset E of S is said to be an event.
Given a particular event E, the probability of E, denoted P (E), is a value
between 0 and 1 that gives the likelihood that an outcome in E will occur if the
experiment is performed.

Definition. Let S be a finite sample space. The outcomes in S are said to be
equally likely if ∀ x, y ∈ S, P (x) = P (y). That is, ∀ x ∈ S, P (x) = 1

|S| .

Definition (Probability when outcomes are equally likely). If the outcomes in
a finite sample space S are all equally likely, then the probability of an event

E is given by P (E) = |E|
|S| .

Theorem (Probability Complement Principle). If E is an event in a sample
space S, then P (E) = 1− P (Ec).

Theorem (Basic Probability Inclusion-Exclusion). Given events E and F in a
sample space S, P (E ∪ F ) = P (E) + P (F )− P (E ∩ F ).

Definition. Let E and F be events in a sample space S with P (F ) > 0.
The conditional probability of E given F , denoted P (E | F ), is given by

P (E | F ) = P (E∩F )
P (F ) .

Definition. Two events E and F in a sample space S are said to be indepen-
dent if P (E ∩ F ) = P (E) · P (F ).

Theorem. Suppose E,F1, . . . , Fn are events in a sample space S with P (F1),
. . ., P (Fn) positive, and S is a disjoint union S = F1 ∪ · · · ∪ Fn. Then,

P (E) =

n∑
i=1

P (E | Fi)P (Fi).

Corollary (Bayes’ Formula). Suppose E,F1, . . . , Fn are events in a sample
space S with P (E), P (F1), . . . , P (Fn) positive, and S is a disjoint union S =

F1 ∪ · · · ∪ Fn. Then, for any 1 ≤ k ≤ n, P (Fk | E) =
P (E | Fk)P (Fk)∑n
i=1 P (E | Fi)P (Fi)

.

Section 6.5

A standard deck contains 52 cards. There are 13 of each suit (clubs ♣,
diamonds ♦, hearts ♥, and spades ♠), and each suit is numbered with the
13 denominations 2, 3, 4, 5, 6, 7, 8, 9, 10, Jack,Queen,King,Ace listed here in
increasing order of value. Jacks, Queens, and Kings are called face cards. A
run of 5 cards is any set of 5 cards whose denominations are either 5 consecutive
denominations from the list above or the list Ace, 2, 3, 4, 5.
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Hand Description
Straight-Flush A run of 5 cards of the same suit
Four of a Kind 4 cards of one denomination
Full House 3 cards of one denomination and 2 of one other
Flush 5 cards of the same suit, not forming a run
Straight A run of 5 cards, not all of the same suit
Three of a Kind 3 cards of one denomination and 2 of others
Two Pairs 2 cards each of two denominations and 1 of one other
One Pair 2 cards of one denomination and 3 of others
Nothing None of the hands listed above

Table 5: Order and Description of Poker Hands

Theorem. The number of ways to distribute n identical items into c distinct
categories is

(
n+c−1
n

)
.

Section 6.6

A useful counting technique is to start with a count that is too large because
it ignores a set of symmetries and then divide out by the size of that set of
symmetries.
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1.7 Chapter 7

Section 7.1

Theorem (Generalized Inclusion-Exclusion Principle). Let n sets A1, A2, . . . , An

be given. For each 1 ≤ i ≤ n, define Si =
∑

1≤j1<j2<···<ji≤n

|Aj1 ∩Aj2 ∩ · · · ∩Aji |.

Then, |A1 ∪A2 ∪ · · · ∪An| =
n∑
i=1

(−1)i−1Si.

E.g., the Inclusion-Exclusion Principle for n = 4.

|A1∪A2∪A3∪A4| = |A1|+ |A2|+ |A3|+ |A4|
−(|A1∩A2|+|A1∩A3|+|A1∩A4|+|A2∩A3|+|A2∩A4|+|A3∩A4|)
+(|A1∩A2∩A3|+ |A1∩A2∩A4|+ |A1∩A3∩A4|+ |A2∩A3∩A4|)
−|A1 ∩A2 ∩A3 ∩A4|

Corollary. Given subsets A1, A2, . . . , An of U with S0 = |U| ∈ N,

|A1
c ∩A2

c ∩ · · · ∩Anc| =
n∑
i=0

(−1)iSi.

A derangement of a set is a permutation that leaves no element fixed.

Section 7.2

Given nonnegative integers k1, k2, . . . , km and n = k1 + k2 + · · · km, the multi-

nomial coefficient is defined by

(
n

k1, k2, · · · , km

)
=

n!

k1!k2! · · · km!
.

Theorem 1.4. Given nonnegative integers k1, k2, . . . , km, and n = k1 + k2 +
· · ·+ km, the multinomial coefficient

(
n

k1,k2,··· ,km

)
counts the number of ways to

split n distinct items into m distinct categories of sizes k1, k2, . . . , km.

Theorem 1.5 (The Multinomial Theorem). Let a1, a2, . . . am ∈ R and n ∈ N.
Then,

(a1 + a2 + · · ·+ am)n =
∑

0 ≤ k1, k2, . . . , km ≤ n
k1 + k2 + · · ·+ km = n

(
n

k1, k2, · · · km

)
ak1

1 a
k2
2 · · · akmm .

The number of terms in the expansion of (a1 + a2 + · · ·+ am)n is
(
n+m−1

n

)
.

Section 7.3

Definition. The generating function for a given sequence c0, c1, c2, . . . of real
numbers is the function g(x) =

∑∞
i=0 cix

i = c0 + c1x+ c2x
2 + · · · , where x is a

real variable (and we identify x0 = 1).
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Theorem. Let n ∈ Z+, and let g(x) = c0 + c1x+ c2x
2 + · · · . Then,

(a) g(x) = 1−xn+1

1−x if and only if, for each 0 ≤ i ≤ n, ci = 1, and, for
each i > n, ci = 0.

(b) g(x) = 1
(1−x)n if and only if, for each i ≥ 0, ci =

(
i+n−1

i

)
.

(c) g(x) = (1 + x)n if and only if, for each 0 ≤ i ≤ n, ci =
(
n
i

)
, and,

for each i > n, ci = 0.

Section 7.4

Definition. A group is a set G together with a binary operation � (called
composition) such that ∀ g, h ∈ G, g � h ∈ G and the following conditions hold.

(i) ∀ g, h, k ∈ G, (g � h) � k = g � (h � k).

(ii) ∃ e ∈ G such that ∀ g ∈ G, e � g = g � e = g.

(iii) ∀ g ∈ G,∃ g−1 ∈ G such that g−1 � g = g � g−1 = e.

Definition (Symmetry Groups for Regular n-gons). Let n ≥ 3, and let B be a
regular n-gon. For each i ∈ Z, let ri denote the clockwise rotation of B about
its center by 360i

n degrees. Let f1, f2, . . . , fn denote the n reflections (flips) of B
about lines through its center.
(a) Zn = {r0, r1, . . . , rn−1} forms the cyclic group of order n.
(b)Dn = {r0, r1, . . . , rn−1, f1, f2, . . . , fn} forms the dihedral group of order 2n.

Definition. Given a group G with composition � and a set X, we say that G
acts on X via operation ∗ if ∀ g ∈ G,∀ x ∈ X, g ∗ x ∈ X and the following
conditions hold.

(i) ∀ x ∈ X, e ∗ x = x.

(ii) ∀ g, h ∈ G,∀ x ∈ X,h ∗ (g ∗ x) = (h � g) ∗ x.

Definition. Let a group G act on a set X. For each x ∈ X, the orbit of x is
the set Orb(x) = {y : y ∈ X and y = gx for some g ∈ G}. An orbit is a set
Orb(x) for some x ∈ X.

Theorem. If a group G acts on a set X, then the orbits partition X.

Theorem (Burnside’s Formula). Let a group G act on a set X, and ∀ g ∈ G,
let Fix(g) = {x : x ∈ X and gx = x}. Then, the number of orbits under this

action is N =
1

|G|
∑
g∈G
|Fix(g)|.

Section 7.5

A combinatorial proof is a proof of a combinatorial identity by solving a
counting problem in two different ways.
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1.8 Chapter 8

Section 8.1

Definition. (a) A graph G consists of a pair of sets VG and EG
together with a function εG : EG −→ P2(VG) ∪ P1(VG). We write
G = (VG, EG), and, rather than writing εG(e) = {u, v}, we write
e 7→ {u, v}. An element of VG is called a vertex of G, and an
element of EG is called an edge of G. When a particular graph G
is clear in context, the subscripts are dropped from V , E, and ε.

(b) If e 7→ {u, v}, then we say that the vertices u and v are the
endpoints of the edge e, that u and v are adjacent, and that v is a
neighbor of u. We say that an edge is incident with its endpoints.

(c) An edge e such that e 7→ {v}, for some v ∈ V , is called a loop; it
has a single endpoint. Two or more edges assigned the same set of
endpoints are called multiple edges (or parallel edges).

(d) A simple graph is a graph G = (V,E) that has no loops and no
multiple edges.

Definition. A drawing of a graph G = (V,E) in the plane is a one-to-one as-
signment of the vertices to points in the plane and, for each edge, the assignment
of a curve joining the ends of the edge in such a way that (i) the only vertex
points hit by a curve are the endpoints of the edge it represents, (ii) each curve
is one-to-one (i.e., does not intersect itself) with the exception that the ends
of a loop edge are assigned to a common point, and (iii) the images of curves
associated with two distinct edges intersect in at most finitely many points. An
intersection of two curves outside of their endpoints is called a crossing.

Definition. We say that a graph H = (W,F ) is a subgraph of a graph G =
(V,E) if W ⊆ V , F ⊆ E, and the endpoints of edges in F all lie in W and are
the same as they are in G. Given a subset W of the vertex set V for a graph
G = (V,E), the subgraph induced by W is the subgraph whose edges set is
{e : e ∈ E and the ends of e are in W}.

Definition. (a) A walk in a graph G = (V,E) is an alternating list
of vertices and edges v0, e1, v1, e2, v2, e3, . . . , vn−1, en, vn with n ≥ 0
that starts at vertex v0, ends at vertex vn, and, in which, for each
1 ≤ i ≤ n, ei 7→ {vi−1, vi}. The length of a walk is the number of
edges it contains (counting multiple occurrences of the same edge),
here n.

(b) A circuit is a walk of positive length that starts and ends at the
same vertex.

(c) A trail is a walk with no repeated edges. In a graph with multiple
edges, distinct multiple edges may be included.
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(d) A path is a walk with no repeated vertices.

(e) A cycle is a circuit in which the only vertex repetition is vn = v0.

(f) The distance between two vertices u and v inG, denoted distG(u, v),
is the length of the shortest walk in G between u and v. If there is no
walk, then we assign distG(u, v) = ∞. When G is clear in context,
the subscripts may be dropped.

Definition. (a) A graph G is connected if, for any two vertices,
there is a path between them. Otherwise, G is disconnected.

(b) A component of a graph G is a connected subgraph H that is
not contained in any other connected subgraph of G.

Section 8.2

Definition. Let n ∈ Z+, and let V = {1, 2, . . . , n}.

(a) The path on n vertices is the graph Pn with vertex set V and
edge set E = {{1, 2}, {2, 3}, . . . , {n− 1, n}}.

(b) The cycle on n vertices is the graph Cn with vertex set V and
edge set E = {{1, 2}, {2, 3}, . . . , {n− 1, n}, {n, 1}}. When n = 2, we
take C2 to have two parallel edges.

Theorem. Given a simple graph G = (V,E),

(a) if |V | ≤ 1, then |E| = 0,

(b) if |V | ≥ 2, then 0 ≤ |E| ≤
(|V |

2

)
.

Definition. Given an integer n ≥ 1, the complete graph on n vertices is
the simple graph Kn with vertex set V = {1, 2, . . . , n} and edge set E = P2(V ).
Any graph in which every pair of vertices is adjacent is said to be complete.

Definition. Given any n ∈ N, the empty graph on n vertices is the graph
Φn with vertex set V = {1, 2, . . . , n} and edge set E = ∅. Any graph in which
no pair of vertices is adjacent is said to be empty.

Definition. A graph G = (V,E) is bipartite if V can be expressed as a disjoint
union V1 ∪ V2 such that each edge of G has one endpoint in V1 and one in V2.
In this case, the pair (V1, V2) is said to form a bipartition of G. Note that, for
i = 1 or 2, the subgraph induced by Vi is empty.

Theorem. Let G be any graph. Then, G is bipartite if and only if every cycle
in G has even length.

Definition. Given integers m,n ≥ 1 and sets V1 = {(1, 1), (1, 2), . . . , (1,m)}
and V2 = {(2, 1), (2, 2), . . . , (2, n)}, the complete bipartite graph Km,n has
vertex set V = V1 ∪ V2 and edge set E = {{v1, v2} : v1 ∈ V1 and v2 ∈ V2}.
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Figure 1: The Platonic Solids’ Graphs

Definition. The n-dimensional cube Qn is the simple graph whose vertex set
is the set of binary sequences of length n and whose edges connect two vertices
if and only if they differ in exactly one coordinate.

Section 8.3

Definition. An adjacency matrix for a graph G on n vertices is an n by n
matrix A = [ai,j ] obtained by fixing an ordering of the vertices, say v1, v2, . . . , vn,
and, for each 1 ≤ i ≤ n and 1 ≤ j ≤ n, taking ai,j to be the number of edges
connecting vi to vj .

Definition (Matrix Multiplication). Given an m by n matrix A = [ai,j ] and an
n by p matrix B = [bi,j ], their product AB is defined to be the m by p matrix
C = [ci,j ] such that, for each 1 ≤ i ≤ m and 1 ≤ j ≤ p, ci,j =

∑n
k=1 ai,kbk,j .

Definition. Let n ∈ Z+.

(a) The n by n identity matrix is the matrix In = [ai,j ] such that
ai,j = 1 if i = j, and ai,j = 0 otherwise.

(b) Given a permutation p1, p2, . . . , pn of the integers 1, 2, . . . , n, the
corresponding permutation matrix is the n by n matrix P = [ai,j ]
such that ai,j = 1 if pi = j, and ai,j = 0 otherwise.
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Theorem. Let A be the adjacency matrix for a graph G obtained from the
ordering v1, v2, . . . , vn of its vertices, and let m ∈ N. Then, the mth power of
A, say Am = [bi,j ], has the property that, for each 1 ≤ i ≤ n and 1 ≤ j ≤ n, the
entry bi,j is the number of walks in G of length m from vi to vj.

Definition. Let v1, v2, . . . , vn be the vertices of a graph G without multiple
edges. For each 1 ≤ i ≤ n, an adjacency list for vertex vi is a list of all of
the neighbors of vi. A listing, for each vertex, of its adjacency list, forms the
adjacency lists for G.

Section 8.4

Definition. Let G = (VG, EG) and H = (VH , EH) be graphs.

(a) A graph isomorphism from G to H, denoted f : G −→ H, is
a pair of bijections fV : VG −→ VH and fE : EG −→ EH such that,
for each e ∈ EG, the bijection fV maps the endpoints of e to the
endpoints of fE(e). Both fV and fE may be denoted by just f .

(b) We say that G is isomorphic to H, written G ∼= H, if there
exists a graph isomorphism from G to H.

(c) A graph automorphism on G is a graph isomorphism from
G to itself. A nontrivial automorphism is an automorphism
f : G −→ G that is not the identity map. The set of automorphisms
on G is denoted Aut(G).

Definition. A graph G = (V,E) is said to be vertex transitive if, for any
u, v ∈ V , there is a graph automorphism f such that f(u) = v.

Example. Displayed are three drawings of the Petersen Graph.
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Theorem (Graph Isomorphism is an Equivalence Relation). For all graphs G,
H, and K,

(a) G ∼= G.

(b) if G ∼= H, then H ∼= G.

(c) if G ∼= H and H ∼= K, then G ∼= K.
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Theorem. For any graph G, Aut(G) forms a group under composition.

Definition. A graph map f from a graph G = (VG, EG) to a graph H =
(VH , EH), denoted f : G −→ H, is a pair of functions fV : VG −→ VH and
fE : EG −→ EH such that, for each edge e ∈ EG, the function fV maps the
endpoints of e to the endpoints of fE(e).

Section 8.5

Theorem. Let G, H be graphs. If G ∼= H, then |VG| = |VH | and |EG| = |EH |.

Theorem. Let G = (VG, EG) and H = (VH , EH) be graphs. Then G ∼= H
if and only if there are orderings of VG and VH such that the corresponding
adjacency matrices AG and AH are equal. In this case, we say that G and H
have a common adjacency matrix.

Definition. Let G = (V,E) be a graph.

(a) The degree of a vertex v, denoted deg(v), is the number of non-
loop edges incident with v plus twice the number of loops incident
with v.

(b) The maximum degree (respectively, minimum degree) of G,
denoted ∆(G) (respectively, δ(G)), is the maximum (respectively,
minimum) degree among all vertices in G.

(c) A degree sequence forG is a sequence deg(v1),deg(v2), . . . ,deg(vn)
obtained from some ordering v1, v2, . . . , vn of V .

(d) If G has a constant degree sequence, then G is said to be regular.
If each vertex has degree r, the G is called r-regular.

(e) A vertex of degree 0 is said to be an isolated vertex.

(f) A vertex of degree 1 is said to be a pendant vertex, or a leaf.

Lemma. Let f : G −→ H be a graph isomorphism and v a vertex of G. Then,
deg(f(v)) = deg(v).

Theorem (Degree Invariants). Let G and H be graphs. If G ∼= H, then G
and H have a common degree sequence. In particular, ∆(G) = ∆(H) and
δ(G) = δ(H).

Theorem. For any graph G = (V,E), we have
∑
v∈V

deg(v) = 2|E|.

Corollary. Let A = [ai,j ] be the adjacency matrix for a loopless graph G =
(V,E) obtained from the ordering v1, v2, . . . , vn of its vertices. Then, for any
1 ≤ k ≤ n, the sum of the entries in the kth row of A and the sum of the
entries in the kth column of A both equal the degree of vertex vk. That is,
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n∑
j=1

ak,j =

n∑
i=1

ai,k = deg(vk). Moreover, the sum of all of the entries in A is

twice the number of edges.

Corollary. In any graph, there must be an even number of odd degree vertices.

Definition. The complement of a simple graph G = (VG, EG) is the graph
Gc with VGc = VG and EGc = EG

c, where the complement of EG is taken inside
P2(VG).

Theorem. Let G and H be simple graphs. If G ∼= H, then Gc ∼= Hc.

Definition. Let G = (VG, EG) and H = (VH , EH) be any two graphs.

(a) To construct the disjoint union of G and H, the graph denoted
G + H, we consider two cases. If VG and VH are disjoint, then we
simply define G+H = (VG ∪ VH , EG ∪ EH). If VG and VH are not
disjoint, then we construct graphs G′ ∼= G and H ′ ∼= H such that
VG′ and VH′ are disjoint and define G+H = (VG′ ∪VH′ , EG′ ∪EH′).

(b) If G and H are both subgraphs of the same graph, then

(i) the union of G and H, denoted G ∪H, is the graph
(VG ∪ VH , EG ∪ EH).

(ii) the intersection of G and H, denoted G∩H, is the graph
(VG ∩ VH , EG ∩ EH).

(c) The product of G and H, denoted G × H, is the graph with
vertex set VG × VH and edge set (EG × VH) ∪ (VG × EH). An
edge’s endpoints are determined as follows. If e ∈ EG, v ∈ VH , and
e 7→ {x, y}, then (e, v) 7→ {(x, v), (y, v)}. If v ∈ VG, e ∈ EH , and
e 7→ {x, y}, then (v, e) 7→ {(v, x), (v, y)}.

Theorem. We have Q0
∼= K1, Q1

∼= P2, and, for n ≥ 2, Qn ∼= Qn−1 × P2.

Section 8.6

Definition. (a) A directed graph, or digraph, G consists of a
vertex set VG, an edge set EG, and a function ε : EG −→ VG×VG.
We write G = (VG, EG), and, rather than writing εG(e) = (u, v),
we write e 7→ (u, v). As in ordinary graphs, the subscripts may be
dropped from our notation.

(b) If e 7→ (u, v), then the vertex u is called the initial endpoint or
tail of e and the vertex v is called the terminal endpoint or head
of e. We say that e goes from u to v.

(c) An edge e such that e 7→ (v, v) for some v ∈ V is called a loop,
and two or more edges assigned the same initial and terminal end-
points are called multiple edges.
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(d) A simple directed graph is a directed graph G = (V,E) that
has no loops and no multiple edges. In this case, we can take E to
be a subset of V 2 \ {(v, v) : v ∈ V }.

Definition. A walk in a directed graph G = (V,E) is an alternating list of
vertices and edges v0, e1, v1, e2, v2, e3, . . . , vn−1, en, vn with n ≥ 0 that starts at
vertex v0, ends at vertex vn, and, in which, for each 1 ≤ i ≤ n, ei 7→ (vi−1, vi).
That is, edges must be traversed from tail to head.

Definition. Given a directed graph G = (V,E), its underlying graph, de-
noted G, is the ordinary graph with the same vertex set V and with the edge
set E containing one undirected edge e for each directed edge e ∈ E. The ends
of e are taken to be the head and tail of e.

Definition. Let G be a directed graph.

(a) G is said to be strongly connected if, for any two vertices u
and v, there is a path from u to v and there is a path from v to u.

(b) G is said to be weakly connected if G is connected.

(c) A strong component of G is a strongly connected subgraph H
that is not contained in any other strongly connected subgraph of
G.

(d) A weak component of G is a subgraph H such that H is a
component of G.

Theorem. For any directed graph G = (V,E), we have∑
v∈V

indeg(v) =
∑
v∈V

outdeg(v) = |E|.

Definition. The adjacency matrix for a directed graph G on the ordered
list of vertices v1, v2, . . . , vn is the n × n matrix A = [ai,j ] such that ai,j is the
number of edges from vi to vj .

Definition. A Markov chain graph is a directed graph G = (V,E) without
multiple edges, for which each edge (u, v) is assigned a value p(u, v) in the
interval [0, 1]. Moreover, for each vertex u, the sum of the values assigned to
the edges with tail u must be 1.

Definition. Given a Markov chain graph and an ordering of its vertices, v1, v2,
. . ., vn, its transition matrix is the n×n matrix M = [p(vi, vj)]. That is, the
(i, j)th entry of M is the value p(vi, vj), which may be denoted more compactly
as p(i, j).

Theorem. Let M be the transition matrix for a Markov chain graph G obtained
from the ordering v1, v2, . . ., vn of the vertices, and let m ∈ N. Then, the mth
power of M , say Mm = [qi,j ], has the property that, for each 1 ≤ i ≤ n and
1 ≤ j ≤ n, the entry qi,j is the probability of moving in G from vi to vj in a
sequence of exactly m steps.
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A state vi in a Markov chain graph is said to have period q if q ∈ Z+ and
the length of every circuit starting at vi is a multiple of q. We say that vi is
periodic if q > 1 and aperiodic if q = 1.

A class in a Markov chain is a set of states that corresponds to the vertex set
for a strong component in the corresponding graph. If a Markov chain has just
one class, then the Markov chain is said to be irreducible. A finite Markov
chain is said to be regular if it is irreducible and every state is aperiodic.

Lemma. A finite Markov chain with transition matrix M is regular if and only
if there exists some m ∈ Z+ such that Mm has all positive entries.

Theorem. If M is a transition matrix for a finite regular Markov chain, then,
as m increases, the powers Mm of M converge to a matrix, which we denote
by M∞, all of whose rows are the same. Moreover, for each j, the entry in the
jth column of every row of M∞ is the long-term probability of being in state vj,
independent of the initial state.

In a Markov chain, a state vi is said to be absorbing if p(i, i) = 1. A class is
said to be ergodic if no edge in the Markov chain graph points from a vertex
inside the class to a vertex outside the class. In this case, each of the states
in the class is also said to be ergodic, or recurrent. A class for which there
is an edge in the Markov chain graph pointing from a vertex inside the class
to a vertex outside the class is said to be transient, as is each of its states.
A Markov chain is said to be absorbing if each state is either absorbing or
transient.



1.9. CHAPTER 9 39

1.9 Chapter 9

Section 9.1

Definition. Let G = (V,E) be any graph.

(a) Given subsets W ⊆ V and F ⊆ E, the graph resulting from the
removal of W ∪F , denoted G\(W ∪F ), is the subgraph of G whose
vertex set is V \W and whose edge set is
E \ (F ∪ {e ∈ E : e is incident with some v ∈W}).

(b) A disconnecting set for G is a set D of vertices such that G\D
is disconnected.

(c) The connectivity of G, denoted κ(G), is the minimum number
of vertices whose removal results in either a disconnected graph or
a single vertex.

(d) A κ-set for G is a set of κ(G) vertices whose removal results in
either a disconnected graph or a single vertex.

Theorem. (a) If n ≥ 2, then κ(Pn) = 1.

(b) If n ≥ 3, then κ(Cn) = 2.

Theorem. Let G = (V,E) be any graph. If G is connected and 2-regular, then
G ∼= Cn, where n = |V |. So κ(G) = 2.

Theorem. Let m,n ∈ Z+. Then, κ(Km,n) = min{m,n}.

Definition. Let G = (V,E) be any graph.

(a) A disconnecting set of edges for G is a set F of edges such
that G \ F is disconnected.

(b) The edge connectivity of G, denoted λ(G), is the minimum
number of edges whose removal results in either a disconnected graph
or a single vertex.

(c) A λ-set for G is a set of λ(G) edges whose removal results in
either a disconnected graph or a single vertex.

Theorem. For any graph G, we have κ(G) ≤ λ(G) ≤ δ(G).

The connectivity of a directed graph G, denoted κ(G), is the minimum
number of vertices whose removal results in a directed graph that is either not
strongly connected or is a single vertex. The edge connectivity λ(G) is defined
analogously.
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Section 9.2

Definition. Let G be a graph or a digraph. An Euler circuit (resp. Euler
trail) in G is a circuit (resp. trail) which covers every edge exactly once and
covers every vertex. Of course, unless G has isolated vertices, covering every
edge will imply that every vertex is covered. If G contains an Euler circuit, then
G is said to be Eulerian.

Theorem (Euler’s Theorem). Given any graph G,

(a) G has an Euler circuit if and only if G is connected and every
vertex of G has even degree.

(b) G has an Euler trail that is not an Euler circuit if and only if G
is connected and has exactly two vertices with odd degree.

Theorem. Given any directed graph G on n vertices,

(a) G has an Euler circuit if and only if G is strongly connected and
every vertex v of G has indeg(v) = outdeg(v).

(b) G has an Euler trail that is not an Euler circuit if and only if every
vertex v of G has indeg(v) = outdeg(v) except that one vertex v1 has
outdeg(v1) = 1 + indeg(v1) and another vertex vn has indeg(vn) =
1 + outdeg(vn) and the directed graph obtained from G by adding the
edge (vn, v1) is strongly connected.

Section 9.3

Definition. Let G be a graph or a digraph. A Hamiltonian cycle (respec-
tively, Hamiltonian path) in G is a cycle (respectively, path) which covers
every vertex. By definition, each vertex must be covered exactly once, with the
exception that the starting and ending vertex of a Hamiltonian cycle is covered
twice. If G contains a Hamiltonian cycle, then G is said to be Hamiltonian.

Theorem. Let G be any graph. If G is Hamiltonian, then κ(G) ≥ 2.

Theorem. If C is a Hamiltonian cycle in a graph G = (V,E), then

(i) C covers exactly two edges incident with each vertex, and

(ii) C has no subgraph which is a cycle on fewer than |V | vertices.

In the case that G is directed, for each vertex v, C must cover exactly one edge
whose head is v and one whose tail is v.

Theorem. For any simple graph G = (V,E) with |V | ≥ 3, if δ(G) ≥ |V |2 , then
G is Hamiltonian.

Example. For each integer n ≥ 2, the n-cube Qn is Hamiltonian.

Definition. A tournament is a directed graph whose underlying graph is
complete.

Theorem. Every tournament has a Hamiltonian path.
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Section 9.4

Definition. (a) A planar embedding of a graph is a drawing of
the graph such that the images of distinct edges do not intersect
outside of their endpoints. That is, there are no crossings.

(b) A graph is said to be planar if it has a planar embedding.

Definition. Given a planar embedding of a graph G = (VG, EG),

(a) a region is a maximal connected subset of the complement of the
image of the embedding.

(b) we use RG, or just R, to denote the set of regions.

(c) the dual graph, denoted D(G), is the graph with vertex set RG
and edge set EG for which the endpoints of each edge e are taken to
be the regions that, in the embedding, share the image of e as part
of their boundary.

Theorem (Euler’s Formula). Given any planar embedding of a connected graph
G = (V,E), we have |V | − |E|+ |R| = 2.

Corollary. Given any planar simple graph G = (V,E) with |V | ≥ 3, we have
|E| ≤ 3|V | − 6.

Proposition. K5 is not planar.

Corollary. Given any planar simple graph G = (V,E) with |V | ≥ 3 and no
triangles (that is, no 3-cycles), we have |E| ≤ 2|V | − 4.

Proposition. K3,3 is not planar.

Definition. Let G = (V,E) be a graph.

(a) Given an edge e ∈ E, a new graph G′ = (V ′, E′) is said to be
obtained by subdividing e = {u, v} if V ′ = V ∪ {w}, where w is a
new vertex not in V , and E′ = (E\{e})∪{e′, e′′}, where e′ 7→ {u,w}
and e′′ 7→ {w, v} are new edges not in E. That is, e is subdivided
by the new vertex w.

(b) We say that G′ is a subdivision of G, or a G-subdivision, if G′

is obtained from G by a (possibly empty) sequence of edge subdivi-
sions. We also say that two graphs G′ and G′′ are homeomorphic
if there is a graph G such that both G′ and G′′ are G-subdivisions.

Theorem (Kuratowski’s Theorem). A graph is not planar if and only if it
contains a subgraph that is a subdivision of either K5 or K3,3. Equivalently, G
is not planar if and only if G contains a subgraph homeomorphic to K5 or K3,3.

Definition. The crossing number of a graph G, denoted ν(G), is the mini-
mum possible number of crossings in a drawing of G.
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Section 9.5

Definition. Let G be a graph.

(a) A coloring of G is an assignment of colors to the vertices of G
in such a way that no two adjacent vertices have the same color.

(b) A color class for a coloring is a set of all the vertices of one
color. The vertices are partitioned by the color classes.

(c) For any k ∈ Z+, a k-coloring of G is a coloring that uses k
different colors.

(d) We say that G is k-colorable if there exists a coloring of G that
uses at most k colors.

(e) The chromatic number of G, denoted χ(G), is the minimum
possible number of colors in a coloring of G.

Theorem. Let G be any graph. Then, G is bipartite if and only if χ(G) ≤ 2.

Theorem. Given any graphs G and H without loops, the chromatic number of
their disjoint union is given by χ(G+H) = max{χ(G), χ(H)}.

Definition. Let G be a graph.

(a) A clique in G is a subgraph that is complete.

(b) The clique number of G, denoted ω(G), is the maximum num-
ber of vertices in a clique of G.

Theorem. Let G be any graph without loops. Then, χ(G) ≥ ω(G).

Example. The pictured graph G is called the Grötzsch graph.
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Definition. Let G = (V,E) be a graph.

(a) An independent set in G is a subset W of V in which no two
vertices are adjacent. That is, the subgraph induced by W is empty.

(b) The independence number of G, denoted α(G), is the maxi-
mum number of vertices in an independent set in G.
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Theorem. For any simple graph G, we have α(Gc) = ω(G) and ω(Gc) = α(G).

Theorem. For any graph G = (V,E) without loops, if |V | = n,
then χ(G) ≥ n

α(G) .

Algorithm (Greedy Coloring Algorithm). Let a graph G on n vertices with no
loops be given together with an ordering v1, v2, . . . , vn of its vertices. In that
order, color the vertices with positive integers so that, for each 1 ≤ i ≤ n, vertex
vi is given the smallest possible color not assigned to a neighbor vj of vi with
j < i. Note that v1 has color 1.

Theorem. For any graph G without loops, if v1, v2, . . . , vn is a listing of its
vertices, then χ(G) ≤ 1 + max{min{deg(vi), i} : 1 ≤ i ≤ n}.

Theorem (Brooks’ Theorem). Let G be any graph without loops. If G is not
complete and not an odd cycle, then χ(G) ≤ ∆(G).

Corollary. For any graph G without loops and any integer r ≥ 3, if G is r-
regular and no component of G is complete, then χ(G) ≤ r.

Theorem. Given any graphs G and H without loops, the chromatic number of
their product is given by χ(G×H) = max{χ(G), χ(H)}.

Theorem (Four Color Theorem). If G is any planar graph, then χ(G) ≤ 4.
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1.10 Chapter 10

Section 10.1

When working with forests, a pendant vertex (i.e., a vertex of degree 1) is called
a leaf. The vertices of degree at least two are said to be internal vertices.

Theorem. Let G be a graph. If G is a tree, then there is a unique path between
any pair of vertices in G.

Theorem. Every tree on two or more vertices has at least two leaves.

Theorem. Let G = (V,E) be a graph. If G is a tree, then |E| = |V | − 1.

A spanning tree for a graph G = (V,E) is a subgraph H = (V, F ) that is
a tree on the same vertex set V . It may be specified uniquely by its edge set
F . More generally, a subgraph of a graph G is called a spanning forest if its
intersection with each component of G is a spanning tree for that component.

Theorem. If G is a connected graph, then G has a spanning tree.

Definition. A rooted tree is a pair (T, v) where T is a tree and v is a vertex
of T . The distinguished vertex v is said to be the root of T .

Definition. Let T be a rooted tree with root v.

(a) The level of a vertex u in T is its distance from v, namely
dist(v, u).

(b) A child of a vertex u in T is a neighbor of u at a level greater
than that of u; its level is always one greater.

(c) The parent of a vertex u in T is the unique neighbor of u with
level less than that of u; its level is always one less. The root v is
the only vertex in T without a parent.

(d) The height of T is the maximum level among its vertices.

(e) If each vertex of T has at most m children, then we say that T
is an m-ary tree. If each internal vertex has exactly m children,
then T is said to be a full m-ary tree. A 2-ary tree is also called a
binary tree.

(f) If T has height h and all of its leaves are at levels h or h−1, then
T is said to be balanced.

Theorem. Let T be a full m-ary rooted tree with n vertices, l leaves, and i
internal vertices. Then, n = i+ l and n = mi+ 1.
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Theorem. Let T be an m-ary rooted tree of height h with l leaves. Then,
l ≤ mh and h ≥ dlogm le.

Definition. (a) An ordered rooted tree is a rooted tree in which
the set of children of each internal vertex is ordered.

(b) A ordered binary tree is a binary tree in which each child of
an internal vertex is designated either as the left child or the right
child, but not both. Moreover, at each internal vertex, the corre-
sponding left subtree (respectively, right subtree) is the subtree
rooted at its left child (respectively, right child).

The quadtree for a given image is an ordered full 4-ary tree constructed by
placing a square bounding box around the image and recursively subdividing
boxes within the image into four quadrants. Each box that is neither entirely
black nor entirely white in color is itself subdivided into four quadrants, and
this process is repeated until all boxes are monochromatic. Each box that
gets subdivided is designated the parent of its resulting four quadrants, and an
ordering for the quadrants is given by the standard convention for R2.

Section 10.2

Given a graph G, the tree T constructed by Algorithm 2 is called its breadth-
first search tree.

Algorithm 2 Breadth-First Search

Let G = (V,E) be a connected graph on n vertices and v a vertex of G.

Algorithm.
Let M = [ ], L = [v], and F = ∅.
While |F | < n− 1,

\begin

Let t be the first vertex in L and not in M .
Add t to the end of M .
While t has neighbors that are not in L,

\begin

Let e be an edge such that one end is t and the other
is a vertex u outside of L.

Let F = F ∪ {e}.
Add u to the end of L.
\end.

\end.

Return T = (V, F ).

Given a graph G, the tree T constructed by Algorithm 3 is called its depth-
first search tree.
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Algorithm 3 Depth-First Search

Let G = (V,E) be a connected graph on n vertices and v a vertex of G.

Algorithm.
Let M = [v], L = [ ], and F = ∅.
Let t = v.
While t 6= null,

\begin

While t has neighbors that are not in M ,
\begin

Let e be an edge such that one end is t and the other
is a vertex u outside of M .

Let F = F ∪ {e}.
Add u to the end of M .
Let t = u.
\end.

Add t to the end of L.
Replace t by the parent of t.
\end.

Return T = (V, F ).

Definition (Ordered Binary Tree Traversals). Let T be an ordered binary tree.
If T has no vertices, then list nothing. If T is just a root v, then list v. Otherwise,
let TL be the left subtree of v, and let TR be the right subtree.

(a) A postorder traversal of T is accomplished by first performing
a postorder traversal on TL, second performing a postorder traversal
on TR, and third listing the root v for T .

(b) A preorder traversal of T is accomplished by first listing the
root v for T , second performing a preorder traversal on TL, and third
performing a preorder traversal on TR.

(c) An inorder traversal of T is accomplished by first performing
an inorder traversal on TL, second listing the root v for T , and third
performing an inorder traversal on TR.

An algebraic expression (involving binary operations) can be represented by an
ordered binary tree. Its postfix notation is obtained by listing the vertices in
the order L given by Depth-First Search. Similarly, its prefix notation is the
list obtained from a preorder traversal, and its infix notation is the list obtained
from an inorder traversal.

Section 10.3

A weighted graph is a graph G = (V,E) for which each edge has been assigned
a positive real number called the weight of the edge.
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Definition 1.1. Let G be a weighted graph.

(a) The weight of a subgraph is the sum of the weights of the edges
in that subgraph.

(b) A minimum spanning tree for G is a spanning tree with the
minimum weight among all spanning trees.

Algorithm 1.1 Kruskal’s Algorithm

Let G = (V,E) be a weighted connected graph on n > 1 vertices.

Algorithm.
Let F = {e}, where e is a nonloop edge of minimum possible weight.
While |F | < n− 1,

\begin

Let e be an edge of minimum possible weight among all
edges in E \ F for which F ∪ {e} contains no cycle.

Let F = F ∪ {e}.
\end.

Return T = (V, F ).

Algorithm 1.2 Prim’s Algorithm

Let G = (V,E) be a weighted connected graph on n > 1 vertices.

Algorithm.
Let F = {e}, where e is a nonloop edge of minimum possible weight.
While |F | < n− 1,

\begin

Let e be an edge of minimum possible weight among all
edges in E \ F that connect an endpoint of an edge from F
to a vertex that is not an endpoint of an edge from F .

Let F = F ∪ {e}.
\end.

Return T = (V, F ).

Theorem 1.6. Let G be any weighted connected graph. Each of Kruskal’s
Algorithm and Prim’s Algorithm yield a minimum spanning tree for G.

Definition 1.2. Let G = (V,E) be a weighted graph.

(a) The weighted distance between two vertices u and v in G,
denoted DistG(u, v), is the minimum weight of a path in G from u to
v. If there is no path in G from u to v, then we assign DistG(u, v) =
∞. When G is clear in context, the subscripts may be dropped.
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(b) Suppose that a vertex v is specified in G. A shortest path tree
for G from v is a spanning tree T such that, for each vertex w in G,
the path in T from v to w has the minimum weight among all paths
in G from v to w.

Algorithm 1.3 Dijkstra’s Algorithm

Let G be a weighted connected graph on n > 1 vertices and v a vertex of G.

Algorithm.
Let F = {e}, where e is a nonloop edge incident with v

of minimum possible weight.
While |F | < n− 1,

\begin

Let e be an edge such that
one endpoint t is an endpoint of an edge from F , the other
endpoint is not, and DistT (v, t) + ω(e) is as small as possible.

Let F = F ∪ {e}.
\end.

Return T = (V, F ).

Theorem 1.7. Let G be a weighted connected graph and v a vertex of G. Di-
jkstra’s Algorithm yields a shortest path tree for G from v.

Section 10.4

Algorithm 4 Sequential Search

Let x be a real number whose index is sought in an array A of length n. The
index of x is returned in a variable called location. If x is not in A, then the
algorithm returns location = 0.

Algorithm.
Let location = 0.
Let i = 1.
While location = 0 and i ≤ n,

\begin

If A[i] = x, then
Let location = i.

Otherwise,
Let i = i+ 1.

\end.

Return location.
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Algorithm 5 Binary Search

Let x be a real number whose index is sought in an ordered array A of length
n. The index of x is returned in a variable called location. If x is not in A,
then the algorithm returns location = 0. The variables low and high store
the indices of the first and last entries, respectively, of the portion of A we are
considering.

Algorithm.
Let location = 0.
Let low = 1.
Let high = n.
While low < high,

\begin

Let mid = b low+high
2 c.

If A[mid] < x, then
Let low = mid + 1.

Otherwise,
Let high = mid.

\end.

If A[low] = x, then
Let location = low.

Return location.

Definition. The worst-case complexity of an algorithm is a function f(n)
of the size n of the input to the algorithm. For each n, the value of f(n) is
the maximum number of operations performed in a run of the algorithm on an
input of size n.

Example. The worst-case complexity of Sequential Search is n.

Example. The worst-case complexity of Binary Search is 1 + dlog2 ne.

Definition. Given a real function g(x), big-O of g(x), denoted O(g(x)), is the
set of real functions f(x) such that there exist positive constants C and d for
which ∀ x > d, |f(x)| ≤ C|g(x)|. That the inequality |f(x)| ≤ C|g(x)| holds
for all x greater than some fixed constant d can be described by saying that it
holds for large x, or eventually.

Lemma. Let f and g be real functions. Then, f(x) ∈ O(g(x)) if and only if
O(f(x)) ⊆ O(g(x)).

Lemma. Let r1, r2 ∈ Q with r1 ≤ r2. Then, ∀ x > 1, xr1 ≤ xr2 .

Theorem. Let m ∈ N and let f(x) = cmx
m + cm−1x

m−1 + · · · + c0 be a
polynomial of degree at most m. Then, f(x) ∈ O(xm).
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Definition. Given a real function g(x), big-Θ of g(x), denoted Θ(g(x)), is
the set of real functions f(x) such that f(x) ∈ O(g(x)) and g(x) ∈ O(f(x)).
Equivalently, f(x) ∈ Θ(g(x)) if and only if there exist positive constants C1,
C2, and d for which ∀ x > d, C1|g(x)| ≤ |f(x)| ≤ C2|g(x)|. In this case, we say
that f(x) has the same order (or order of growth) as g(x).

Lemma. Let f and g be real functions. Then, f(x) ∈ Θ(g(x)) if and only if
Θ(f(x)) = Θ(g(x)) if and only if O(f(x)) = O(g(x)).

Lemma. Let f and g be real functions. Then, f(x) ∈ O(g(x)) and g(x) 6∈ O(f(x))
if and only if O(f(x)) ⊂ O(g(x)).

Lemma. Let r1, r2 ∈ Q with r1 < r2. Then, xr2 6∈ O(xr1).

Definition. Let g(n) be a function. An algorithm is O(g(n)) (respectively,
Θ(g(n))) if its worst-case complexity f(n) is in O(g(n)) (respectively, Θ(g(n))).

Theorem. Let b ∈ R with b > 1 and r ∈ Q with r > 2.
O(1) ⊂ O(logb n) ⊂ O(n) ⊂ O(n logb n) ⊂ O(n2) ⊂ O(nr) ⊂ O(bn) ⊂ O(n!).

An algorithm that is Θ(logb n) for some b > 1 is said to be a logarithmic.
Those which are Θ(nm) for some m ∈ Z+ are said to be polynomial, and
those which are Θ(bn) for some b > 1 are called exponential. Problems that
can be solved by polynomial algorithms are said to be in class P. Problems
for which a proposed solution can be checked for correctness with a polynomial
algorithm are said to be in class NP, the class of nondeterministic polynomial
algorithms. It is known that P ⊆ NP.

Section 10.5

Example. The worst-case complexity of Insertion Sort is n(n−1)
2 .

Example. Merge Sort is O(n log2 n).

Theorem. The worst-case complexity of every sorting algorithm is at least
n
2 log2

n
2 .
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Algorithm 6 Insertion Sort

Let A be an array of length n that needs to be sorted (into nondecreasing order).
Variable i is the index of the array entry to be inserted into its correct position
relative to the previously sorted portion A[1, . . . , i−1], and j runs through that
portion in search of this correct position.

Algorithm.
For i = 2 to n,

\begin

Let j = 1.
While j < i and A[j] < A[i],

Let j = j + 1.
If j < i, then

\begin

Let temp = A[i].
For k = i down to j + 1,

Let A[k] = A[k − 1].
Let A[j] = temp.
\end.

\end.

Return A.

Algorithm 7 Merge Sort

Let A be an array of length n that needs to be sorted (into nondecreasing order).
Arrays A1 and A2 are used to store the first and second halves of A, respectively,
after they have been sorted by this same algorithm.

Algorithm.
If n ≤ 1, then

Return A.
Otherwise,

\begin

Let A1 = Merge Sort(A[1, . . . , bn2 c], b
n
2 c).

Let A2 = Merge Sort(A[bn2 c+ 1, . . . , n], dn2 e).
Return Merge(A1, bn2 c, A2, dn2 e).
\end
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Algorithm 8 Merge

Given a sorted array A1 of length n1 and a sorted array A2 of length n2, this
algorithm produces a sorted array A of length n1 + n2.

Algorithm.
Let i1 = i2 = i = 1.
While i1 ≤ n1 and i2 ≤ n2,

\begin

If A1[i1] < A2[i2], then
\begin

Let A[i] = A1[i1].
Let i1 = i1 + 1.
\end

Otherwise,
\begin

Let A[i] = A2[i2].
Let i2 = i2 + 1.
\end

Let i = i+ 1.
\end.

If i1 > n1, then
While i2 ≤ n2,

\begin

Let A[i] = A2[i2].
Let i = i+ 1 and i2 = i2 + 1.
\end

If i2 > n2, then
While i1 ≤ n1,

\begin

Let A[i] = A1[i1].
Let i = i+ 1 and i1 = i1 + 1.
\end

Return array A of length n1 + n2.
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Algorithm 9 Bubble Sort

Variable i is the index of the entry to be determined based on the assumption
that the portion A[i + 1, . . . , n] is already set, while j runs through the lower
indices to filter up the correct value for the ith spot.

Algorithm.
For i = n down to 2,

For j = 1 to i− 1,
If A[j] > A[j + 1], then

\begin

Let temp = A[j + 1].
Let A[j + 1] = A[j].
Let A[j] = temp.
\end.

Return A.

Algorithm 10 Selection Sort

Variable i is the index of the entry to be determined based on the assumption
that the portion A[1, . . . , i−1] is already sorted, while j runs through the upper
indices to find the correct value for the ith spot. Variable min stores the index
of the current best candidate for the ith spot.

Algorithm.
For i = 1 to n− 1,

\begin

Let min = i.
For j = i+ 1 to n,

If A[j] < A[min], then
Let min = j.

If min 6= i, then
\begin

Let temp = A[i].
Let A[i] = A[min].
Let A[min] = temp.
\end.

\end.

Return A.
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Algorithm 11 Quick Sort

Let A be an array of length n that needs to be sorted (into nondecreasing order).
The variable mid will be a position chosen by the function Split that cuts the
array into two pieces and partially sorts it so that
A[1], . . . , A[mid−1] < A[mid] ≤ A[mid+1], . . . , A[n].

Algorithm.
If n ≤ 1, then

Return A.
Otherwise,

\begin

Let (A,mid) = Split(A,n).
Let A[1, . . . ,mid−1] = Quick Sort(A[1, . . . ,mid−1],mid−1).
Let A[1, . . . ,mid+1] = Quick Sort(A[mid + 1, . . . , n], n−mid).
Return A.
\end

Algorithm 12 Split

Let A be an array of length n that needs to be reordered so that A[1] is moved
to the position, index mid, into which it will end up when the array is entirely
sorted. When this function completes with A reordered, we want no larger
entries than A[mid] prior to position mid and no smaller entries than A[mid]
after position mid.

Algorithm.
Let mid = 1.
For i = 2 to n,

If A[i] < A[1], then
\begin

Let mid = mid + 1.
Let temp = A[mid]. Let A[mid] = A[i]. Let A[i] = temp.
\end

Let temp = A[mid]. Let A[mid] = A[1]. Let A[1] = temp.
Return (A,mid).

Sorting Algorithm Insertion Bubble Selection Merge Quick

Worst-Case Θ(n2) Θ(n2) Θ(n2) Θ(n log2 n) Θ(n2)
Average-Case Θ(n2) Θ(n2) Θ(n2) Θ(n log2 n) Θ(n log2 n)

Table 6: Time Complexities for Sorting Algorithms
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Answers to Selected
Exercises

2.0 Chapter 0

1. 10.
(1)23 + (0)22 + (1)21 + (0)20 = 10.

3. 23.
(1)24 + (0)23 + (1)22 + (1)21 + (1)20 = 23.

5. 46.
(1)25 + (0)24 + (1)23 + (1)22 + (1)21 + (0)20 = 46.

7. 75.
(1)26 + (0)25 + (0)24 + (1)23 + (0)22 + (1)21 + (1)20 = 75.

9. 171.
(1)27 + (0)26 + (1)25 + (0)24 + (1)23 + (0)22 + (1)21 + (1)20 = 171.

11. 111011.

59/2 = 29 remainder 1
29/2 = 14 remainder 1
14/2 = 7 remainder 0
7/2 = 3 remainder 1
3/2 = 1 remainder 1
1/2 = 0 remainder 1

55
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13. 1010100.

84/2 = 42 remainder 0
42/2 = 21 remainder 0
21/2 = 10 remainder 1
10/2 = 5 remainder 0
5/2 = 2 remainder 1
2/2 = 1 remainder 0
1/2 = 0 remainder 1

15. 1110101.

117/2 = 58 remainder 1
58/2 = 29 remainder 0
29/2 = 14 remainder 1
14/2 = 7 remainder 0
7/2 = 3 remainder 1
3/2 = 1 remainder 1
1/2 = 0 remainder 1

17. 100110000.

304/2 = 152 remainder 0
152/2 = 76 remainder 0
76/2 = 38 remainder 0
38/2 = 19 remainder 0
19/2 = 9 remainder 1
9/2 = 4 remainder 1
4/2 = 2 remainder 0
2/2 = 1 remainder 0
1/2 = 0 remainder 1

19. 10000000000.
Note that 210 = 1024.
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21. Using T for Tails and H for Heads, we see the 16 possibilities.

T T T T
T T T H
T T H T
T T H H
T H T T
T H T H
T H H T
T H H H
H T T T
H T T H
H T H T
H T H H
H H T T
H H T H
H H H T
H H H H

23. 115.
(1)82 + (6)81 + (3)80 = 115.

25. 1679.
(3)83 + (2)82 + (1)81 + (7)80 = 1679.

27. 16712.
(4)84 + (0)83 + (5)82 + (1)81 + (0)80 = 16712.

29. 3529.
(13)162 + (12)161 + (9)160 = 3529.

31. 23166.
(5)163 + (10)162 + (7)161 + (14)160 = 23166.

33. 50.
(3)161 + (2)160 = 50.

35. 73.
59/8 = 7 remainder 3
7/8 = 0 remainder 7

37. 165.
117/8 = 14 remainder 5
14/8 = 1 remainder 6
1/8 = 0 remainder 1
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39. 214.
140/8 = 17 remainder 4
17/8 = 2 remainder 1
2/8 = 0 remainder 2

41. 3b.

59/16 = 3 remainder 11
3/16 = 0 remainder 3

43. 75.
117/16 = 7 remainder 5
7/16 = 0 remainder 7

45. acdc.
44252/16 = 2765 remainder 12
2765/16 = 172 remainder 13
172/16 = 10 remainder 12
10/16 = 0 remainder 10

47. (a) 1463.
001︸︷︷︸

1

100︸︷︷︸
4

110︸︷︷︸
6

011︸︷︷︸
3

(b) 333.
0011︸︷︷︸

3

0011︸︷︷︸
3

0011︸︷︷︸
3

49. (a) 54613.
101︸︷︷︸

5

100︸︷︷︸
4

110︸︷︷︸
6

001︸︷︷︸
1

011︸︷︷︸
3

(b) 598b.
0101︸︷︷︸

5

1001︸︷︷︸
9

1000︸︷︷︸
8

1011︸︷︷︸
b

51. 100111.
100︸︷︷︸

4

111︸︷︷︸
7

53. 101011001100.
1010︸︷︷︸
a

1100︸︷︷︸
c

1100︸︷︷︸
c

55. 2m.
(1)2m + (0)2m−1 + · · ·+ (0)20 = 2m.

57. A one followed by 2n zeros.
(1)22n + (0)22n−1 + · · ·+ (0)20 = 22n = 4n.
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59. It is divisible by 4 if and only if it ends in 00.
In the algorithm for converting numbers to binary, the first two divisions by 2
must result in remainder 0.

61. 8m − 1.
(7)8m−1+(7)8m−2+· · ·+(7)80 = (7)[8m−1+8m−2+· · ·+80] = (7)8m−1

8−1 = 8m−1.
Alternatively, if 1 is added to this number, then the result in octal is a 1 followed
by m zeros. That value is 8m.

63. The number is divisible by 7 if and only if the sum of its digits is divisible
by 7.
This is the analog of the divisibility by 9 test for base ten.

65. First rewrite the number in binary, and then group the digits into blocks of
size 4 to convert to hexadecimal.
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2.1 Chapter 1

Section 1.1

1. A true statement.
See the appendix in the textbook, that characterizes the integers.

3. Not a statement. It is a question.

5. Not a statement. It is not a declarative sentence.

7. p q ¬q p ∨ ¬q
F F T T
F T F F
T F T T
T T F T

9. p q r ¬p q ∧ r ¬p→ (q ∧ r)
F F F T F F
F F T T F F
F T F T F F
F T T T T T
T F F F F T
T F T F F T
T T F F F T
T T T F T T

11. p q r p→ q (p→ q) ∨ r
F F F T T
F F T T T
F T F T T
F T T T T
T F F F F
T F T F T
T T F T T
T T T T T

13. They differ in the two rows in which q is true.
Use C2 = OR(A2,NOT(B2)) and D2 = OR(NOT(A2),NOT(B2)) to generate
the following table.

A B C D

1 p q p ∨ ¬q p→ ¬q
2 FALSE FALSE TRUE TRUE
3 FALSE TRUE FALSE TRUE
4 TRUE FALSE TRUE TRUE
5 TRUE TRUE TRUE FALSE
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15. They differ in the two rows in which p is true and q is false.
Use D2 = OR(NOT(A2),OR(B2,C2)) and
E2 = OR(NOT(A2),OR(B2,NOT(C2))) to generate the following table.

A B C D E

1 p q r p→ (q ∨ r) p→ (q ∨ ¬r)
2 FALSE FALSE FALSE TRUE TRUE
3 FALSE FALSE TRUE TRUE TRUE
4 FALSE TRUE FALSE TRUE TRUE
5 FALSE TRUE TRUE TRUE TRUE
6 TRUE FALSE FALSE FALSE TRUE
7 TRUE FALSE TRUE TRUE FALSE
8 TRUE TRUE FALSE TRUE TRUE
9 TRUE TRUE TRUE TRUE TRUE

17. p q p ∨ q p→ p ∨ q
F F F T
F T T T
T F T T
T T T T

Observe that p→ p ∨ q is always true.

19. (a) p ¬p ¬¬p
F T F
T F T

The first and last columns are the same.
(b) t ¬t f ¬f

T F F T

The first two columns show that ¬t is a contradiction. The last two columns
show that ¬f is a tautology.

21. p t t→ p p→ t
F T F T
T T T T

Columns 1 and 3 are the same, and columns 2 and 4 are the same.

23. p q ¬p ¬q ¬p ∧ ¬q p ∨ q ¬(¬p ∧ ¬q)
F F T T T F F
F T T F F T T
T F F T F T T
T T F F F T T

The last two columns are the same.
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25. p q p ∨ q p→ p ∨ q t
F F F T T
F T T T T
T F T T T
T T T T T

The last two columns are the same.

27. p q r (p ∧ q) ∧ r p ∧ (q ∧ r) (p ∨ q) ∨ r p ∨ (q ∨ r)
F F F F F F F
F F T F F T T
F T F F F T T
F T T F F T T
T F F F F T T
T F T F F T T
T T F F F T T
T T T T T T T

Columns 4 and 5 are the same, and columns 6 and 7 are the same.

29. p q r p⊕ q q ⊕ r (p⊕ q)⊕ r p⊕ (q ⊕ r)
F F F F F F F
F F T F T T T
F T F T T T T
F T T T F F F
T F F T F T T
T F T T T F F
T T F F T F F
T T T F F T T

The last two columns are the same.

31. p q r p ∧ (q∨r) (p∧q) ∨ (p∧r) p ∨ (q∧r) (p ∨ q)∧(p ∨ r)
F F F F F F F
F F T F F F F
F T F F F F F
F T T F F T T
T F F F F T T
T F T T T T T
T T F T T T T
T T T T T T T

Columns 4 and 5 are the same, and columns 6 and 7 are the same.
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33. p q ¬(p ∧ q) ¬p ∨ ¬q ¬(p ∨ q) ¬p ∧ ¬q
F F T T T T
F T T T F F
T F T T F F
T T F F F F

Columns 3 and 4 are the same, and columns 5 and 6 are the same.

35. p q p⊕ q ¬(p⊕ q) p↔ q
F F F T T
F T T F F
T F T F F
T T F T T

The last two columns are the same.

37. They differ when p is false, q is true, and r is false.

p q r (p→ q)→ r p→ (q → r)
F T F F T

This case, for example, shows that the truth tables are different. Hence,
(p→ q)→ r and p→ (q → r) are not logically equivalent.

39. They differ when p is true, q is false, and r is true.

p q r p⊕ (q ∧ r) (p⊕ q) ∧ (p⊕ r)
T F T T F

This case, for example, shows that the truth tables are different. Hence, p⊕(q∧r)
and (p⊕ q) ∧ (p⊕ r) are not logically equivalent.

41. p q p⊕ q ¬p⊕ ¬q
F F F F
F T T T
T F T T
T T F F

The last two columns are the same. Hence, p ⊕ q and ¬p ⊕ ¬q are logically
equivalent.

43. (a) ¬q → p. (b) ¬¬q → ¬p ≡ q → ¬p.
(c) ¬p→ ¬¬q ≡ ¬p→ q. (d) p ∧ ¬¬q ≡ p ∧ q.

45. (a) r → p ∧ ¬q. (b) ¬r → ¬(p ∧ ¬q) ≡ ¬r → ¬p ∨ ¬¬q ≡ ¬r → ¬p ∨ q.
(c) ¬(p ∧ ¬q)→ ¬r ≡ ¬p ∨ q → ¬r. (d) (p ∧ ¬q) ∧ ¬r ≡ p ∧ ¬q ∧ ¬r.



64 CHAPTER 2. ANSWERS TO SELECTED EXERCISES

47. (a) If Ted has a failing grade, then Ted’s average is less than 60.
(b) If Ted has a passing grade, then Ted’s average is at least 60.
(c) If Ted’s average is at least 60, then Ted has a passing grade.
(d) Ted’s average is less than 60, and Ted has a passing grade.

49. (a) If George is going to a movie or going dancing, then George feels well.
(b) If George is not going to a movie and not going dancing, then George does
not feel well.
(c) If George does not feel well, then George is not going to a movie and not
going dancing.
(d) George feels well, and George is not going to a movie and not going dancing.

51. ¬(p ∨ ¬q) ≡ ¬p ∧ ¬¬q ≡ ¬p ∧ q.

53. ¬(¬p ∧ (q ∨ ¬r)) ≡ p ∨ ¬(q ∨ ¬r) ≡ p ∨ (¬q ∧ r).

55. Helen’s average is less than 90, or Helen is not getting an A.

57. (a) p q r p ∧ q ¬p q → r (p ∧ q)→ r ¬p ∨ (q → r)
F F F F T T T T
F F T F T T T T
F T F F T F T T
F T T F T T T T
T F F F F T T T
T F T F F T T T
T T F T F F F F
T T T T F T T T

The last two columns are the same.
(b) p ∧ q → r ≡ ¬(p ∧ q) ∨ r Example 1.10

≡ (¬p ∨ ¬q) ∨ r De Morgan’s Law
≡ ¬p ∨ (¬q ∨ r) Associativity
≡ ¬p ∨ (q → r) Example 1.10

59. p ∧ (q ∨ r ∨ s) ≡ p ∧ (q ∨ (r ∨ s)) Associativity
≡ (p ∧ q) ∨ (p ∧ (r ∨ s)) Distributivity
≡ (p ∧ q) ∨ ((p ∧ r) ∨ (p ∧ s)) Distributivity
≡ (p ∧ q) ∨ (p ∧ r) ∨ (p ∧ s) Associativity

61. (p∧q∧¬r) ∨ (p∧¬q∧r)
≡ (p∧(q∧¬r)) ∨ (p∧(¬q∧r)) Associativity
≡ p ∧ ((q ∧ ¬r) ∨ (¬q ∧ r)) Distributivity
≡ p ∧ (q ⊕ r) Definition of ⊕
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63. p ∧ (¬(q ∧ r)) ≡ p ∧ (¬q ∨ ¬r) De Morgan’s Law
≡ (p ∧ ¬q) ∨ (p ∧ ¬r) Distributivity

65. Since p∧ q∧ r → p∧ q is a tautology, the result follows from the Absorption
Rule.
That is, think of the Absorption Rule as: If u→ w, then u∨w ≡ w. Apply this
with u = p ∧ q ∧ r and w = p ∧ q.

67. (i) Given ¬ and ∧, we have that p∨ q ≡ ¬(¬p∧¬q) and p→ q ≡ ¬(p∧¬q).
(ii) Given ¬ and ∨, we have that p ∧ q ≡ ¬(¬p ∨ ¬q) and p→ q ≡ ¬p ∨ q.
(iii) Given ¬ and →, we have that p ∧ q ≡ ¬(p→ ¬q) and p ∨ q ≡ ¬p→ q.

69. (a) (P ∧Q) ∨ ¬Q = S, as traced below.

P

Q
ANDs c

NOT

OR S

P ∧Q

¬Q

(P ∧Q) ∨ ¬Q

(b) P Q S
0 0 1
0 1 0
1 0 1
1 1 1

(c) Yes, S = P ∨ ¬Q and can be done with two gates.

71. (a) P ∨ (¬Q ∧R) = S, as traced below.

P

Q c
NOT

R
AND

OR S¬Q
¬Q ∧ R

P ∨ (¬Q ∧ R)

(b) P Q R S
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

(c) No. Note that there are not many ways to get a single output from three
inputs and two gates, and none of them satisfy this table.
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73.
P

Q
AND c

NOT

R

OR S

75.
P c

NOT

Q c
NOT

OR

R

AND S

77. (a) (P ∨Q) ∧ ¬(P ∧Q) = S, a 4 gate circuit.
(b) (P ∧ ¬Q) ∨ (¬P ∧Q) = S, a 5 gate circuit.
So, the definition uses fewer gates than the alternative characterization.

Section 1.2

1. True.
Order does not matter.

3. True.
Repetition does not matter.

5. False.
{−1, 0, 1} 6= {. . . ,−2,−1, 0, 1}.

7. True.
Both are {−1, 1}.

9. {2, 4, 6}.

11. {{1}, {4}}.

13. {x : x ∈ R and x3 − 4x2 + 5x− 6 = 0}, which happens to equal {3}.
Note that x3 − 4x2 + 5x− 6 = (x− 3)(x2 − x+ 2).

15. {n : n ∈ Z and n < −10}
or {n : n ∈ Z and n ≤ −11} = {. . . ,−13,−12,−11}.

17. (0,∞)
= {x : x ∈ R and x > 0}.

19. [0, 0]
= {x : x ∈ R and 0 ≤ x ≤ 0}.
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21. (1,∞)
= {x : x > 1}.

23. (−1, 1)
= {x : −1 < x < 1}.

25. True.
Note that

√
2 ≈ 1.414.

27. False.
{1} is a set.

29. True.
2 ∈ {1, 2, 3}.

31. True.
∅ is listed as an element on the right-hand side.

33. ⊂,⊆.
Note that ∈ does not work, since {1} is not listed in {1, 2}, although 1 is. Note
that = does not work, since 2 is not in {1}.

35. ⊆,=.
Note that ∈ does not work, since the elements on the right-hand side are 6, 7,
and 8. Note that ⊂ does not work, since = holds.

37. ∈,⊂,⊆.
Note that = does not work, since ⊂ holds.

39. Finite. |A| = 5.

41. Infinite.
E.g., 5.9, 5.99, 5.999, ...

43. Finite. |E| = 9.
Namely, E = {0, 1, 2, 3, 4, 5, 6, 7, 8}.

45. Finite. |G| = 2.
Note that ∅ and {∅} are the two elements.

47. If yes, then he should not. If no, then he should. Hence, either way, there
is a contradiction.
That is, if he shaves himself, then he is shaving someone who shaves himself, and
he is not supposed to do that. If he does not shave himself, then he is someone
who does not shave himself, and he is supposed to shave such a person.
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49. False.
Use {1,2,{2,1}} == {1,2,{1,2}}.

51. 2.
Use Length[{{},{}}].

53. true.
Use evalb({1,2,{2,1}} = {1,2,{1,2}}).

55. 1.
Use nops({{},{}}).

Section 1.3

1. ∀ x ∈ R, x2 + 1 > 0.
See Appendix A, number 11.

3. ∃ n ∈ Z such that 1
n ∈ Z.

E.g., n = 1 works.

5. ∃ n ∈ N such that ∀ x ∈ R, xn ≥ 0.
E.g., n = 2 works.

7. ∃ x ∈ R such that ∀ y ∈ R, if 2 ≤ y ≤ 3, then 1 ≤ xy < 2.
Also, ∃ x ∈ R such that ∀ y ∈ [2, 3], 1 ≤ xy < 2.
E.g., x = 1

2 works.

9. ∃ x, y ∈ R such that x+ y ∈ Z and xy 6∈ Z.
E.g., x = 1√

2
and y = −1√

2
works.

11. ∀ x, y ∈ R, if x < y, then ex < ey.
See Definition 1.15, and use f(x) = ex.

13. ∃ x ∈ [−2, 2] such that x3 6∈ [0, 8]. Negation is true.
E.g., x = −2 works.

15. ∃ x ∈ R+ such that x2 > 4 and x ≤ 2. Original is true.
E.g., x = −3. Note that the contrapositive of the original is
∀ x ∈ R+, if x ≤ 2, then x2 ≤ 4.

17. ∀ n ∈ Z,∃ m ∈ Z such that nm ≥ 1. Original is true.
E.g., n = 0 works.

19. ∃ m,n ∈ Z such that m+ n 6∈ Z. Original is true.
See Appendix A, number 1, with S = Z.
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21. ∀ n ∈ Z, 1
n 6∈ Z.

No integer’s reciprocal is an integer.

23. ∃ x ∈ R such that x2 + 1 ≤ 0.
There is a real number x such that x2 + 1 ≤ 0.

25. ∀ n ∈ N,∃ x ∈ R such that xn < 0.
For every natural number n, there is a real number x such that xn < 0.

27. ∀ x ∈ R,∃ y ∈ R such that 2 ≤ y ≤ 3 and xy 6∈ [1, 2).
For every real number x, there is a real number y such that
2 ≤ y ≤ 3 and xy 6∈ [1, 2).

29. ∀ x, y ∈ R, x+ y 6∈ Z or xy ∈ Z.
For all real numbers x and y, either x+ y 6∈ Z or xy ∈ Z.

31. There is a student at Harvard University whose age is at most 17.
That is, there is a student at Harvard University whose age is not over 17.

33. There exists a truly great accomplishment that is immediately possible.

35. There is such a thing as bad publicity.

37. (a) A real function f is not constant iff ∀ c ∈ R,∃ x ∈ R such that f(x) 6= c.
The definition is ∃ c ∈ R such that ∀ x ∈ R, f(x) = c.
(b) ∃ x, y ∈ R such that f(x) 6= f(y).

39. ∃ x, y ∈ R such that x < y and f(x) ≥ f(y).
Recall that ¬(p→ q) ≡ p ∧ ¬q.

41. ∃ x, y ∈ R such that x ≤ y and f(x) > f(y).
Note that, in this case, we could replace x ≤ y with x < y.

43. ∀M ∈ R,∃ x ∈ R such that f(x) > M .
That is, f is unbounded above.

45. True. An if-then statement is true whenever its hypothesis is false.
By Appendix A, number 11, x2 < 0 never happens.

47. Say U = {a, b}. The statement is equivalent to “p(a) ∧ p(b).”
That is, a and b are all of the x’s.
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49. Say U = {a, b}. The logical equivalences are equivalent to

¬[p(a) ∧ p(b)] ≡ ¬p(a) ∨ ¬p(b)
¬[p(a) ∨ p(b)] ≡ ¬p(a) ∧ ¬p(b),

since, in this case,

∀ x ∈ U , p(x) ≡ p(a) ∧ p(b)
∃ x ∈ U such that p(x) ≡ p(a) ∨ p(b).

Section 1.4

1. Ac = {4}, Bc = {1, 2}, A ∩ B = {3}, A ∪ B = {1, 2, 3, 4}, A \ B = {1, 2},
B \A = {4}, and A M B = {1, 2, 4}.

&%
'$
&%
'$

A B1

2
3 4

3. Ac = (−∞,−1] ∪ [1,∞), Bc = (−∞, 0) ∪ (1,∞), A ∩ B = [0, 1), A ∪ B =
(−1, 1], A \B = (−1, 0), B \A = {1}, and A M B = (−1, 0) ∪ {1}.

A d d
−1 1

B t t
0 1

5. Ac = Z−, Bc = Z− ∪ {0}, A ∩B = Z+, A ∪B = N, A \B = {0}, B \A = ∅,
and A M B = {0}.

A = N = Z+ ∪ {0} = B ∪ {0}.

7. Ac = [3,∞), Bc = (0, 2), A ∩ B = [2, 3), A ∪ B = (0,∞), A \ B = (0, 2),
B \A = [3,∞), and A M B = (0, 2) ∪ [3,∞).

-U d
0

A d d
0 3

-B t
2

9. Yes. It is impossible to simultaneously have n < 0 and n ≥ 0.
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11. No, since 3.5 is in the intersection.

13. {(1, 2), (1, 4), (3, 2), (3, 4)}. Notice that it has 2 · 2 = 4 elements.

15. {(3, 5), (5, 5), (7, 5), (9, 5)}. Notice that it has 4 · 1 = 4 elements.

17.

1

3

2 4

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

19.

−1

1

−1 1

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

21.

1

−1
�
�
�
�
�
�
�
�
�
�

23.

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�
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25. {(1, 2, 1), (1, 2, 2), (1, 4, 1), (1, 4, 2), (3, 2, 1), (3, 2, 2), (3, 4, 1), (3, 4, 2)}.
Notice that it has 2 · 2 · 2 = 8 elements.

27. {(a, a, a), (a, a, b), (a, b, a), (a, b, b), (b, a, a), (b, a, b), (b, b, a), (b, b, b)}.
Notice that it has 23 = 8 elements.

29. {∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}.
Notice that it has 23 = 8 elements.

31. {∅,{1},{2},{3},{4},{1,2},{1,3},{1,4},{2,3},{2,4},{3,4},{1,2,3},{1,2,4},{1,3,4},
{2,3,4},{1,2,3,4}}.
Notice that it has 24 = 16 elements.

33. 1024.
That is, for A = {n : n ∈ Z and 1 ≤ n ≤ 10} = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, we
have |A| = 10, and hence |P(A)| = 210 = 1024.

35. ∅, {π}, (−2, 7], and Z.
Many different answers are possible.

37. False.
1 is not an ordered pair.

39. False.
1 6∈ {3, 4}.

41. (A M B) M C = A M (B M C).
That is, ⊕ corresponds to M.

43. A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C) and A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C).
That is, ∧ corresponds to ∩, and ∨ corresponds to ∪.

45.

&%
'$
&%
'$

A B

&%
'$

C

U

&%
'$
&%
'$

A B

&%
'$

C

U

A∪ (B ∩C) is the shaded portion of the left diagram. (A∪B)∩ (A∪C) is the
doubly shaded portion of the right diagram. Both portions are the same.
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47. Since A ⊆ B, we use a Venn diagram of the following form.

&%
'$
����

B
A

Both desired equations can now be seen in the following shaded diagram.

&%
'$
����

B
A &%

'$
����

B
A

A∪B is the shaded portion of the left diagram. B is shaded in the right diagram.
Both portions are the same.

49. A ∩ (Ac ∪B ∪ C) = (A ∩Ac) ∪ (A ∩B) ∪ (A ∩ C) Distributivity
= ∅ ∪ (A ∩B) ∪ (A ∩ C) Theorem 1.6
= (A ∩B) ∪ (A ∩ C) Theorem 1.6

51. (A ∩B ∩ Cc) ∪ (A ∩Bc ∩ C)
= (A ∩ (B ∩ Cc)) ∪ (A ∩ (Bc ∩ C)) Associativity
= A ∩ ((B ∩ Cc) ∪ (Bc ∩ C)) Distributivity
= A ∩ ((B \ C) ∪ (C \B)) Definition of \
= A ∩ (B M C) Definition of M

53. A ∩ ((B ∩ C)
c
) = A ∩ (Bc ∪ Cc) De Morgan’s Law

= (A ∩Bc) ∪ (A ∩ Cc) Distributivity

55. Since A ∩B ∩ C ⊆ A ∩B, the Absorption Rule yields the desired result.
The Absorption Rule says: If S ⊆ T , then S ∪ T = T . Apply this with S =
A ∩ B ∩ C and T = A ∩ B, after invoking commutativity to conclude that
S ∪ T = T ∪ S. That is,

(A ∩B) ∪ (A ∩B ∩ C) = (A ∩B ∩ C) ∪ (A ∩B) = A ∩B.

57. Yes, as sets, but not as lists.

In[1]:= setEq[x_,y_] := (Union[x] == Union[y])

In[2]:= setEq[{1,2},{2,1}]

Out[2]= True

In[3]:= setEq[{1,2,2},{2,1}]

Out[3]= True
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59. disjoint[x_, y_] := (Intersection[x, y] == {})

In[1]:= disjoint[x_,y_] := (Intersection[x,y] == {})

In[1]:= disjoint[{1,2},{3,4}]

Out[2]= True

In[3]:= disjoint[{1,2},{1,4}]

Out[3]= False

61. symmDiff[x_, y_] := Union[Complement[x, y], Complement[y, x]]

In[1]:= symmDiff[x_,y_] := Union[Complement[x,y], Complement[y,x]]

In[2]:= symmDiff[{1,2},{3,4}]

Out[2]= {1,2,3,4}

In[3]:= symmDiff[{1,2},{1,4}]

Out[3]= {2,4}

63. In both cases, intersect is performed before union.

> {1,3} intersect {1,2} union {2,3};

{1, 2, 3}

> {1,3} union {1,2} intersect {2,3};

{1, 2, 3}

65. They test whether A is a subset of B. The first should be more efficient,
since the power set can be much larger than the given set and thus expensive
to compute.

> subset1 := (x,y) -> evalb(x = x intersect y) ;

subset1 := (x, y) -> evalb(x = x intersect y)

> with(combinat, powerset);

[powerset]

> subset2 := (x,y) -> member(x,powerset(y)) ;

subset2 := (x, y) -> member(x, (combinat:-powerset)(y))
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> subset1({1},{1,2});

true

> subset2({1},{1,2});

true

> subset1({1},{2,3});

false

> subset2({1},{2,3});

false

67. compU := x -> U minus x;

> U := {0,1,2,3,4,5,6,7,8,9};

U := {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

> compU := x -> U minus x;

compU := x -> U minus x

> compU({1,2,3});

{0, 4, 5, 6, 7, 8, 9}

> compU({2,3,9,12});

{0, 1, 4, 5, 6, 7, 8}

Section 1.5

1. p q p→ q ¬q ¬p
F F T T T
F T T F
T F F T
T T T F

The first row demonstrates the validity of the argument form

p→ q
¬q
∴ ¬p.
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3. p q r p→ r q → r p ∨ q r
F F F T T F
F F T T T F
F T F T F T
F T T T T T T
T F F F T T
T F T T T T T
T T F F F T
T T T T T T T

Rows 4, 6, and 8 demonstrate the validity of the argument form

p→ r
q → r
p ∨ q
∴ r.

5. p q p ∧ q p
F F F
F T F
T F F
T T T T

The last row demonstrates the validity of the argument form

p ∧ q
∴ p.

7. p q p ∧ q
F F
F T
T F
T T T

The last row demonstrates the validity of the argument form

p
q
∴ p ∧ q.

9. Invalid. Consider when p is false and q is true.

p q p→ q q p
F T T T F

This row, for example, shows that the argument form is invalid.
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11. Valid. The third, fourth, sixth, and eighth rows of the truth table

p q r p ∨ q p→ r q ∨ r
F F F F T F
F F T F T T
F T F T T T
F T T T T T
T F F T F F
T F T T T T
T T F T F T
T T T T T T

show that the argument form is valid.

13. Invalid. Consider when p is true and q is true.

p q p ∨ q p ¬q
T T T T F

This row, for example, shows that the argument form is invalid.

15. Valid.
The sixth, eighth, eleventh, twelfth, and fifteenth rows of the truth table

p q r s p ∨ q p→ r q → s r ∨ s
F F F F F T T
F F F T F T T
F F T F F T T
F F T T F T T
F T F F T T F
F T F T T T T T
F T T F T T F
F T T T T T T T
T F F F T F T
T F F T T F T
T F T F T T T T
T F T T T T T T
T T F F T F F
T T F T T F T
T T T F T T F
T T T T T T T T

show that the argument form is valid.
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17. (a) p q r p→ r q → r p ∨ q → r
F F F T T T
F F T T T T
F T F T F
F T T T T T
T F F F T
T F T T T T
T T F F F
T T T T T T

Rows 1, 2, 4, 6, and 8 demonstrate the validity of the argument form.
(b) Statement Form Justification

1. p→ r Given
2. q → r Given
3. p ∨ q Given
4. p ∨ q → r (1), (2), Part (a)
5. ∴ r (3), (4), Direct Implication

(c) Statement Form Justification
1. p→ s Given
2. q → s Given
3. r → s Given
4. p ∨ q ∨ r Given
5. p ∨ q → s (1), (2), Part (a)
6. p ∨ q ∨ r → s (3), (5), Part (a)
7. ∴ s (4), (6), Direct Implication

19. Invalid, since its argument form

p ∨ q
∴ p

is invalid.
p q p ∨ q p
F T T F

This row, for example, shows that the argument form is invalid.

21. Invalid, since its argument form

p ∨ ¬p
¬p
∴ q

is invalid.
p q p ∨ ¬p ¬p q
F F T T F

This row, for example, shows that the argument form is invalid.
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23. Statement Form Justification
1. p→ q Given
2. q → r Given
3. p Given
4. p→ r (1), (2), Transitivity of →
5. ∴ r (3), (4), Direct Implication

25. Statement Form Justification
1. p→ r Given
2. p ∧ q Given
3. p (2), In Particular
4. ∴ r (1), (3), Direct Implication

27. Statement Form Justification
1. p ∧ (q ∨ r) Given
2. (p ∧ q)→ s Given
3. (p ∧ r)→ s Given
4. (p ∧ q) ∨ (p ∧ r) (1), Distributivity
5. ∴ s (2), (3), (4), Two Separate Cases

29. Statement Form Justification
1. p→ q Given
2. p Given
3. ¬p ∨ q (1), Substitution of Equivalent
4. ¬¬p (2), Double Negative
5. ∴ q (3), (4), Eliminating a Possibility

31. Statement Form Justification
1. ∀ x ∈ U , p(x)→ q(x) Given
2. a ∈ U Given
3. ¬q(a) Given
4. p(a)→ q(a) (1),(2), Principle of Specification
5. ∴ ¬p(a) (3),(4), Contrapositive Implication

33. Statement Form Justification
1. ∀ x ∈ U , p(x)→ q(x) Given
2. ∀ x ∈ U ,¬q(x) Given
3. Let a ∈ U be arbitrary. Assumption
4. p(a)→ q(a) (1),(3), Principle of Specification
5. ¬q(a) (2),(3), Principle of Specification
6. ¬p(a) (4),(5), Contrapositive Implication
7. ∴ ∀ x ∈ U ,¬p(x) (3),(6), Principle of Generalization
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35. Statement Form Justification
1. ∀ x ∈ U , p(x) Given
2. ∀ x ∈ U , q(x) Given
3. a ∈ U Given
4. p(a) (1),(3), Principle of Specification
5. q(a) (2),(3), Principle of Specification
6. ∴ p(a) ∧ q(a) (4),(5), Obtaining And

37. Statement Form Justification
1. ∀ x ∈ U , p(x) Given
2. ∀ x ∈ U , q(x) Given
3. Let a ∈ U be arbitrary. Assumption
4. p(a) ∧ q(a) (1),(2),(3), Exercise 35
5. ∴ ∀ x ∈ U , p(x) ∧ q(x) (3),(4), Principle of Generalization

39. Statement Form Justification
1. ∀ x ∈ U , p(x) ∨ q(x) Given
2. a ∈ U Given
3. q(a)→ r(a) Given
4. p(a) ∨ q(a) (1),(2), Principle of Specification
5. p(a)→ p(a) ∨ r(a) Tautology
6. r(a)→ p(a) ∨ r(a) Tautology
7. q(a)→ p(a) ∨ r(a) (3),(6),Transitivity of →
8. ∴ p(a) ∨ r(a) (4),(5),(7), Separate Cases

41. Let U = Z, p(n) = “n2 < 0”, and q(n) = “n2 ≥ 0”.
In the resulting argument

∀ n ∈ Z, n2 < 0 or n2 ≥ 0
∀ n ∈ Z, n2 6< 0
∴ ∀ n ∈ Z, n2 6≥ 0,

all of the premises are true, but the conclusion

∀ n ∈ Z, n2 < 0

is false.

43. Let U = R, p(x) = “x ≥ 0”, and q(x) = “x ≤ 0”, and a = 0.
In the resulting argument

∀ x ∈ R, x ≥ 0 or x ≤ 0
0 ∈ R
0 ≥ 0 or 0 ≤ 0
∴ ∀ x ∈ R, x ≥ 0 and x ≤ 0,

all of the premises are true, but the conclusion is false (since it fails for x = 1).
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45. Invalid. The form of the argument

∀ x ∈ U , p(x)→ q(x)

r

q(2)

∴ p(2)

is invalid.
Let U = R, p(x) = “x > 2”, q(x) = “x ≥ 2”, and r = “2 ∈ R” to see this.

47. Valid. The form of the argument

∀ x ∈ U , p(x)→ q(x)

a ∈ U
p(a) ∨ r(a)

∴ q(a) ∨ r(a)

is valid. Note that U = Z, p(n) = “n < 0, ” q(n) = “ − n > 0, ” and
r(n) = “n = 0.”

Statement Form Justification
1. ∀ x ∈ U , p(x)→ q(x) Given
2. a ∈ U Given
3. p(a) ∨ r(a) Given
4. p(a)→ q(a) (1),(2), Principle of Specification
8. ∴ q(a) ∨ r(a) (3),(4), Exercise 11

49. If ∀ x, y ∈ U , p(x, y) holds and a, b ∈ U , then p(a, b) holds.

Review

1. It is a true statement.
An if-then statement is true, when its hypothesis is false.

2. p q ¬q p→ ¬q
F F T T
F T F T
T F T T
T T F F

3. p q ¬p ¬p ∧ q p ∨ q (¬p ∧ q) ∨ p
F F T F F F
F T T T T T
T F F F T T
T T F F T T
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The last two columns are the same.

4. p q ¬p ¬q p ∧ ¬q ¬(p ∧ ¬q) ¬p ∨ q
F F T T F T T
F T T F F T T
T F F T T F F
T T F F F T T

The last two columns are the same.

5. p q p→q q→p (p→q)∨(q→p)
F F T T T
F T T F T
T F F T T
T T T T T

The last column is all T .

6. Yes.
p q ¬p ¬p→ q p ∨ q
F F T F F
F T T T T
T F F T T
T T F T T

The last two columns are the same.

7. Yes.

p q r q ∨ r p→ q p→ (q ∨ r) (p→ q) ∨ r
F F F F T T T
F F T T T T T
F T F T T T T
F T T T T T T
T F F F F F F
T F T T F T T
T T F T T T T
T T T T T T T

The last two columns are the same.

8. (a) p ∨ ¬q → p.
(b) ¬(p ∧ ¬q)→ ¬p ≡ ¬p ∧ q → ¬p.
(c) ¬p→ ¬(p ∧ ¬q) ≡ ¬p→ ¬p ∧ q.
(d) p ∧ ¬(p ∧ ¬q) ≡ p ∧ ¬p ∧ q = f .

9. If the program compiles, then the program does not contain a syntax error.
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10. ¬¬p ∧ ¬(q ∧ ¬r) ≡ p ∧ (¬q ∨ r)

11. Steve is not doing his homework and Steve is going to the basketball game.

12. ¬p ∧ (q ∨ ¬r) ≡ (¬p ∧ q) ∨ (¬p ∧ ¬r) Distributivity
≡ (¬p ∧ q) ∨ ¬(p ∨ r) De Morgan’s Law

13. (p ∧ q ∧ ¬r) ∨ (¬p ∧ q ∧ ¬r)
≡ (p ∧ (q ∧ ¬r)) ∨ (¬p ∧ (q ∧ ¬r)) Associativity
≡ (p ∨ ¬p) ∧ (q ∧ ¬r) Distributivity
≡ t ∧ (q ∧ ¬r) Theorem 1.2
≡ q ∧ ¬r Theorem 1.2

14. ((P ∧Q) ∨ ¬Q) ∧R = S,
as can be seen by tracing the circuit.

P
AND

s
Q

c
NOT

OR

R

AND S

P ∧Q

¬Q

(P ∧Q) ∨ ¬Q
((P ∧Q) ∨ ¬Q) ∧ R

P Q R P ∧Q ¬Q (P ∧Q) ∨ ¬Q S
0 0 0 0 1 1 0
0 0 1 0 1 1 1
0 1 0 0 0 0 0
0 1 1 0 0 0 0
1 0 0 0 1 1 0
1 0 1 0 1 1 1
1 1 0 1 0 1 0
1 1 1 1 0 1 1

15. R
Q

P
OR

AND c
NOT S

16.

P c
NOT

Q
AND

s

R
AND

OR S
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17. True.
Both equal (−

√
2,
√

2).

18. True.
Order does not matter.

19. False.
{1} is a subset.

20. False.
1 is an element.

21. True.
{1, 2} is listed on the right-hand side.

22. False.
E.g., it contains 0.2, 0.22, 0.222, . . ..

23. True.
2 is listed on the right-hand side.

24. False.
1 is not listed on the right-hand side. Instead, {1} is listed.

25. False.
0 is an element.

26. True.
Repetition does not matter, and = is a special case of ⊆.

27. False.
|{∅}| = 1, since ∅ is the lone element of {∅}.

28. {4, 6, 8, 10, 12}.

29. {x : x ∈ R and x5 + x4 + x3 + x2 + x+ 1 = 0}. It happens to be {−1}.
Note that x5 + x4 + x3 + x2 + x+ 1 = (x+ 1)(x2 + x+ 1)(x2 − x+ 1).

30. {x : x ∈ R and − 3 < x ≤ −1}.
Or, {x : −3 < x ≤ −1} if we understand that we are working in the context of
real numbers.

31. 2.
−1+

√
5

2 and −1−
√

5
2 are the elements.
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32. Read Example 1.22. P = {S : S is a set and S 6∈ S}. If P is a set, then
both P ∈ P and P 6∈ P lead to contradictions.

33. ∀ n ∈ Z, 2n ∈ Z.

34. ∃ n ∈ Z such that 2n > 1000.

35. ∀ x, y ∈ R, if y 6= 0, then x
y ∈ R.

Or, ∀ x ∈ R,∀ x ∈ R \ {0}, xy ∈ R.

36. ∀ x ∈ R, if x ∈ (1, 4], then 1
x ∈ [ 1

4 , 1).
Or, ∀ x ∈ (1, 4], 1

x ∈ [ 1
4 , 1).

37. ∀ m,n ∈ Z,m+ n ∈ Z.

38. ∀ x ∈ R,∃ y ∈ R such that y3 = x.

39. ∃ x ∈ N such that x2 6∈ N or 1
2x ∈ N.

∃ x ∈ N such that ¬[x2 ∈ N and 1
2x 6∈ N] ≡ ∃ x ∈ N such that x2 6∈ N or 1

2x ∈ N.
De Morgan’s Law is used.

40. ∀ x ∈ R, x2 − x+ 1 6= 0.

41. ∃ x ∈ R such that x3 < 0 and x ≥ 0. Recall that ¬(p→ q) ≡ p ∧ ¬q.

42. ∃ x, y ∈ R such that (x+ y)2 6= x2 + 2xy + y2.

43. ∀ n ∈ Z, n < 0 and n2 − 1 ≤ 0.
Recall that ¬(p→ q) ≡ p ∧ ¬q.

44. ∃ x ∈ R such that ∀ n ∈ Z, xn ≤ 0.
∃ x ∈ R such that ¬[∃ n ∈ Z such that xn > 0] ≡ ∃ x ∈ R such that ∀ n ∈
Z, xn ≤ 0.

45. Truth is always popular, or it is sometimes wrong.
Note that ‘but’ is a form of ‘and’.

46.

&%
'$
&%
'$

A B1

3
2 5

(a) {2}. (b) {1, 2, 3, 5}. (c) {5}. (d) {1, 3, 5}.
(e) {(1, 2), (1, 5), (2, 2), (2, 5), (3, 2), (3, 5)}. Note that it has 3 · 2 = 6 elements.
(f) {∅, {2}, {5}, {2, 5}}. Note that it has 22 = 4 elements.
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47. (−∞,−1].

-(−1,∞) d
−1

�(−∞,−1] t
−1

48. {0}.

(−1, 1) d t d
−1 0 1

49. {1, 2, 3, 4, 6, 8}.

&%
'$
&%
'$

A B1

3

2

4

6

8

50. [4, 5].

[3, 5] t t
3 5

[2, 4) dt
2 4

51. {a, b, c, d, e}.

&%
'$
&%
'$

A Ba
b
c

f
d

e

52. No.
0 is in both.

53. {(x, p), (x, q), (y, p), (y, q), (z, p), (z, q)}.
Note that it has 3 · 2 = 6 elements.

54.

−1 1

1
�
�
�
�
�
�
�
�
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55. {(1, 1)}.
Note that it has 1 · 1 = 1 element.

56. {∅, {x}, {y}, {z}, {x, y}, {x, z}, {y, z}, {x, y, z}}.
Note that it has 23 = 8 elements.

57. (Ac ∩Bc)c = (Ac)
c ∪ (Bc)

c
De Morgan’s Law

= A ∪B Double Complement Rule

58. Ac ∩ (B ∪ Cc) = (Ac ∩B) ∪ (Ac ∩ Cc) Distributivity
= (Ac ∩B) ∪ (A ∪ C)

c
De Morgan’s Law

59. (A ∩Bc) ∪ (A ∩B) = A ∩ (Bc ∪B) Distributivity
= A ∩ U Theorem 1.6
= A Theorem 1.6

60. (Ac∩B∩Cc)∪(Ac∩(Bc∪C))
= (Ac∩(B∩Cc))∪(Ac∩(Bc∪C)) Associativity
= Ac∩((B∩Cc)∪(Bc∪C)) Distributivity
= Ac∩((B∩Cc)∪(B∩Cc)c) De Morgan’s Law
= Ac∩U Theorem 1.6
= Ac Theorem 1.6

61. p q r p ∧ q p→ r q ∧ r
F F F F T
F F T F T
F T F F T
F T T F T
T F F F F
T F T F T
T T F T F
T T T T T T

The validity of the argument can be seen in the last row.

62. p q r p→ q q → r r → p p↔ r
F F F T T T T
F F T T T F
F T F T F T
F T T T T F
T F F F T T
T F T F T T
T T F T F T
T T T T T T T
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The validity of the argument can be seen in the first and last rows.

63. Valid.

p q r p ∨ q q → r p ∨ r
F F F F T
F F T F T
F T F T F
F T T T T T
T F F T T T
T F T T T T
T T F T F
T T T T T T

The validity of the argument can be seen in rows 4, 5, 6, and 8.

64. Valid.

p q r p ∧ ¬q q ∨ r ¬r → p
F F F F F
F F T F T
F T F F T
F T T F T
T F F T F
T F T T T T
T T F F T
T T T F T

The validity of the argument can be seen in row 6.

65. Invalid. Consider when p is false, q is true, and r is false.
The argument form is invalid as can be seen in this row of the truth table.

p q r p→ q r → q q p ∨ r
F T F T T T F

66. The argument is invalid, since its form

p ∨ q
q

∴ ¬p

is invalid,
as can be confirmed with a truth table.

p q p ∨ q q ¬p
T T T T F
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67. Statement Form Justification
1. p→ (q ∨ r) Given
2. ¬q ∧ ¬r Given
3. ¬(q ∨ r) (2), De Morgan’s Law
4. ∴ ¬p (1), (3), Contrapositive Implication

68. Statement Form Justification
1. ¬r Given
2. p→ q Given
3. q → r Given
4. p→ r (2), (3), Transitivity of →
5. ∴ ¬p (1), (4), Contrapositive Implication

69. Statement Form Justification
1. ∀ x ∈ U , p(x) ∧ q(x) Given
2. Let a ∈ U be arbitrary. Assumption
3. p(a) ∧ q(a) (1),(2), Principle of Specification
4. p(a) (3), In Particular
5. ∴ ∀ x ∈ U , p(x) (2),(4), Principle of Generalization

70. Statement Form Justification
1. ∀ x ∈ U , p(x) ∨ q(x) Given
2. a ∈ U Given
3. ¬q(a) Given
4. p(a) ∨ q(a) (1), (2), Principle of Specification
5. ∴ p(a) (3),(4), Eliminating a Possibility

71. Statement Form Justification
1. ∀ x ∈ U , p(x) ∨ ¬q(x) Given
2. ∀ x ∈ U , q(x) Given
3. Let a ∈ U be arbitrary. Assumption
4. p(a) ∨ ¬q(a) (1),(3), Principle of Specification
5. q(a) (2),(3), Principle of Specification
6. ¬¬q(a) (5), Double Negative
7. p(a) (4),(6), Eliminating a Possibility
8. ∴ ∀ x ∈ U , p(x) (3),(7), Principle of Generalization

72. It has the form

∀ x ∈ U , p(x) ∨ q(x)

∀ x ∈ U , q(x) ∨ r(x)

∴ ∀ x ∈ U , p(x) ∨ r(x)

which can be seen to be invalid when U = R, p(x) = “x ≤ 0”, q(x) = “x ≥ 0”,
and r(x) = “x ≤ 1”. That is, ∀ x ∈ R, x ≤ 0 ∨ x ≥ 0 is true,
and ∀ x ∈ R, x ≥ 0 ∨ x ≤ 1 is true, but ∀ x ∈ R, x ≤ 0 ∨ x ≤ 1 is false.
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2.2 Chapter 2

Section 2.1

1. Proof. Let L be the line given by the equation y = 3x− 5. Observe that

−8 = 3(−1)− 5,

−2 = 3(1)− 5, and

1 = 3(1)− 5.

Therefore, each of the points (−1,−8), (1,−2), and (2, 1) lie on the common
line L. �

3. Proof. Let A = {2, 4}. Observe that {1, 2, 3, 4} \ A = {1, 2, 3, 4} \ {2, 4} =
{1, 3}. �

5. Proof. Let A = B = {1}. Observe that A∪B = {1}∪ {1} = {1} = A∩B. �

7. Proof. Let n = −3. Observe that 10n = 10−3 = .001. �

9. Proof. Let m = −3, n = 2. Observe that 3m+ 5n = 3(−3) + 5(2) = 1. �

11. Proof. Let A = B = Z. Observe that A \B = Z \ Z = B \A. �

13. Proof. Let x = −5. Observe that x ∈ Z and 3(−5)2 + 8(−5) = 35. �

15. Proof. The polynomial x2 − 1 factors as (x + 1)(x − 1). From the zero
multiplication property, the solutions to the equation (x+ 1)(x− 1) = 0 occur
when x + 1 = 0 or x − 1 = 0. That is, x = −1 and x = 1 are the two distinct
real roots of x2 − 1. �

17. Proof. Observe that x2 − 2x+ 1 = (x− 1)2 ≥ 0.
So x2 − 2x+ 5 = x2 − 2x+ 1 + 4 ≥ 0 + 4 = 4 > 0.
Hence, the equation x2 − 2x+ 5 = 0 has no solution. �

19. (a) 6000(1.075)10 = $12,366.19.
(b) Let P = 4900, and note that 4900(1.075)10 = 10099.05 > 10000.
We used trial and error to find P .
Note that P = 4800 gives A = 9892.95 < 10000.

21. Proof. Let A = ∅. Observe that A2 = ∅2 = ∅ = A. �

23. (−2,−1) ∪ (1, 2) is not an interval.
Note that each type of interval in Definition 1.9 is a set I with the property
that, if x, y ∈ I and x ≤ z ≤ y, then z ∈ I. Here, for I = (−2,−1) ∪ (1, 2), we
have −1.5, 1.5 ∈ I and −1.5 ≤ 0 ≤ 1.5, but 0 6∈ I.
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25. Counterexample. Let x = 1
2 . Observe that x2 = ( 1

2 )2 = 1
4 6>

1
2 = x. �

27. Counterexample. Let n = 3. Observe that n2 = 9 6≤ 8 = 2n. �

29. Proof. Let x = −11. Observe that x = −11 < 10 and x2 = 121 > 100. �

31. Counterexample. Let x = 0 and y = 2π.
Observe that x < y, but sin(x) 6< sin(y).
So the sine function is not increasing. (See Definition 1.15.) �

33. False, since 0 is nonnegative but not positive.
Observe that 0 ≥ 0 and 0 6> 0.

35. False.
Counterexample. Let A = {1} and B = {2, 3}.
Observe that |A| = 1 ≤ 2 = |B|, but A * B. �
Recall that ¬[p→ q] ≡ p ∧ ¬q.

37. Counterexample. Let A = {1, 2}, B = {1, 3}, and C = {1}.
Observe that A 6= B, and A ∩ C = {1} = B ∩ C. �
Recall that ¬[p→ q] ≡ p ∧ ¬q.

39. Proof. Observe that ∅∪{3} = {3} = ∅ M {3}, {1}∪{3} = {1, 3} = {1} M {3},
and {1, 2} ∪ {3} = {1, 2, 3} = {1, 2} M {3}. �
That is, we checked A ∪ {3} = A M {3}, for each of A = ∅, {1}, and {1, 2}.

41. Observe that

9(2) = 18 and 1 + 8 = 9,
9(3) = 27 and 2 + 7 = 9,
9(4) = 36 and 3 + 6 = 9,
9(5) = 45 and 4 + 5 = 9,
9(6) = 54 and 5 + 4 = 9,
9(7) = 63 and 6 + 3 = 9,
9(8) = 72 and 7 + 2 = 9, and
9(9) = 81 and 8 + 1 = 9.
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43. n 11n hundreds - tens + ones
19 209 2− 0 + 9 = 11 = 11(1)
20 220 2− 2 + 0 = 0 = 11(0)
21 231 2− 3 + 1 = 0 = 11(0)
22 242 2− 4 + 2 = 0 = 11(0)
23 253 2− 5 + 3 = 0 = 11(0)
24 264 2− 6 + 4 = 0 = 11(0)
25 275 2− 7 + 5 = 0 = 11(0)
26 286 2− 8 + 6 = 0 = 11(0)
27 297 2− 9 + 7 = 0 = 11(0)
28 308 3− 0 + 8 = 11 = 11(1)
29 319 3− 1 + 9 = 11 = 11(1)

In each case, the relevant alternating sum is seen to be a multiple of 11.

45. Observe that

22 − 1 = 3,

23 − 1 = 7,

25 − 1 = 31, and

27 − 1 = 127

are all prime.

47. Here are the sequences, each ending in 1.
1,
2 7→ 1,
3 7→ 10 7→ 5 7→ 16 7→ 8 7→ 4 7→ 2 7→ 1,
4 7→ 2 7→ 1,
5 7→ 16 7→ 8 7→ 4 7→ 2 7→ 1, and
6 7→ 3 7→ 10 7→ 5 7→ 16 7→ 8 7→ 4 7→ 2 7→ 1.

Section 2.2

1. Proof. Let x ∈ R+. So x > 0. Multiplying by −1 gives −x < 0. So −x ∈ R−.
�

3. Proof. Suppose x ∈ R and x ∈ (2, 4). That is, 2 < x < 4. Multiplication by
2 gives 4 < 2x < 8. Thus, 2x ∈ (4, 8). �

5. Counterexample: When x = 1
4 , we have

√
1
4 6<

1
4 .

That is,
√

1
4 = 1

2 ≥
1
4 .

7. Counterexample: When x = −3, we have x < 2 and x2 ≥ 4.
Recall that ¬[p→ q] ≡ p ∧ ¬q.
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9. Proof. Suppose x ∈ R and x < −2. Since x < 0, multiplication by x gives
x2 > −2x. Since −2 < 0, multiplying x < −2 by −2 gives −2x > (−2)2.
Transitivity of > gives x2 > (−2)2. That is, x2 > 4. �

11. Proof. Suppose 0 < x < y. Since x > 0, we have x2 = x · x < x · y. Since
y > 0, we have x · y < y · y = y2. Hence, x2 < x · y < y2. �

13. Proof. Suppose R > 2. So 2I < RI = 10. Division by 2 gives I < 5. �

15. Proof. Suppose f is a constant real function. So we have c ∈ R such that
∀ x ∈ R, f(x) = c. Observe that ∀ x ∈ R, (2f)(x) = 2f(x) = 2c. So 2f is
constant. �
See the definition of constant in Definition 1.15. Also, note that 2f is to be
interpreted as an example of a constant multiple as defined in Definition 1.16.

17. Proof. Suppose f is a periodic real function. So we have p ∈ R+ such that
∀ x ∈ R, f(x + p) = f(x). Observe that ∀ x ∈ R, f2(x + p) = [f(x + p)]2 =
[f(x)]2 = f2(x). So f2 is periodic. �
See the definition of periodic in Definition 1.15. Also, the proper way to interpret
f2 is explained in the paragraph after Definition 1.16.

19. Proof. Suppose f and g are nondecreasing real functions. Suppose x ≤ y are
real numbers. Observe that (f+g)(x) = f(x) + g(x) ≤ f(y) + g(y) = (f+g)(y).
So f+g is nondecreasing. �
See the definition of nondecreasing in Definition 1.15. Also, note that f + g is
to be interpreted as a sum as defined in Definition 1.16.

21. Proof. Suppose f and g are constant. So we have c, d ∈ R such that
∀ x ∈ R, f(x) = c and g(x) = d. Observe that
∀ x ∈ R, (fg)(x) = f(x)g(x) = cd. So fg is constant. �
Note that fg is to be interpreted as a product as defined in Definition 1.16.

23. Proof. Suppose f is periodic. So we have p ∈ R+ such that
∀ x ∈ R, f(x+p) = f(x). Observe that ∀ x ∈ R, (f+c)(x+p) = f(x+p)+c =
f(x) + c = (f + c)(x). So f + c is periodic. �
The proper way to interpret f + c is explained in the paragraph after Defini-
tion 1.16. In the string of equalities above, the first results from the definition
of f + c, the second from the fact that f is periodic, and the third from the
definition of f + c (again).

25. Proof. Suppose f is increasing. Suppose x < y are real numbers. So,
f(x) < f(y). Since c > 0, multiplication by c gives cf(x) < cf(y). That is,
(cf)(x) < (cf)(y). So cf is increasing. �
To show that cf is increasing, we must show that, if x < y are real numbers,
then (cf)(x) < (cf)(y). This is accomplished in sentences two through five of
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the proof.

27. Proof. Let A be a square. So A is a rectangle. Hence, A is a parallelogram.
�
By definition, a square is a (special) rectangle. Also, a rectangle is a (special)
parallelogram.

29. Proof. Let A be a rectangle and a rhombus. Hence, A is a rectangle with
all sides congruent. That is, A is a square. �

31. Proof. Suppose a ∈ Z ∩ R+. So a ∈ Z and a > 0. Since a ≥ 0, we have
a ∈ N. �

33. Proof. Suppose x ∈ R+. So x > 0. That is, x 6≤ 0. In particular, x 6< 0.
Hence, x 6∈ R−. That is, x ∈ (R−)

c
. �

This is a subset proof. Recall that Ac denotes {x : x ∈ U and x 6∈ A}. In this
case, the understood universe is U = R.

35. Proof. Suppose x ∈ A. Hence, x ∈ A or x ∈ B. So x ∈ A ∪B. �
The Obtaining Or argument form from Theorem 1.7 is invoked here with
p = “x ∈ A” and q = “x ∈ B”.

37. Proof. Suppose A ⊆ A ∩ B and suppose x ∈ A. It follows that x ∈ A ∩ B.
That is, x ∈ A and x ∈ B. In particular, x ∈ B. Therefore A ⊆ B. �
The primary structure of the statement is that of an if-then statement. Hence,
our proof starts by supposing its hypothesis. However, since its conclusion is the
subset fact A ⊆ B, we immediately initiate a proof of that by further supposing
x ∈ A. Note that the In Particular argument form from Theorem 1.7 is invoked
here with q = “x ∈ A” and p = “x ∈ B”.

39. Proof. Suppose A ⊆ B. Suppose x ∈ A ∩ C. So, x ∈ A and x ∈ C. Since
x ∈ A and A ⊆ B, we get x ∈ B. So, x ∈ B and x ∈ C. Thus, x ∈ B ∩ C. �

41. Proof. Let x ∈ U . From the string of logical equivalences

x ∈ (A ∩B) ∩ C ↔ (x ∈ A ∩B) ∧ x ∈ C
↔ (x ∈ A ∧ x ∈ B) ∧ x ∈ C
↔ x ∈ A ∧ (x ∈ B ∧ x ∈ C)

↔ x ∈ A ∧ x ∈ B ∩ C
↔ x ∈ A ∩ (B ∩ C).

it follows that x ∈ (A ∩B) ∩ C ↔ x ∈ A ∩ (B ∩ C). �.
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43. Proof. Let x ∈ U . From the string of logical equivalences

x ∈ A ∩B ↔ x ∈ A ∧ x ∈ B
↔ x ∈ B ∧ x ∈ A
↔ x ∈ B ∩A.

it follows that x ∈ A ∩B ↔ x ∈ B ∩A. �.

45. Counterexample: Let A = {1} and B = {2}. Since A × B = {(1, 2)} and
B ×A = {(2, 1)}, we see that A×B 6= B ×A.
Recall that the elements of a product of two sets are ordered pairs. At the heart
of this proof is the fact that order is indeed important. That is (1, 2) 6= (2, 1),
as ordered pairs.

47. Proof. Let x ∈ U . From the string of logical equivalences

x ∈ A ∪ (B ∩ C) ↔ x ∈ A ∨ x ∈ B ∩ C
↔ x ∈ A ∨ (x ∈ B ∧ x ∈ C)

↔ (x ∈ A ∨ x ∈ B) ∧ (x ∈ A ∨ x ∈ C)

↔ (x ∈ A ∪B) ∧ (x ∈ A ∪ C)

↔ x ∈ (A ∪B) ∩ (A ∪ C).

it follows that x ∈ A ∪ (B ∩ C)↔ x ∈ (A ∪B) ∩ (A ∪ C). �.

49. Proof. Let x ∈ U . From the string of logical equivalences

x ∈ (A ∩B)
c ↔ x 6∈ A ∩B
↔ ¬(x ∈ A ∩B)

↔ ¬(x ∈ A ∧ x ∈ B)

↔ ¬(x ∈ A) ∨ ¬(x ∈ B)

↔ x 6∈ A ∨ x 6∈ B
↔ x ∈ Ac ∨ x ∈ Bc

↔ x ∈ Ac ∪Bc.

it follows that x ∈ (A ∩B)
c ↔ x ∈ Ac ∪Bc. �.

Section 2.3

1. Proof. (→) Suppose x ∈ R−. So x < 0. Multiplication by −1 gives −x > 0.
That is, −x ∈ R+. (←) Suppose −x ∈ R+. So −x > 0. Multiplication by −1
gives x = (−1)(−x) < 0. That is, x ∈ R−. �

3. Proof. Let x ∈ R. (→) Suppose x = 2x. So 0 = 2x− x. That is, x = 0. (←)
Suppose x = 0. Observe that 0 = 2(0). �



96 CHAPTER 2. ANSWERS TO SELECTED EXERCISES

5. Proof. (→) Suppose x3 > 0. Note x 6= 0 (since 03 = 0). So x2 > 0 and
1
x2 > 0. Multiplying both sides of x3 > 0 by 1

x2 gives x > 0. (←) Suppose
x > 0. Since x2 > 0, multiplication by x2 gives x3 > 0. �

7. Proof. Let x ∈ R. (→) Suppose 4− x < 2. So 4 < 2 + x. Hence, 2 < x. (←)
Suppose x > 2. So x+ 2 > 4. Thus, 2 > 4− x. �

9. Proof. Let x ∈ R. (→) Suppose x4 − 16 = 0. So (x2 + 4)(x2 − 4) = 0.
Since x2 + 4 > 0, it must be that x2 − 4 = 0. (←) Suppose x2 − 4 = 0. So
(x2 + 4)(x2 − 4) = 0. That is, x4 − 16 = 0. �

11. Proof. (→) Done in Exercise 15 from Section 2.2. (←) Suppose 2f is
constant. So we have c ∈ R such that ∀ x ∈ R, 2f(x) = c. Therfore,
∀ x ∈ R, f(x) = c

2 . So, f is constant. �

13. Proof. (→) Suppose f is bounded above. So we have M ∈ R such that
∀ x ∈ R, f(x) ≤ M . Observe that ∀ x ∈ R, (f + 1)(x) = f(x) + 1 ≤ M + 1.
So f + 1 is bounded above. (←) Suppose f + 1 is bounded above. So we have
M ∈ R such that ∀ x ∈ R, (f + 1)(x) ≤ M . That is, ∀ x ∈ R, f(x) + 1 ≤ M .
So ∀ x ∈ R, f(x) ≤M − 1. Thus, f is bounded above. �

15. Proof. (→) Suppose f is bounded above and below. So we have M,L ∈ R
such that ∀ x ∈ R, L ≤ f(x) ≤M . Let U = max{L2,M2}. It can be shown that
∀ x ∈ R, f2(x) ≤ U . (Hint: First argue that ∀ x ∈ R, |f(x)| ≤ max{|L|, |M |}.)
So f2 is bounded above. (←) Suppose f2 is bounded above. So we have M ∈ R
such that ∀ x ∈ R, f2(x) ≤ M . It follows that ∀ x ∈ R, −

√
M ≤ f(x) ≤

√
M .

So f is bounded above and below. �

17. Proof. (→) Suppose f is periodic. So we have p ∈ R+ such that, ∀ x ∈ R,
f(x+p) = f(x). Suppose x ∈ R. So (2f)(x+p) = 2·f(x+p) = 2·f(x) = (2f)(x).
Hence, 2f is periodic. (←) Suppose 2f is periodic. So we have p ∈ R+ such
that, ∀ x ∈ R, f(x+ p) = f(x). Suppose x ∈ R. So f(x+ p) = 1

2 · (2f)(x+ p) =
1
2 · (2f)(x) = f(x). Hence, f is periodic. �

19. Proof. (→) Suppose 20 points are scored. Let t be the number of touchdowns
and f be the number of field goals scored. If t ≥ 3, then 7t ≥ 21 points are
scored. So t ≤ 2. If t = 0, then 3f = 20 is impossible. If t = 1, then 7+3f = 20
is impossible, since 3f = 13 is impossible. So t = 2, and it must be that f = 2
to give 7t + 3f = 7(2) + 3(2) = 20. (←) Suppose t = 2 touchdowns and f = 2
field goals are scored. Hence, 7t+ 3f = 7(2) + 3(2) = 20 points are scored. �

21. Proof. (⊆) Suppose x ∈ R+ ∩ [−2, 2], So x > 0 and −2 ≤ x ≤ 2. Hence,
0 < x ≤ 2. Thus, x ∈ (0, 2]. (⊇) Suppose x ∈ (0, 2]. So −2 < 0 < x ≤ 2. Hence,
x > 0 and −2 ≤ x ≤ 2. Thus, x ∈ R+ ∩ [−2, 2]. �
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23. Proof. (⊆) Suppose x ∈ N \ (−1, 1). So x ∈ Z, x ≥ 0, and x 6∈ (−1, 1).
Since x 6≤ −1, it must be that x ≥ 1. Hence, x ∈ Z+. (⊇) Suppose x ∈ Z+. So
x ∈ Z and x > 0. In particular, x ≥ 1. Thus, x ∈ N and x 6∈ (−1, 1). Hence,
x ∈ N \ (−1, 1). �

25. Proof. (⊆) Suppose x ∈ [1, 3) ∩ [2, 4). So 1 ≤ x < 3 and 2 ≤ x < 4. Hence,
2 ≤ x < 3. That is, x ∈ [2, 3). (⊇) Suppose x ∈ [2, 3). So 2 ≤ x < 3. Hence,
1 ≤ x < 3 and 2 ≤ x < 4. Thus, x ∈ [1, 3) ∩ [2, 4). �

27. Proof. Suppose A ⊆ B. (⊆) Suppose x ∈ A ∩ B. So x ∈ A and x ∈ B. In
particular, x ∈ A. Hence A ∩B ⊆ A. (⊇) Suppose x ∈ A. Since A ⊆ B, we get
x ∈ B. Thus x ∈ A and x ∈ B. So x ∈ A ∩ B. Hence A ⊆ A ∩ B. It follows
that A ∩B = A. �

29. Proof. (⊆) Suppose x ∈ (A\C)∩B. So x ∈ A\C and x ∈ B. Hence x ∈ A,
x 6∈ C, and x ∈ B. Since x ∈ B and x 6∈ C, we have x ∈ B \ C. Thus x ∈ A
and x ∈ B \ C. That is x ∈ A ∩ B \ C. (⊇) Essentially, reverse the previous
argument. �

31. Proof. Suppose A ∩ B = A ∩ C. (⊆) Suppose x ∈ A ∩ B ∩ C. So x ∈ A,
x ∈ B, and x ∈ C. Since x ∈ A and x ∈ B, we have x ∈ A ∩ B. (⊇) Suppose
x ∈ A ∩ B. Since A ∩ B = A ∩ C, we have x ∈ A ∩ C. So x ∈ A and x ∈ B.
Also, x ∈ A and x ∈ C. Thus x ∈ A, x ∈ B, and x ∈ C. So x ∈ A ∩B ∩ C. �

33. Proof. (⊆) Suppose x ∈ (A \B) \C. So x ∈ A \B and x 6∈ C. So x ∈ A and
x ∈ Bc ∩ Cc. Since x 6∈ (Bc ∩ Cc)c, De Morgan’s Law tells us that x 6∈ B ∪ C.
Since x ∈ A and x 6∈ B ∪ C, we have x ∈ A \ (B ∪ C). (⊇) Essentially, reverse
the previous argument. �

35. Proof. Suppose A ⊆ B and (x, y) ∈ A2. Since x, y ∈ A and A ⊆ B, it
follows that x, y ∈ B. Hence, (x, y) ∈ B2. �
Recall that A2 = A×A. So elements of A2 are ordered pairs.

37. Proof. (⊆) Suppose (x, y) ∈ (U × B) \ (A × B). So (x, y) ∈ U × B and
(x, y) 6∈ A × B. We have (x ∈ U and) y ∈ B. Since (x, y) 6∈ A × B, it must be
that x 6∈ A. That is x ∈ Ac. Hence (x, y) ∈ Ac×B. (⊇) Suppose (x, y) ∈ Ac×B.
So x ∈ Ac and y ∈ B. Since x 6∈ A, we get (x, y) 6∈ A×B. Since (x, y) ∈ U ×B,
we have (x, y) ∈ (U ×B) \ (A×B). Thus, (U ×B) \ (A×B) = Ac ×B. �
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39. Proof. Let x, y ∈ U . From the string of equivalences

(x, y) ∈ A× (B ∩ C) ↔ x ∈ A ∧ y ∈ B ∩ C
↔ x ∈ A ∧ y ∈ B ∧ y ∈ C
↔ x ∈ A, y ∈ B ∧ x ∈ A, y ∈ C
↔ (x, y) ∈ A×B ∧ (x, y) ∈ A× C
↔ (x, y) ∈ (A×B) ∩ (A× C),

it follows that

(x, y) ∈ A× (B ∩ C)↔ (x, y) ∈ (A×B) ∩ (A× C).

Hence, A× (B ∩ C) = (A×B) ∩ (A× C). �

41. Proof. (→) Suppose A × C = B × C. (⊆) Suppose x ∈ A. Since (x, c) ∈
A × C, it follows that (x, c) ∈ B × C. So x ∈ B. (⊇) Similar. (←) Suppose
A = B. (⊆) Suppose (x, y) ∈ A × C. So x ∈ A and y ∈ C. Since A = B, we
have x ∈ B. So (x, y) ∈ B × C. (⊇) Similar. �

43. Proof. Suppose S ∈ P(Ac) \ {∅}. So S ⊆ Ac and S 6= ∅. Since S 6= ∅, we
have some x ∈ S. Since S ⊆ Ac, we have x ∈ Ac. That is, x ∈ S and x 6∈ A. So
S * A. Therefore S 6∈ P(A). That is, S ∈ P(A)

c
. �

45. Proof. Suppose S ∈ P(A ∩B). That is, S ⊆ A ∩ B. Since A ∩ B ⊆ A, we
get S ⊆ A. Since A∩B ⊆ B, we get S ⊆ B. So S ∈ P(A) and S ∈ P(B). Thus
S ∈ P(A) ∩ P(B). Hence P(A ∩B) ⊆ P(A) ∩ P(B). �

47. Let r be the average speed over the entire trip, let r1 be the average
speed over the first lap, and let r2 be the average speed over the second lap.
Observe that 2

r = 1
r1

+ 1
r2

. (a) r = 48 mph. (b) 2r1r2
r1+r2

= r = 60 if and only if

r1 = 30r2
r2−30 > 30.

That is, let t be time over the entire trip, let t1 be the time over the first lap,
and let t2 be the time over the second lap. Note that 2 is the distance over the
entire trip, and 1 is the distance over each lap. Now use the fact that rate times
time equals distance to substitute for time in the equation t = t1 + t2. The rest
is algebra.

Section 2.4

1. Proof. Suppose not. Let s be the smallest element of (1, 2). Observe that
s+1

2 is a smaller element of (1, 2). (Think about it.) This is a contradiction. �
That is, since 1 < s, it follows that 2 = 1 + 1 < s + 1 < s + s = 2s. So
1 = 2

2 <
s+1

2 < 2s
2 = s.

3. Proof. Suppose not. Let L be the largest element of N. However, L+ 1 is a
larger element of N. This is a contradiction. �
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5. Proof. Let A be a set, and suppose A ∩ ∅ 6= ∅. So we have an element
x ∈ A ∩ ∅. Hence, x ∈ A and x ∈ ∅. However, x ∈ ∅ is impossible. This is a
contradiction. So it must be that A ∩ ∅ = ∅. �

7. Sketch. Suppose (0, 1] has finite cardinality n. The list 1
2 ,

1
22 , . . . ,

1
2n+1 of

numbers in (0, 1] is then too long. �
There cannot be n+ 1 elements in a set of cardinality n.

9. Sketch. Suppose {(x, y) : x, y ∈ R and y =
√
x} has finite cardinality n.

The list of elements (1, 1), (4, 2), . . . , ((n+ 1)2, n+ 1) is then too long. �
There cannot be n+ 1 elements in a set of cardinality n.

11. Proof. Suppose (1, 0) 6= ∅. So there is a real number x such that 1 < x < 0.
In particular, 1 < 0. This is a contradiction. �

13. Proof. Suppose R+ ∩R− 6= ∅. So there is a real number x such that x ∈ R+

and x ∈ R−. However, it is impossible to have both x > 0 and x < 0. �

15. (a) Sketch. Suppose to the contrary that Tracy wins the election. So every
other candidate must have also received fewer than 1

n of the votes. However,
the total of the fractions of the votes for the n candidates would then be less
than n · 1

n = 1, which is impossible. �
(b) Sketch. Suppose to the contrary that Tracy comes in last. So every other
candidate must have also received more than 1

n of the votes. However, the
total of the fractions of the votes for the n candidates would then be more than
n · 1

n = 1, which is impossible. �
That is, say there are m candidates, and for each 1 ≤ i ≤ m, the fraction of the
votes received by candidate i is fi. Hence, 1 = f1 + f2 + · · ·+ fm.

17. Proof. Suppose b > a are real numbers. Since a+b
2 ∈ (a, b), we see that

(a, b) 6= ∅. �

19. Proof. Suppose A 6= ∅. So we have an element x ∈ A. Thus (x, x) ∈ A2.
Hence A2 6= ∅. �
Recall that elements of A2 have the form (x, y). Here, x = y is chosen.

21. Proof. Suppose A ⊆ B. Suppose (x, y) ∈ A2. Since x ∈ A and y ∈ A and
A ⊆ B, we get x ∈ B and y ∈ B. That is, (x, y) ∈ B2. �

23. Proof. Suppose A × B 6= ∅. So we have some element (x, y) ∈ A × B. In
particular, x ∈ A. So A 6= ∅. �

25. Proof. Suppose A = B. So A ⊆ B and B ⊆ A. In particular A ⊆ B. �

27. The contrapositive “if A = B then P(A) = P(B)” is easy to see.
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29. Proof. Suppose that A is finite and B is finite. Say A has m elements
A = {a1, a2, . . . , am}, and B has n elements B = {b1, b2, . . . , bn}. Observe that
A×B =

{(a1, b1), (a1, b2), · · · , (a1, bn),
(a2, b1), (a2, b2), · · · , (a2, bn),

...
...

(am, b1), (am, b2), · · · , (am, bn)}
has mn elements. Thus, A×B is finite. �

31. Proof. Suppose to the contrary that x ∈ A, x 6∈ A ∩ B, and x ∈ B. Thus,
x ∈ A ∩B and x 6∈ A ∩B, a contradiction. �

33. Proof. Suppose to the contrary that there are two distinct lines l and m
that intersect in two or more points. That is, we have distinct points P and Q
in their intersection. Since both l and m contain P and Q, we must have l = m,
by the uniqueness assertion in Euclid’s First Postulate. �

35. (a) Proof. Suppose f is not decreasing. So we have x, y ∈ R with x < y and
0 < f(x) ≤ f(y). Hence, f2(x) ≤ f2(y). So f2 is not decreasing. �
(b) Yes, by Exercise 18.

37. Proof. Suppose f is bounded above. So we have M ∈ R such that ∀ x ∈
R, f(x) ≤ M . Observe that ∀ x ∈ R, (f + 100)(x) = f(x) + 100 ≤ M + 100.
So f + 100 is bounded above. �

39. Proof. Suppose f is increasing. (Goal: f is not periodic.) Suppose p ∈ R+.
Since f(0 + p) > f(0), it cannot be that f is periodic. �
Note that a direct proof is also straightforward.

41. The converse “if f is constant, then f2 is constant” is easy to prove.
Proof. Suppose f is constant. So we have some c ∈ R such that, ∀ x ∈ R, f(x) =
c. Suppose x ∈ R. So f2(x) = f(x)f(x) = c2. Since c2 ∈ R, we see that f2 is
constant. �

43. We prove the contrapositive. Proof. Let x ∈ R. Suppose x 6= 0. So x2 > 0.
In particular, x2 6= 0. �

45. Proof. Suppose not. So, we have some x > 0 with 1
x < 0. Hence 1 = x· 1x < 0.

This is a contradiction. �

47. Proof. Suppose not. So we have some 0 < x < y with 0 < 1
x ≤

1
y . Hence,

1 = 1
x · x <

1
x · y and 1

x · y ≤
1
y · y = 1. Thus, 1 < 1

x · y ≤ 1, a contradiction. �

49. Proof. Suppose not. So, we have some x ∈ (−∞,−1) ∩ (1,∞). That is,
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x < −1 and x > 1. Hence, 1 < x < −1, which is a contradiction. �

Section 2.5

1. Proof. Suppose A ⊆ B and C ⊆ D. (Goal: A ∪ C ⊆ B ∪ D.) Suppose
x ∈ A ∪ C. That is, x ∈ A or x ∈ C. Case 1 : x ∈ A. Since A ⊆ B, we get
x ∈ B. So x ∈ B or x ∈ D. Hence, x ∈ B ∪D. Case 2 : x ∈ C. Since C ⊆ D,
we get x ∈ D. So x ∈ B or x ∈ D. Hence, x ∈ B∪D. In either case, x ∈ B∪D.
Thus, A ∪ C ⊆ B ∪D. �

3. Proof. Suppose A ⊆ B. (⊆) Suppose x ∈ A ∪ B. So x ∈ A or x ∈ B. Case
1 : x ∈ A. Since A ⊆ B, we get x ∈ B. Case 2 : x ∈ B. We have x ∈ B. In
either case, x ∈ B. Thus, A ∪B ⊆ B. (⊇) Suppose x ∈ B. So x ∈ A or x ∈ B.
Hence, x ∈ A ∪B. �

5. Proof. (⊆) A∪Ac ⊆ U since everything is in U . (⊇) Suppose x ∈ U . Case 1 :
x ∈ A. We have x ∈ A or x ∈ Ac. So x ∈ A ∪ Ac. Case 2 : x 6∈ A. So x ∈ Ac.
We have x ∈ A or x ∈ Ac. So x ∈ A ∪ Ac. In either case, x ∈ A ∪ Ac. Hence,
U ⊆ A ∪Ac. �

7. Proof. (⊆) Suppose x ∈ A ∪ U . So x ∈ A or x ∈ U . In both cases, x ∈ U .
(⊇) Suppose x ∈ U . So x ∈ A or x ∈ U . Hence, x ∈ A ∪ U . �

9. Proof. (→) Suppose A ∪ B ⊆ C. Since A ⊆ A ∪ B, we have A ⊆ C. Since
B ⊆ A ∪ B, we have B ⊆ C. Thus A ⊆ C and B ⊆ C. (←) Suppose A ⊆ C
and B ⊆ C. Suppose x ∈ A ∪ B. So x ∈ A or x ∈ B. In the case that x ∈ A,
since A ⊆ C, we get x ∈ C. In the case that x ∈ B, since B ⊆ C, we get x ∈ C.
In both cases, x ∈ C. So A ∪B ⊆ C. �

11. Proof. Suppose x ∈ A M B. We use the characterization of M displayed after
Definition 1.18. That is, x ∈ (A \B) ∪ (B \ A). So, x ∈ A \B or x ∈ B \ A. If
x ∈ A \B, then x ∈ A. If x ∈ B \A, then x ∈ B. In either case, x ∈ A ∪B. �

13. Sketch. Suppose x ∈ (A ∪ B) \ C. If x ∈ A, then x ∈ A. If x ∈ B, then
x ∈ B \ C. �
In either case, x ∈ A ∪ (B \ C).

15. Proof. (⊆) Suppose x ∈ A ∪ (B \ C). So x ∈ A or x ∈ B \ C. Case 1 :
x ∈ A. Since A ⊆ A ∪ B, x ∈ A ∪ B. Since x ∈ A, we get x 6∈ C \ A. So
x ∈ (A ∪ B) \ (C \ A). Case 2 : x ∈ B \ C. So x ∈ B and x 6∈ C. Since
x ∈ B and B ⊆ A ∪ B, we get x ∈ A ∪ B. Since x 6∈ C, we have x 6∈ C \ A.
So x ∈ (A ∪ B) \ (C \ A). In both cases, x ∈ (A ∪ B) \ (C \ A). (⊇) Suppose
x ∈ (A ∪ B) \ (C \ A). So x ∈ A ∪ B and x 6∈ C \ A. Thus x ∈ A or x ∈ B,
and x 6∈ C or x ∈ A. Case 1 : x ∈ A. Since A ⊆ A ∪ (B \ C), we get
x ∈ A∪ (B \C). Case 2 : x 6∈ A. So x ∈ B and x 6∈ C. That is, x ∈ B \C. Since
B \C ⊆ A∪ (B \C), we get x ∈ A∪ (B \C). In both cases, x ∈ A∪ (B \C). �
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17. Proof. Let x, y ∈ U . From the string of equivalences

(x, y) ∈ (A×B)
c ↔ x 6∈ A ∨ y 6∈ B
↔ x ∈ Ac ∨ y ∈ Bc

↔ (x, y) ∈ Ac × U ∨ (x, y) ∈ U ×Bc

↔ (x, y) ∈ (Ac × U) ∪ (U ×Bc),

it follows that

(x, y) ∈ (A×B)
c ↔ (x, y) ∈ (Ac × U) ∪ (U ×Bc).

Hence (A×B)
c

= (Ac × U) ∪ (U ×Bc). �
Note that our use of the string of equivalences avoids a need for cases as well as
a need to handle two subset arguments.

19. Proof. Let x ∈ U . From the string of equivalences

x ∈ A ∩ (B M C) ↔ x ∈ A ∧ (x ∈ B ⊕ x ∈ C)

↔ (x ∈ A ∧ x ∈ B) ⊕ (x ∈ A ∧ x ∈ C)

↔ x ∈ A ∩B ⊕ x ∈ A ∩ C
↔ x ∈ (A ∩B) M (A ∩ C).

it follows that

x ∈ A ∩ (B M C)↔ x ∈ (A ∩B) M (A ∩ C).

Hence A ∩ (B M C) = (A ∩B) M (A ∩ C). �
Note that our use of the string of equivalences avoids a need for cases as well as
a need to handle two subset arguments.

21. Proof. Suppose S ∈ P(A) ∪ P(B). So S ∈ P(A) or S ∈ P(B). That is,
S ⊆ A or S ⊆ B. Since A ⊆ A ∪B and B ⊆ A ∪B, in either case, S ⊆ A ∪B.
So S ∈ P(A ∪B). �

23. Sketch. If bridge 2 is taken next, then bridge 3 must follow with bridge 4
after that, leaving the tourist on the wrong side of the Tiber with no way to
return. It bridge 4 is taken next, then bridge 3 must follow, with bridge 2 after
that, leaving the tourist on the wrong side of the Tiber with no way to return.
�

Tiber

Teatre Marcello

Tiberina

1

1. Ponte Garibaldi

��
2

2. Ponte Crestio
��
3

3. Ponte Fabricio

���
�4

4. Ponte Palatino
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25. Sketch.

−x ≥ 0 ↔ x ≤ 0.

−x < 0 ↔ x > 0.

Note that −(−x) = x. �

27. Sketch.

1− 2x ≥ 0 ↔ x ≤ 1

2
.

1− 2x < 0 ↔ x >
1

2
.

In the second case, −(1− 2x) = 2x− 1. �

29. Sketch.

x2 + 2ax+ a2 = 0 ↔ x =
−2a±

√
4a2 − 4a2

2
= −a.

x+ 3 = 0 ↔ x = −3.

Either −a = −3 or not. �
That is, the only way for there to be exactly one root is to have a = 3.

31. Proof. If x ≥ 0, then |x|2 = x2. If x < 0, then |x|2 = (−x)2 = (−1)2x2 =
1 · x2 = x2. �

33. Sketch. If x, y ≥ 0, then |xy| = xy = |x||y|. If x ≤ 0, y ≥ 0, then |xy| =
−xy = (−x)y = |x||y|. If x ≥ 0, y ≤ 0, then |xy| = −xy = x(−y) = |x||y|. If
x, y ≤ 0, then |xy| = xy = (−x)(−y) = |x||y|. �
In the left-most equalities above, we are using the facts that the product of two
positives is positive, the product of two negatives is positive, and the product
of a positive with a negative is negative.

35. Proof. (→) We prove the contrapositive. Suppose −1 ≤ x ≤ 1. In both of
the cases, x ≥ 0 and x < 0, we get that x2 ≤ 1. Squaring both sides again gives
x4 ≤ 1. (←) Suppose x < −1 or x > 1. In both cases, we get x2 > 1. Hence
x4 > 1. �

37. Proof. Suppose x2 = y2. So x2 − y2 = 0. Hence, (x + y)(x − y) = 0. So
x+ y = 0 or x− y = 0. Therefore, x = −y or x = y. That is, x = ±y. �

39. Sketch. If xy ≥ 0, then |x + y| = |x| + |y|. If xy < 0, then |x + y| ≤
max{|x|, |y|} ≤ |x|+ |y|. �
The first case happens when x, y ≥ 0 or x, y ≤ 0. The second case happens
when x ≥ 0, y ≤ 0 or x ≤ 0, y ≥ 0.
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41. Sketch. Let An = 180(n−2)
n . If n ≥ 7, then 128 < An < 180 and no multiple

of An can equal 360. If n = 5, then no multiple of A5 = 108 can equal 360.
Equilateral triangles (n = 3), squares (n = 4), and regular hexagons (n = 6)
certainly do tile the floor as shown. �

�
�
��

�
�
��

�
�
��

T
T

T
T
TT T
Tq q

�H

�H�

�H

�H

H�

H�q
Review

1. Sketch. x2 + y2 = 25 fits each point. �
Plugging the points into the general form (x− h)2 + (y − k)2 = r2, we get
(3− h)2 + (4− k)2 = r2, so 25− 6h+ h2 − 8k + k2 = r2,
(4− h)2 + (−3− k)2 = r2, so 25− 8h+ h2 + 6k + k2 = r2,
(−5− h)2 + (−k)2 = r2, so 25 + 10h+ h2 + k2 = r2.
The first equation minus the third equation gives −16h − 9k = 0. The second
equation minus the third equation gives −18h + 6k = 0. Hence h = k = 0.
Substituting this into any of the equations gives 25 = r2. So r = 5.

2. Sketch. x4 − 2x2 − 8 = (x2 + 2)(x2 − 4) and x2 + 2 6= 0. �
The point is that the roots of x4− 2x2− 8 are the roots of x2 + 2 together with
the roots of x2 − 4. However, x2 + 2 has no roots. The roots of x2 − 4 are
certainly 2 and −2.

3. Notice that n = 25−m. So m(25−m) = 100. This becomes the quadratic
equation 0 = m2 − 25m+ 100, which has solutions m = 5 or 20.
Proof. Let m = 20, n = 5.
Observe that mn = 20 · 5 = 100 and m+ n = 20 + 5 = 25. �

4. Proof. Let x = 2. Observe that 2x = 22 = x2. �

5. Sketch. Let A = ∅, B = C = Z. �
There are infinitely many different answers that will work. In fact, any choice
with A ⊂ B ⊆ C will work.

6. Sketch. Let A = {1, 2}. �
Note that |P(A)| = 2|A| and |A2| = |A|2.
So, by Exercise 4, we can pick |A| = 2. Hence, any set A with 2 elements will
work.

7. An 85 on the third test yields an average of 75.
We want 80+60+t3

3 = 75. This gives t3 = 85.
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8. False. Consider f(x) =

{
1 if x ≥ 0,

−1 if x < 0.

Observe that f2(x) =

{
12 = 1 if x ≥ 0,

(−1)2 = 1 if x < 0.
.

Since ∀ x ∈ R, f2(x) = 1, we see that f2 is constant. Certainly, f is not
constant.

9. Sketch. Let A = B = Z, C = ∅. �
The point is that we can make A ⊆ B ∪ C by just forcing A ⊆ B. As long as
we pick A 6= ∅, we can then pick C so that A * C.

10. Sketch. Let A = B = {1}, C = ∅. Observe that A M (B ∩ C) = {1} and
(A M B) ∩ (A M C) = ∅. �

11. Proof. Observe that (−1)4 = 1 = (−1)2, 04 = 0 = 02, and 14 = 1 = 12. �

12. Proof. If A = {1}, then A3 = {(1, 1, 1)} and |A3| = 1. If A = {2}, then
A3 = {(2, 2, 2)} and |A3| = 1. �

13. Proof. Since (−1, 0) ∈ Z × N, and (−1, 0) 6∈ N × Z (because −1 6∈ N), it
follows that Z× N 6= N× Z.

14. Proof. Let n ∈ Z+. So n ≥ 1. Hence, n · n ≥ n · 1. That is, n2 ≥ n. �

15. Proof. Suppose x ∈ [2, 4]. So 2 ≤ x ≤ 4. Hence, 4 = 22 ≤ x2 ≤ 42 = 16.
That is, x2 ∈ [4, 16]. �

16. Proof. Suppose f is constant. So we have c ∈ R such that ∀ x ∈ R, f(x) = c.
Observe that ∀ x ∈ R, (f + 1)(x) = f(x) + 1 = c+ 1. So f + 1 is constant. �

17. Proof. Suppose f is periodic and g is constant. So we have p ∈ R+ and
c ∈ R such that ∀ x ∈ R, f(x + p) = f(x) and g(x) = c. Observe that
∀ x ∈ R, (f+g)(x+p) = f(x+p)+g(x+p) = f(x)+c = f(x)+g(x) = (f+g)(x).
So f + g is periodic. �

18. Proof. Suppose f is bounded above and g is bounded below.
So we have M,L ∈ R such that ∀ x ∈ R, f(x) ≤M and g(x) ≥ L.
Note that ∀ x ∈ R, −g(x) ≤ −L. Observe that
∀ x ∈ R, (f − g)(x) = f(x)− g(x) = f(x) + (−g(x)) ≤M + (−L) = M − L.
So f − g is bounded above. �

19. Proof. Let t1, t2, t3 represent the test scores, in order. Suppose t1 ≤ 40.
Since t2 ≤ 100 and t3 ≤ 100, we have an average of at most 40+100+100

3 = 80. �
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20. Proof. Suppose A ⊆ C. Suppose x ∈ A ∩ B. So x ∈ A and x ∈ B. Since
x ∈ A and A ⊆ C, we get x ∈ C. Thus A ∩B ⊆ C. �

21. Proof. Suppose x ∈ A \B. So x ∈ A and x 6∈ B. In particular, x ∈ A. �

22. Proof. Let x ∈ U . From the string of equivalences

x ∈ (A \B)
c ↔ ¬[x ∈ A \B]

↔ ¬[x ∈ A ∧ x 6∈ B]

↔ x 6∈ A ∨ x ∈ B
↔ x ∈ Ac ∨ x ∈ B
↔ x ∈ Ac ∪B.

it follows that
x ∈ (A \B)

c ↔ x ∈ Ac ∪B.
Hence (A \B)

c
= Ac ∪B. �

23. Proof. Suppose A ⊂ B. Hence, we have x ∈ B with x 6∈ A. That is,
x ∈ B \A. So B \A 6= ∅. �

24. Proof. Let x ∈ R.
(→) Suppose x ∈ [1, 2]. So 1 ≤ x ≤ 2.
Multiplication by 2 gives 2 ≤ 2x ≤ 4. Hence 2x ∈ [2, 4].
(←) Suppose 2x ∈ [2, 4]. So 2 ≤ 2x ≤ 4.
Division by 2 gives 1 ≤ x ≤ 2. Hence x ∈ [1, 2]. �

25. Sketch. 3x− 2 ∈ (1, 4) iff 1 < 3x− 2 < 4 iff 1 < x < 2 iff 1 < 5− 2x < 3 iff
5− 2x ∈ (1, 3). �

26. Sketch. x2 = y2 iff x2−y2 = 0 iff (x+y)(x−y) = 0 iff x+y = 0 or x−y = 0
iff x = −y or x = y. Since x, y ∈ R+, it is not possible that x = −y. �
Note that when y ∈ R+, we have −y ∈ R−. Hence x = −y cannot happen when
x ∈ R+.

27. Sketch. The Trichotomy Law in Appendix A tells us that
∀ x, y ∈ R, x = y ⊕ x > y ⊕ y > x. From this it follows that
∀ x, y ∈ R, x 6= y ↔ x > y or y > x. Negating both sides of this equivalence
gives the desired result. �
It is important to realize that

¬[x > y] ≡ x ≤ y ≡ x < y ∨ x = y ≡ x < y ⊕ x = y.

28. Here it is more convenient to use the characterization of constant functions
given in Exercise 37(b) from Section 1.3 (and proven in Exercise 12 from Sec-
tion 2.3).
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Proof. (→) Suppose f is constant. Since, ∀ x, y ∈ R, f(x) = f(y), it follows that
f is both nondecreasing and nonincreasing. (←) Suppose f is nondecreasing and
nonincreasing. So, ∀ x, y ∈ R, if x ≤ y, then f(x) ≤ f(y) and f(x) ≥ f(y). By
Exercise 27 it follows that ∀ x, y ∈ R, f(x) = f(y). So, f is constant. �

29. Proof. (→) Done in Exercise 17 from Section 2.2. (←) Suppose f2 is pe-
riodic. So we have p ∈ R+ such that ∀ x ∈ R, f2(x + p) = f2(x). Since f is
nonnegative, ∀ x ∈ R, f(x + p) ≥ 0 and f(x) ≥ 0. From Exercise 26 it follows
that ∀ x ∈ R, f(x+ p) = f(x). So f is periodic. �

30. Proof. (→) Suppose A2 = B2. (⊆) Suppose x ∈ A. So (x, x) ∈ A2 = B2.
Hence, x ∈ B. (⊇) Similar. So A = B. (←) Suppose A = B. (⊆) Suppose
(x, y) ∈ A2. So x ∈ A = B and y ∈ A = B. Hence (x, y) ∈ B2. (⊇) Similar. So
A2 = B2. �
Recall that A2 = A×A and (u,w) ∈ C ×D iff u ∈ C and w ∈ D.

31. Proof. (→) Suppose A \ B ⊆ C. Suppose x ∈ A. Case 1 : x ∈ B. We have
x ∈ B ∪ C. Case 2 : x 6∈ B. So x ∈ A \ B. Hence x ∈ C. We have x ∈ B ∪ C.
In both cases x ∈ B ∪ C. (←) Suppose A ⊆ B ∪ C. Suppose x ∈ A \ B. So
x ∈ A and x 6∈ B. Since x ∈ A, we have x ∈ B ∪ C. Since x 6∈ B, it must be
that x ∈ C. Hence A \B ⊆ C. �

32. Proof. Let t1, t2, . . . , tn be the test scores. (→) Suppose some test score

tk is less than 100. Then the average t1+t2+···+tn
n is at most (n−1)100+tk

n <
(n−1)100+100

n = 100. (←) Suppose t1 = t2 = · · · = tn = 100. The average is

then n(100)
n = 100. �

33. Proof. (⊆) Suppose x ∈ (A ∩ B) \ C. So x ∈ A and x ∈ B and x 6∈ C.
Since x ∈ A and x 6∈ C, we have x ∈ A \ C. Since x ∈ B and x 6∈ C, we have
x ∈ B \ C. So x ∈ (A \ C) ∩ (B \ C). (⊇) Suppose x ∈ (A \ C) ∩ (B \ C). So
x ∈ A and x 6∈ C and x ∈ B (and x 6∈ C). Since x ∈ A and x ∈ B, we have
x ∈ A ∩B. Since x ∈ A ∩B and x 6∈ C, we have x ∈ (A ∩B) \ C. �

34. Proof. (⊆) Suppose (x, y) ∈ A × (B ∪ C). So x ∈ A and y ∈ B ∪ C. That
is, y ∈ B or y ∈ C. Case 1 : y ∈ B. We get (x, y) ∈ A × B. Case 2 : y ∈ C.
We get (x, y) ∈ A×C. In both cases, (x, y) ∈ (A×B)∪ (A×C). (⊇) Suppose
(x, y) ∈ (A × B) ∪ (A × C). So (x, y) ∈ A × B or (x, y) ∈ A × C. Case 1 :
(x, y) ∈ A×B. We get y ∈ B. So y ∈ B ∪C. Thus, (x, y) ∈ A× (B ∪C). Case
2 : (x, y) ∈ A × C. We get y ∈ C. So y ∈ B ∪ C. Thus, (x, y) ∈ A × (B ∪ C).
In both cases, (x, y) ∈ A× (B ∪ C). �

35. Proof. Suppose S ∈ P(A) ∪ P(B). So S ∈ P(A) or S ∈ P(B). Case 1 :
S ∈ P(A). We have S ⊆ A. Since A ⊆ A ∪ B, we get S ⊆ A ∪ B. Case 2 :
S ∈ P(B). We have S ⊆ B. Since B ⊆ A∪B, we get S ⊆ A∪B. In both cases,
S ⊆ A ∪B. That is S ∈ P(A ∪B). �
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36. Sketch. Suppose not. Let L be the largest element. Observe that L
2 is a

larger element of R−. (Think about it.) This is a contradiction. �
Note that L < L

2 < 0, since 2L < L < 0.

37. Proof. Suppose not. Let s be the smallest element of (−1, 1). However,
−1+s

2 is a smaller element of (−1, 1). This is a contradiction. �

If −1 < s < 1, then −1 = −1+(−1)
2 < −1+s

2 < −1+1
2 = 0 < 1.

38. Proof. Suppose p ∈ R+. Observe that f(0 +p) = p 6= 0 = f(0). So f cannot
be periodic. �
That is, p cannot be its period (and p is arbitrary).

39. Proof. Suppose M ∈ R. Let L = max{M, 2}. Note that L > 1. Observe
that f(L) = L2 > L ≥M . So f cannot be bounded above and therefore cannot
be bounded. �
That is, M cannot be an upper bound (and M is arbitrary).

40. Proof. Suppose x < 0. Repeated multiplication by x gives x2 > 0, x3 < 0,
x4 > 0, and finally x5 < 0. �

41. Proof. Suppose A × ∅ 6= ∅. So we have (x, y) ∈ A × ∅. Thus, in particular,
y ∈ ∅. This is a contradiction. �

42. Proof. Suppose A∩B 6= ∅. So we have some x ∈ A∩B. Hence, in particular,
x ∈ A. So A 6= ∅. �

43. Proof. Suppose A 6= ∅ and B 6= ∅. So we have some x ∈ A and y ∈ B.
Hence, (x, y) ∈ A×B. Therefore, A×B 6= ∅. �

44. Proof. Suppose B = C. (⊆) Suppose (x, y) ∈ A × B. So x ∈ A and
y ∈ B = C. Hence, (x, y) ∈ A×C. (⊇) Similar. Therefore, A×B = A×C. �

45. We prove the contrapositive.
Proof. Let A be a set. Suppose A is finite. So |A| = n for some n ∈ N. Since
|P(A)| = 2n ∈ N, we see that P(A) is finite.

46. Proof. Let f be a real function, and suppose that f is constant. Hence, we
have c ∈ R such that

∀ x ∈ R, f(x) = c.

Observe that
∀ x ∈ R, f2(x) = [f(x)]2 = c2.

Since c2 ∈ R and ∀ x ∈ R, f2(x) = c2, it follows that f2 is constant. �

47. Proof. Let t1, t2, t3, t4 be the test grades. Suppose Erik has no test grade of
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at least 60. Since t1, t2, t3, t4 < 60, Erik’s average is t1+t2+t3+t4
4 < 4(60)

4 = 60.
So Erik does not pass. �

48. Proof. Let x ∈ U . From the string of logical equivalences

x ∈ (A ∩B ∩ C)
c ↔ x 6∈ A ∩B ∩ C
↔ ¬(x ∈ A ∩B ∩ C)

↔ ¬(x ∈ A ∧ x ∈ B ∧ x ∈ C)

↔ ¬(x ∈ A) ∨ ¬(x ∈ B) ∨ ¬(x ∈ C)

↔ x 6∈ A ∨ x 6∈ B ∨ x 6∈ C
↔ x ∈ Ac ∨ x ∈ Bc ∨ x ∈ Cc

↔ x ∈ Ac ∪Bc ∪ Cc

it follows that x ∈ (A ∩B ∩ C)
c ↔ x ∈ Ac ∪Bc ∪ Cc. �.

49. Proof. (⊆) Suppose x ∈ (A \C)∪ (B \C). So x ∈ A \C or x ∈ B \C. Case
1 : x ∈ A\C. So x ∈ A and x 6∈ C. Since A ⊆ A∪B, we have x ∈ A∪B. Thus,
x ∈ (A ∪ B) \ C. Case 2 : x ∈ B \ C. So x ∈ B and x 6∈ C. Since B ⊆ A ∪ B,
we have x ∈ A ∪B. Thus, x ∈ (A ∪B) \ C.
(⊇) Suppose x ∈ (A∪B)\C. So x ∈ A∪B and x 6∈ C. That is x ∈ A or x ∈ B.
Case 1 : x ∈ A. We have x ∈ A \ C. Hence, x ∈ (A \ C) ∪ (B \ C). Case 2 :
x ∈ B. We have x ∈ B \ C. Hence, x ∈ (A \ C) ∪ (B \ C). �

50. Proof. Suppose x ∈ (A M B) ∩ (A M C). So x ∈ A M B and x ∈ A M C.
Case 1 : x ∈ A. It must be that x 6∈ B (and x 6∈ C). In particular, x 6∈ B ∩ C.
Case 2 : x 6∈ A. It must be that x ∈ B and x ∈ C. Hence, x ∈ B ∩ C.
In both cases, x ∈ A M (B ∩ C). �

51. Sketch. Suppose A = ∅ or B = ∅. Case 1 : A = ∅. So A × B = ∅ × B = ∅.
Case 2 : B = ∅. So A×B = A× ∅ = ∅. �
OR (contrapositive): Suppose A × B 6= ∅. So we have (x, y) ∈ A × B. Since
x ∈ A and y ∈ B, we have A 6= ∅ and B 6= ∅.

52. Proof. (→) Suppose xy > 0. So x 6= 0 and y 6= 0. Case 1 : x > 0. We see
that y = xy

x > 0. Case 2 : x < 0. We see that y = xy
x < 0. Thus, either x, y > 0

or x, y < 0. (←) Suppose x, y > 0 or x, y < 0. Case 1 : x, y > 0. We get xy > 0.
Case 2 : x, y < 0. We get xy = (−x)(−y) > 0. In both cases, xy > 0. �

53. Since x2 ≥ 0, the definition of absolute value gives that |x2| = x2.

54. Sketch. x2 − 1 < 0 iff x2 < 1 iff −1 < x < 1. Also −(x2 − 1) = 1− x2. �
Recall that |y| = −y if y < 0, and |y| = y if y ≥ 0. Use y = x2 − 1, which is
negative when −1 < x < 1 and nonnegative otherwise.
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55. Sketch. Since |x|2 = x2 and |x| ≥ 0, it follows that |x| =
√
x2. �

The point is that, for y ≥ 0,
√
y is the nonnegative number z such that z2 = y.

Here y = x2 and x = |x|.

56. Sketch. x2 − 6x+ 8 = (x− 4)(x− 2) and, by Exercise 52,
(x−4)(x−2) > 0↔ [(x−4) > 0 and (x−2) > 0] or [(x−4) < 0 and (x−2) < 0]
↔ [x > 4 and x > 2] or [x < 4 and x < 2]↔ x > 4 or x < 2. �
In fact, x2−6x+8 = 0 if and only if x = 2 or x = 4. We are simply determining
the sign of x2 − 6x+ 8 on each of the intervals (−∞, 2), (2, 4), and (4,∞).

57. Proof. Let x ∈ R. (→) Suppose x = 1
x . So x2 = 1. Hence x = ±1. (←)

Suppose x = ±1. In both cases, observe that x2 = 1. Hence x = 1
x . �
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2.3 Chapter 3

Section 3.1

1. Proof. Let m be even and n be odd. So m = 2j and n = 2k + 1 for some
j, k ∈ Z. Observe that mn = (2j)(2k + 1) = 2(j(2k + 1)). Since j(2k + 1) ∈ Z,
we see that mn is even. �

3. Proof. Suppose n is odd. So n = 2k + 1 for some k ∈ Z. Observe that
n2 = (2k + 1)2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1. Since 2k2 + 2k ∈ Z, we see
that n2 is odd. �

5. Proof. Suppose n is odd. So n = 2k + 1 for some k ∈ Z. Observe that
n+1

2 = 2k+2
2 = k + 1 ∈ Z. �

7. Proof. Suppose n is an even integer. So n = 2k for some k ∈ Z. Observe that
(−1)n = (−1)2k = ((−1)2)k = 1k = 1. �

9. On.
Off = −1 and On = 1.

11. Proof. Observe that a · k = 0 when k = 0 ∈ Z. Hence a | 0. �

13. Proof. Suppose a | 1. So 1 = ak for some k ∈ Z. Since a, k ∈ Z, this is only
possible if a = k = ±1. (Under any other conditions, |ak| > 1.) �
Since 1 = ak, it follows that a, k 6= 0. In particular, |k| ≥ 1. If it were the case
that |a| ≥ 2, then |ak| = |a| · |k| ≥ 2 · 1 = 2, which is impossible. Hence, |a| ≤ 1,
and it follows that |a| = 1.

15. (a) Proof. Note that a− 1, a2 − 1 ∈ Z. Observe that a2 − 1 = (a+ 1)(a− 1)
and (a+ 1) ∈ Z. Hence, (a− 1) | (a2 − 1). �
(b) R breaks into two (a− 1)× 1 rectangles and an (a− 1)× (a− 1) square, as
we see in the case below, when a = 5.

17. Proof. Suppose a | b and b | a. So b = aj and a = bk for some j, k ∈ Z. So
a = bk = a(jk). So 1 = jk. Thus k | 1. By Exercise 13, it follows that k = ±1.
Therefore, a = bk = ±b. �

19. Proof. Suppose n is even. So n = 2k for some k ∈ Z. Observe that
n2 = (2k)2 = 4k2 and k2 ∈ Z. Hence 4 | n2. �

21. No, since 8 - 420. Yes, since 7 | 420.
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23. Proof. Suppose a | b and a | c. So b = aj and c = ak for some j, k ∈ Z. Note
that b− c = aj − ak = a(j − k). Since j − k ∈ Z, we see that a | (b− c). �

25. Yes, when a = 2, b = c = 1.

27. 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71.

29. Proof. Let p be a prime with 3 | p. So p = 3k for some k ∈ Z. In fact, k > 0.
Since p is prime and 3 6= 1, it must be that k = 1. Thus, p = 3. �

31. Proof. Let p ∈ Z with p > 1. (→) Suppose p is prime. Suppose r > 1 and
s > 1. Since the only positive divisors of p are 1 and p, we cannot have rs = p,
so rs 6= p. (←) Suppose ∀ r, s ∈ Z, if r > 1 and s > 1, then rs 6= p. Suppose
t is a positive divisor of p. So p = tu, for some u ∈ Z. Moreover, u > 0. Since
tu = p, we must have t ≤ 1 or u ≤ 1. This forces t = 1 or u = 1. If u = 1, then
t = p. So t = 1 or t = p. �

33. Negate the characterization given in Exercise 31.
That is, the proof for Exercise 31 also proves this result, since an integer greater
than 1 is composite iff it is not prime.

35. Proof. Suppose n is composite. So n = rs for some r, s ∈ Z with 1 < r, s < n.
Suppose to the contrary that both r, s >

√
n. Then n = rs >

√
n ·
√
n = n, a

contradiction. Hence, it must be that one of r or s is less than or equal to
√
n.

�

37. 2 3 4 5 6 7 8 9 10 11

12 13 14 15 16 17 18 19 20 21 22

23 24 25 26 27 28 29 30 31 32 33

34 35 36 37 38 39 40 41 42 43 44

45 46 47 48 49 50 51 52 53 54 55

56 57 58 59 60 61 62 63 64 65 66

67 68 69 70 71 72 73 74 75 76 77

78 79 80 81 82 83 84 85 86 87 88

89 90 91 92 93 94 95 96 97 98 99

100 101 102 103 104 105 106 107 108 109 110

111 112 113 114 115 116 117 118 119 120 121

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

The first 30 primes are 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61,
67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113. Note in the table that X is used
to cross off multiples of 7. The multiples of 2, 3, 5 happen to lie on simpler lines
that cut through the table.
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39. 14.
56 = 2371, 42 = 213171, and 2171 = 14.

41. 18.
−108 = (−1)2233, −90 = (−1)213251, and 2132 = 18.

43. 15.
2475 = 3252111, −780 = (−1)223151131, and 3151 = 15.

45. (a) 2 = gcd(10, 4).

&%
'$s sc cs
s cc s c
↑

k=4
↘

(b) 4 = gcd(20, 8).

&%
'$s sc cs
s cc s c ca

∗
ca
∗ca∗
ca ∗
ca
∗

↑
k=8
↘

(c) Say d is the answer. Then, both n and k need to be multiples of d. Since
we want to pick d as large as possible, we get d = gcd(n, k).

47. Proof. Suppose d1, d2 ∈ Z both satisfy conditions (i),(ii), and (iii). By
conditions (i) and (ii) for d2 and condition (iii) for d1 with c = d2, we see that
d2 ≤ d1. A similar argument with d1 and d2 switched gives d1 ≤ d2. Hence,
d2 = d1. �

49. Proof. Let d = gcd(m,n). So d | m and d | n. Also, d | (−m) and
d | n. Suppose c | (−m) and c | n. So c | m and c | n. Thus, c | d. Hence,
d = gcd(−m,n). �

51. Sketch. gcd(m,−n) = gcd(−n,m) = gcd(n,m) = gcd(m,n). �
The first and third equalities follow from Exercise 50, and the second equality
follows from Exercise 49.

53. Proof. Let p and q be distinct primes. Suppose d ∈ Z+ with d | p and d | q.
Since d | p, we have d = 1 or d = p. If d = p, then p | q, giving p = 1 or p = q.
Hence, d 6= p. Therefore, d = 1. Thus, gcd(p, q) = 1. �

55. Sketch. Write 1 = 2(n) + 1(1 − 2n), and mimic the argument in the proof
of Lemma 3.3. �

57. 168.
Observe that 168 = 56 · 3 = 42 · 4. Note that 42 - 56 and 42 - (2 · 56).
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59. 540.
Observe that 540 = (−108)(−5) = (−90)(−6). Note that −90 - (−108)k for
k = ±1,±2,±3,±4.

61. (a) 16 = lcm(4, 16).
(b) 30 = lcm(6, 15).
(c) Say l is the answer. Both a and b need to divide l, and l should be chosen
as small as possible. So l = lcm(a, b).

63. Proof. Let l = lcm(n,m). We show that lcm(m,n) = l, according to
Definition 3.7. Note that l > 0, n | l, and m | l. Also, if k ∈ Z+, m | k, and
n | k, then l ≤ k. Hence, lcm(m,n) = l = lcm(n,m). �

Section 3.2

1. 3 = 11− 4(2).
Note that 11− 4n = 2 iff n = 9

4 6∈ Z. Note that 11− 4n = 1 iff n = 5
2 6∈ Z.

3. 4 = 12(2) + 20(−1).
Note that 12x+ 20y = 4(3x+ 5y) is divisible by 4. So 1, 2, and 3 are not in S.

5. 217 − 1 is prime, 219 − 1 is prime, 223 − 1 = 47 · 178481, and 229 − 1 =
233 · 1103 · 2089.
> isprime(2^17 - 1); true, and
> isprime(2^19 - 1); true,
but 223 − 1 = 47 · 178481, and 229 − 1 = 233 · 1103 · 2089.

7. Proof. Suppose not. So every prime has fewer than 108 digits. There are
only 10(108) natural numbers with at most 108 digits. So there could be at
most 10(108) primes. However, there are infinitely many primes. This is a
contradiction. �

9. (a) Sketch. bn − 1 = (b − 1)(bn−1 + bn−2 + · · · + b + 1). Since b ≥ 3, both
factors are larger than 1. �
That is, (b− 1) ≥ 2 and bn−1 + bn−2 + · · ·+ b+ 1 ≥ 3 + 1 = 4.
(b) Proof. Suppose n ∈ Z+ is not prime. So n = rs for some integers r, s ≥ 2.
Since 2r ≥ 3, it follows from part (a) that 2n − 1 = (2r)s − 1 is not prime. �

11. (a) 10 remainder 7,
since 127 = 12(10) + 7 and 0 ≤ 7 < 12.
(b) 14 remainder 6,
since 216 = 15(14) + 6 and 0 ≤ 6 < 15.

13. (a) 45 = 7(6) + 3 and 0 ≤ 3 < 7.
(b) −37 = 4(−10) + 3 and 0 ≤ 3 < 4.
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15. 7 and 3.
Note that 73 = 10(7) + 3.

17. (a) 5 and 2. Note that 67 = 13(5) + 2.
(b) −6 and 11. Note that −67 = 13(−6) + 11.

19. 165 div 18 = 9 full rows. 165 mod 18 = 3 extra seats.

21. (a) 100111.

k n ak
−1 39

0 19 1
1 9 1
2 4 1
3 2 0
4 1 0
5 0 1

(b) 127.

k n ak
−1 87

0 10 7
1 1 2
2 0 1

23. n and 0.
Note that n2 = n(n) + 0.

25. Because Z does not have a smallest element
and Z is a nonempty subset of Z.

27. Proof. Let a ∈ Z, and let S be a subset of Z such that ∀ x ∈ S, x ≥ a.
Let T = {t : t = s − a for some s ∈ S}. So T ⊆ N. By the Well-Ordering
Principle, T has a smallest element, say τ . Let σ = τ + a. Observe that σ is
the smallest element of S. (Think about it.) �
If m were an element of S smaller than σ, then m − a would be an element of
T smaller than τ . That is, if m < σ, then m − a < σ − a = τ . However, there
are no elements of T smaller than τ .
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29. Sketch.

n n3 − n+ 2 (n3 − n+ 2) mod 6
6k 216k3 − 6k + 2 2
6k + 1 216k3 + 108k2 + 12k + 2 2
6k + 2 216k3 + 216k2 + 66k + 8 2
6k + 3 216k3 + 324k2 + 156k + 26 2
6k + 4 216k3 + 432k2 + 282k + 62 2
6k + 5 216k3 + 540k2 + 444k + 122 2

�
That is, we consider each case n = 6k+ r for r = 0, 1, 2, 3, 4, 5. In each case, we
see that n3 − n+ 2 = 6q + 2 for some q. Specifically,

n n3 − n+ 2
6k 6(36k3 − k) + 2
6k + 1 6(36k3 + 18k2 + 2k) + 2
6k + 2 6(36k3 + 36k2 + 11k + 1) + 2
6k + 3 6(36k3 + 54k2 + 26k + 4) + 2
6k + 4 6(36k3 + 72k2 + 47k + 10) + 2
6k + 5 6(36k3 + 90k2 + 74k + 20) + 2

Since (n3 − n+ 2) mod 6 6= 0, it follows that 6 - (n3 − n+ 2).

31. Proof. Suppose n ∈ Z and 3 - n. So n = 3q + r for some q ∈ Z and r = 1
or 2. Case 1 : r = 1. Since n2 = (3q + 1)2 = 3(3q2 + 2q) + 1, we see that
n2 mod 3 = 1. Case 2 : r = 2. Since n2 = (3q + 2)2 = 3(3q2 + 4q + 1) + 1, we
see that n2 mod 3 = 1. In both cases, n2 mod 3 = 1. �

33. Sketch. If n = 5k + 1, then n4 − 1 = 5(125k4 + 100k3 + 30k2 + 4k).
If n = 5k + 2, then n4 − 1 = 5(125k4 + 200k3 + 120k2 + 32k + 3).
If n = 5k + 3, then n4 − 1 = 5(125k4 + 300k3 + 270k2 + 108k + 16).
If n = 5k + 4, then n4 − 1 = 5(125k4 + 400k3 + 480k2 + 256k + 51). �
Note that n is not divisible by 5 if and only if n = 5k + r for some k ∈ Z and
r = 1, 2, 3, 4. (That is, r = 0 is excluded.) In each case, we see that n4− 1 = 5q
for some q ∈ Z.

35. (a) 4, since 4 ≤ 4.4 < 5. (b) −5, since −5 ≤ −4.4 < −4.
(c) 9, since 8 < 8.6 ≤ 9. (d) −8, since −9 < −8.6 ≤ −8.

37. (a) −5, since −6 < −5 ≤ −5. (b) 3, since 3 ≤ π < 4.
(c) 5, since 5 ≤ 17

3 < 6. (d) 11, since 10 < 4e ≤ 11.

39. (a) d 500
32 e = d15.625e = 16.

(b) d cme. Say b is the answer. Hence, we need mb ≥ c. So b ≥ m
c and b ∈ Z.

The smallest possible value for b is thus b = d cme.
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41. Sketch. Note that
(i) bxc+ n ∈ Z,
(ii) bxc+ n ≤ x+ n,
(iii) x+ n < 1 + bxc+ n. �
By Theorem 3.8, byc = k if and only if (i) k ∈ Z,
(ii) k ≤ y, and
(iii) y < k + 1.
We apply this with y = x+n and k = bxc+n to get bx+nc = byc = k = bxc+n.

43. Proof. Suppose n ∈ Z. Case 1 : n = 2k for some k ∈ Z. Observe that
k ∈ Z, n

2 ≤ k, and k − 1 < n
2 . Hence, dn2 e = k = n

2 . Case 2 : n = 2k + 1 for
some k ∈ Z. Observe that k + 1 ∈ Z, n

2 ≤ k + 1, and (k + 1) − 1 < n
2 . Hence,

dn2 e = k + 1 = n+1
2 . �

45. Proof. Let n ∈ Z. Case 1 : n = 3k for some k ∈ Z. Note that k = n
3 . We

then have k ∈ Z, k ≤ n
3 , and n

3 < k + 1. It follows from Theorem 3.8 that
bn3 c = k = n

3 . Case 2 : n = 3k + 1 for some k ∈ Z. Note that k = n−1
3 . We

then have k ∈ Z, k ≤ n
3 , and n

3 < k + 1. It follows from Theorem 3.8 that
bn3 c = k = n−1

3 . Case 3 : n = 3k + 2 for some k ∈ Z. Note that k = n−2
3 .

We then have k ∈ Z, k ≤ n
3 , and n

3 < k + 1. It follows from Theorem 3.8 that
bn3 c = k = n−2

3 . �

47. Proof. Let x, y ∈ R. Since bxc ≤ x and byc ≤ y, we have bxc+ byc ≤ x+ y.
Since bxc+ byc ∈ Z and bx+ yc is the largest integer n such that n ≤ x+ y, it
follows that bxc+ byc ≤ bx+ yc. �

49. Counterexample: Let x = 1
2 .

Observe that b2xc = b1c = 1, 2bxc = 2b 1
2c = 2(0) = 0, and 1 6= 0.

51. Proof. Let x ∈ R. (→) Suppose x 6∈ Z. Then bxc 6= x, and it must be that
bxc < x. Since x ≤ dxe, we get bxc 6= dxe. (←) Suppose x ∈ Z. It follows that
bxc = x = dxe. �

53. Sketch. Certainly bxc ∈ Z and bxc ≤ bxc < bxc+ 1. �
By Theorem 3.8, byc = k if and only if k ∈ Z and k ≤ y < k+ 1. We apply this
with k = y = bxc.

55. If n is odd, then bn+1
2 c = n+1

2 = dn2 e.
If n is even, then bn+1

2 c = n
2 = dn2 e.

We simply apply Theorems 3.9 and 3.10.

57. round(x) = bx+ 1
2c.

Say x = n+f , where n = bxc and f = x−bxc ∈ [0, 1). If f < 1
2 , then f + 1

2 < 1
and round(x) = n = bn + (f + 1

2 )c = bx + 1
2c. If f ≥ 1

2 , then f + 1
2 ≥ 1 and

round(x) = n+ 1 = bn+ 1 + (f + 1
2 − 1)c = bx+ 1

2c.
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59. The statement is equivalent to the fact that 1 is the smallest positive integer.
Proof. Suppose there is a smaller positive integer than 1. So the set S = {n :
n ∈ Z+ and n < 1} is nonempty. By the Well-Ordering Principle, S must have
a smallest element, say s. Since 0 < s < 1, it follows that 0 < s2 < s < 1. Since
s2 ∈ Z, this is a contradiction. �

61. Proof. Suppose n1, n2 ∈ Z with n1 ≤ x < n1 + 1 and n2 ≤ x < n2 + 1.
Without loss of generality, say n1 ≥ n2. Adding n2 ≤ x < n2 + 1 to −n1 − 1 <
−x ≤ −12, we get n2 − n1 − 1 < 0 < n2 − n1 + 1. Adding n1 − n2 to this
inequality gives −1 < n1 − n2 < 1. So 0 ≤ n1 − n2 < 1. From Exercise 59 it
follows that n1 − n2 = 0. That is, n1 = n2. �

63. Proof. Let S = {s : n = 2rs where r ∈ N and s ∈ Z+}. Since n = 20n, it
follows that n ∈ S and thus S is nonempty. By the Well-Ordering Principle, S
has a smallest element. Call it b. Since b ∈ S, there is some a ∈ N such that
n = 2ab. If b were even (so b

2 ∈ Z), then n = 2a+1 b
2 , whence b

2 would be a
smaller element of S than b. Therefore, b must be odd. �

65. Let m and n be integers that are not both zero. We must show that there
exists an integer d such that (i) d > 0, (ii) d | m and d | n, and
(iii) ∀ c ∈ Z+, if c | m and c | n, then c ≤ d.
Let d = max{a : a > 0, a | m, and a | n}.
Sketch. Clearly 1 > 0, 1 | m, and 1 | n. So S = {a : a > 0, a | m, and a | n}
is nonempty. By Theorem 3.1, no element of S is bigger than n. By the
Generalized Maximum Principle, S must have a largest element. That is the
value d that we need. �
Conditions (i) and (ii) hold since d ∈ S. Condition (iii) holds since d is the
smallest element of S.

67. 4.
Use c for the value of #. We have 3(0+5+0+7+1+6)+(3+0+0+4+2+c) =
66 + c. Note that 10 | (66 + 4).

69. No.
3(0 + 1 + 0 + 8 + 1 + 0) + (6 + 0 + 0 + 1 + 6 + 7) = 50 is divisible by 10.

71. 3.
Use m for the value of #.
We have 10(0)+9(4)+8(4)+7(6)+6(m)+5(1)+4(0)+3(7)+2(8)+6 = 158+6m.
Note that 11 | (158 + 6 · 3).

73. No. That is the ISBN for How the Grinch Stole Christmas.
10(0) + 9(3) + 8(9) + 7(4) + 6(8) + 5(0) + 4(0) + 3(7) + 2(9) + 6 = 220 is divisible
by 11.
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75. Sketch. Let a and b be the consecutive digits. Note that (3a+b)−(3b+a) =
2(a− b) is divisible by 10 if and only if a− b is divisible by 5. �

77. (a) 0110101.
The message is 0110. So b5 = (0 + 1) mod 2 = 1, b6 = (1 + 1) mod 2 = 0, and
b7 = (1 + 0) mod 2 = 1.
(b) Message Code Word

0000 0000000
0001 0001001
0010 0010011
0011 0011010
0100 0100110
0101 0101111
0110 0110101
0111 0111100
1000 1000100
1001 1001101
1010 1010111
1011 1011110
1100 1100010
1101 1101011
1110 1110001
1111 1111000

(c) 2.
See the second row of the table.
(d) Female, A+.
See the eighth row of the table.
(e) 1010011 is one digit away from both 0010011 and 1010111.
Also 0010010 is one digit away from both 0010011 and 0011010.

79. “LQ KZMAMHUIAP”.
We use y = (x+ 8) mod 27. E.g., D = 4 encrypts to (4 + 8) mod 27 = 12 = L.

81. “SELL IMCLONE”.
We use x = (y − 15) mod 27. E.g., G = 7 decrypts to (7 − 15) mod 27 = 19 =
S.

Section 3.3

1. x = 2, y = −5.
Note that 5 = 65(2) + 25(−5).

3. x = 3, y = −4.
Note that 15(3) + 11(−4) = 1.
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5. 12.
gcd(24, 12) = gcd(12, 0) = 12.

7. 22.
gcd(110, 44) = gcd(44, 22) = gcd(22, 0) = 22.

9. 8.
gcd(296, 112) = gcd(112, 72) = gcd(72, 40) = gcd(40, 32) = gcd(32, 8) =
gcd(8, 0) = 8.

11. 1.
n m
63 25
25 13
13 12
12 1
1 0

13. 2 = 14(−1) + 8(2).

gcd(14, 8) = gcd(8, 6) since 14 = 8 + 6
= gcd(6, 2) since 8 = 6 + 2
= gcd(2, 0) since 6 = (2)3 + 0
= 2 by Example 3.8.

So 2 = 8− 6 = 8− (14− 8) = −14 + (2)8 = 14(−1) + 8(2).

15. 5 = 50(−2) + 35(3).

gcd(50, 35) = gcd(35, 15) since 50 = 35 + 15
= gcd(15, 5) since 35 = (15)2 + 5
= gcd(5, 0) since 15 = (5)3 + 0
= 5 by Example 3.8.

So 5 = 35− (15)2 = 35− (50− 35)2 = 50(−2) + 35(3).

17. 3 = 81(3) + 60(−4).

gcd(81, 60) = gcd(60, 21) since 81 = 60 + 21
= gcd(21, 18) since 60 = (21)2 + 18
= gcd(18, 3) since 21 = 18 + 3
= gcd(3, 0) since 18 = (3)6 + 0
= 3 by Example 3.8.

So 3 = 21 − 18 = 21 − (60 − (21)2) = −60 + (21)3 = −60 + (81 − 60)3 =
81(3) + 60(−4).

19. x = −5 and y = 23.
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gcd(55, 12) = gcd(12, 7) since 55 = (12)4 + 7
= gcd(7, 5) since 12 = 7 + 5
= gcd(5, 2) since 7 = 5 + 2
= gcd(2, 1) since 5 = (2)2 + 1
= gcd(1, 0) since 2 = (1)2 + 0
= 1 by Example 3.8.

So 1 = 5−(2)2 = 5−(7−5)2 = −2(7)+3(5) = −2(7)+3(12−7) = 3(12)−5(7) =
3(12)− 5(55− (12)4) = 55(−5) + 12(23).

21. No. For m = 2, n = 3, we can use x = 2, y = −1 or x = −1, y = 1.
See Exercise 23.

23. Proof. Let x0, y0 be any fixed pair that gives gcd(m,n) = mx0 + ny0.
Observe that, ∀ k ∈ Z, gcd(m,n) = mx0 + ny0 = m(x0 + kn) + n(y0 − km).
Therefore, x = x0 +kn and y = y0−km gives a general solution to gcd(m,n) =
mx+ ny. �

25. No. 6 | (2 · 3) but 6 - 2 and 6 - 3.

27. Corollary 3.19: Let m,n, and p be integers with n > 0 and p prime. If
p | mn, then p | m.
Proof. Let m,n, and p be integers with n > 0 and p prime. Suppose p | mn.
That is, p | m ·m · · · · ·m︸ ︷︷ ︸

n times

. By Corollary 3.18, p | m (for one of the m’s). �

29. Sketch. Let p be prime. It follows from Corollary 3.19 that p | a ↔ p | am,
and p | b ↔ p | bn. �
Let d = gcd(a, b) and c = gcd(am, bn). So d | a, d | b, c | am, and c | an. We
have x, y ∈ Z such that c = amx+bny = a(am−1x)+b(bn−1y). We have u, v ∈ Z
such that d = au + bv. (→) Suppose p | d. So p | a and p | b. It follows that
p divides a(am−1x) + b(bn−1y) = c. (←) Suppose p | c. So p | am and p | an.
Hence, p | a, and p | b. It follows that p divides au+ bv = d.

31. Proof. Let d = gcd(m,n). So d | m and d | n. Note that d | m and
d | (n −m). If c | m and c | (n −m), then c | m and c | n, whence c ≤ d. So
gcd(m,n−m) = d = gcd(m,n). �

33. Sketch. Argue that
min{mu1 + nv1 : mu1 + nv1 > 0} = min{nu2 +mv2 : nu2 +mv2 > 0}
by using (u2, v2) = (v1, u1). �
Let S1 = {mu1+nv1 : mu1+nv1 > 0} and S2 = {nu2+mv2 : nu2+mv2 > 0}.
We in fact show that S1 = S2. (⊆) Suppose x ∈ S1. So x = mu1 + nv1 > 0 for
some u1, v1 ∈ Z. Since x = nv1 +mu1 > 0 and v1, u1 ∈ Z, we see that x ∈ S2.
(⊇) Similar.
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35. Proof. From the given characterization, we see that

gcd(k, 0) = min{ku+ 0v : ku+ 0v > 0} = min{ku : ku > 0} = k · 1 = k.

�

37. Proof. Suppose c ∈ Z, c | m, and c | n. So m = ca and n = cb for some
a, b ∈ Z. By Theorem 3.13, there are x, y ∈ Z such that gcd(m,n) = mx+ ny.
Since gcd(m,n) = cax+ cby = c(ax+ by), we see that c | gcd(m,n). �

39. (5n+ 3)(7) + (7n+ 4)(−5) = 1. So apply Corollary 3.14.

41. (a) ad− bc = 3(2)− 5(1) = 1.
(b) If the ad − bc = 1, then Corollary 3.14 tells us that a and b are relatively
prime and that c and d are relatively prime. Similarly, consider the columns.

(c) No. The counterexample

[
1 2
3 1

]
shows that the converse does not hold.

Note that gcd(1, 2) = gcd(3, 1) = 1, but the determinant is 1(1)−2(3) = −5 6= 1.

Section 3.4

1. 5 1
2 = 11

2 and 11, 2 ∈ Z with 2 6= 0.

3. −13 2
5 = −67

5 and −67, 5 ∈ Z with 5 6= 0.

5. 5.821 = 5821
1000 and 5821, 1000 ∈ Z with 1000 6= 0.

7. 3.14 = 311
99 and 311, 99 ∈ Z with 99 6= 0.

Let x = 3.14.
So 100x = 314.14.
So 99x = 100x− x = 314− 3 = 311.
So x = 311

99 .

9. −4.321 = −713
165 and −713, 165 ∈ Z with 165 6= 0.

Let x = −4.321.
So 10x = −43.21.
So 1000x = −4321.21.
So 990x = 1000x− 10x = −4321 + 43 = −4278.
So x = −4278

990 = −713
165 .

11. 12.758 = 11483
900 and 11483, 900 ∈ Z with 900 6= 0.

13. Proof. Since r ∈ Q, r = a
b for some a, b ∈ Z with b 6= 0. Observe that

nr = na
b and na, b ∈ Z with b 6= 0. Thus, nr ∈ Q. �

15. (a) Proof. Since s ∈ Q, s = a
b for some a, b ∈ Z with b 6= 0. Observe that
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−s = −a
b and −a, b ∈ Z with b 6= 0. Thus, −s ∈ Q. �

(b) Proof. Since r, s ∈ Q, r = a
b and s = c

d for some a, b, c, d ∈ Z with b, d 6= 0.

Observe that r − s = a
b −

c
d = ad−bc

bd . Since ad− bd, bd ∈ Z with bd 6= 0, we see
that r − s ∈ Q. �

17. Proof. Suppose n ≥ 0. We can write r = a
b where a, b ∈ Z with b 6= 0.

Observe that rn = an

bn and an, bn ∈ Z with bn 6= 0. So rn ∈ Q. �

19. 5
3 .

65
39 = 5·13

3·13 = 5
3 , gcd(5, 3) = 1, and 3 > 0.

21. −57
8 .

−513
72 = −57·9

8·9 = −57
8 , gcd(−57, 8) = 1, and 8 > 0.

23. 157
50 .

3.14 = 314
100 = 157·2

50·2 = 157
50 , gcd(157, 50) = 1, and 50 > 0.

25. − 378
1000 = −189

500 .

27. 0.48.

. 4 8
2 5 ) 1 2. 0 0

- 1 0 0
2 0 0 remainder 20

- 2 0 0
0 remainder 0← END

29. 0.428571.

. 4 2 8 5 7 1
7 ) 3. 0 0 (remainder 3)

- 2 8
2 0 remainder 2

- 1 4
6 0 remainder 6

- 5 6
4 0 remainder 4

- 3 5
5 0 remainder 5

- 4 9
1 0 remainder 1

- 7
3 remainder 3

I
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31. 0.53.

. 5 3
1 5 ) 8. 0 0

- 7 5
5 0 remainder 5

- 4 5
5 remainder 5← AGAIN

33. Yes.
3
6 = 0.5 and 3 | 6.

35. No.
Take a = c = 1, b = d = 2, and get ad+bc

bd = 4
4 , while 1

1 is in lowest terms.

37. When p - n.
Otherwise gcd(p, n) = p > 1.

39. Yes. A fraction a
b in lowest terms has a finite binary decimal expansion iff

b is a power of 2.

41. Proof. Since k > 0, 2k + 1 > 0. Since (3k + 1)(−2) + (2k + 1)(3) = 1, we
have gcd(3k + 1, 2k + 1) = 1. �

43.
√

2. It is not in Q.

45. Proof. Suppose not. So we have a, b ∈ Z such that
√

3 = a
b is in lowest

terms. So b
√

3 = a. So b23 = a2. So 3 | a2. By Corollary 3.19, 3 | a. Write
a = 3c for some c ∈ Z. So b23 = a2 = 9c2. So b2 = 3c2. So 3 | b2. By Corollary
3.19, 3 | b. So gcd(a, b) ≥ 3. This contradicts the assumption that a

b is in lowest
terms. �

47. Proof. Suppose not. So we have a, b ∈ Z such that
√

13 = a
b is in lowest

terms. So b
√

13 = a. So b213 = a2. So 13 | a2. By Corollary 3.19, 13 | a. Write
a = 13c for some c ∈ Z. So b213 = a2 = 132c2. So b2 = 13c2. So 13 | b2. By
Corollary 3.19, 13 | b. So gcd(a, b) ≥ 13. This contradicts the assumption that
a
b is in lowest terms. �

49. Proof. Suppose not. So we have a, b ∈ Z such that 3
√

2 = a
b is in lowest

terms. So b 3
√

2 = a. So b32 = a3. So 2 | a3. By Corollary 3.19, 2 | a. Write
a = 2c for some c ∈ Z. So b32 = a3 = 23c3. So b3 = 22c3. So 2 | b3. By
Corollary 3.19, 2 | b. So gcd(a, b) ≥ 2. This contradicts the assumption that a

b
is in lowest terms. �

51. Proof. Suppose not. So we have a, b ∈ Z such that 3
√

7 = a
b is in lowest
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terms. So b 3
√

7 = a. So b37 = a3. So 7 | a3. By Corollary 3.19, 7 | a. Write
a = 7c for some c ∈ Z. So b37 = a3 = 73c3. So b3 = 72c3. So 7 | b3. By
Corollary 3.19, 7 | b. So gcd(a, b) ≥ 7. This contradicts the assumption that a

b
is in lowest terms. �

53. Proof. Suppose not. So we can write log2 3 = a
b , for some a, b ∈ Z with

a, b > 0. So 2
a
b = 3. So 2a = 3b. By the Fundamental Theorem of Arithmetic

(uniqueness), a = b = 0. This is a contradiction. �

55. Proof. Suppose not. So we can write log3 7 = a
b , for some a, b ∈ Z with

a, b > 0. So 3
a
b = 7. So 3a = 7b. By the Fundamental Theorem of Arithmetic

(uniqueness), a = b = 0. This is a contradiction. �

57. No,
√

2+
√

6√
2+
√

3
= 2 ∈ Z ⊆ Q.

Observe that (
√

2+
√

6√
2+
√

3
)2 = (

√
2+
√

6)2

2+
√

3
= 8+4

√
3

2+
√

3
= 4. Since

√
2+
√

6√
2+
√

3
is certainly

positive, it must be that
√

2+
√

6√
2+
√

3
= 2.

59. No.√
2 + (−

√
2) = 0.

61. Proof. Suppose r = 1+
√

5
2 is rational. So

√
5 = 2r − 1. However, 2r − 1 is

rational, and
√

5 is irrational. This is a contradiction. �

63. Proof. Suppose not. So r = 15+7
√

5
4 is rational. So

√
5 = 4r−15

7 . However,
4r−15

7 is rational, and
√

5 is irrational. This is a contradiction. �
We cannot have

√
5 = 4r−15

7 with the left-hand side irrational and the right-
hand side rational. However, r being rational forces the right-hand side to be
rational.

65. Proof. Suppose not. So r = 7−
√

2
3+
√

2
is rational. So

√
2 = 7−3r

r+1 . It is easy to

check that r + 1 6= 0. So 7−3r
r+1 is rational. However,

√
2 is irrational. This is a

contradiction. �
If −1 = r = 7−

√
2

3+
√

2
, then −3−

√
2 = 7−

√
2, which is impossible.

67. − 1
3 and 3

2 .
6x4 − 7x3 + 3x2 − 7x− 3 = (3x+ 1)(2x− 3)(x2 + 1).

69. None.
x4 − x3 + 5x2 − 6x− 6 = (x2 − x− 1)(x2 + 6).

71. Sketch. Observe that
√

10 is a root of f(x) = x2 − 10. However, by the
Rational Roots Theorem, f(x) has no rational roots. �
The only possible rational roots of f(x) = x2 − 10 are ±1 and ±10. However,



126 CHAPTER 2. ANSWERS TO SELECTED EXERCISES

f(±1) = −9 6= 0 and f(±10) = 90 6= 0. Any roots of f(x) = x2 − 10 must
therefore be irrational.

73. Sketch. Observe that
√

6 +
√

2 is a root of f(x) = x4− 16x2 + 16. However,
by the Rational Roots Theorem, f(x) has no rational roots. �
Let x =

√
6 +
√

2. So x2 = 8 + 2
√

12. So x2 − 8 = 2
√

12. So x4 − 16x2 + 64 =
(2
√

12)2 = 48. That is, x4 − 16x2 + 16 = 0. The only possible rational roots
of f(x) = x4 − 16x2 + 16 are ±1, ±2, ±4, ±8, and ±16. However, f(±1) = 1,
f(±2) = −32, f(±4) = 16, f(±8) = 3088, and f(±16) = 61456. Any roots of
f(x) = x4 − 16x2 + 16 must therefore be irrational.

75. Sketch. Observe that
√

3− 2
√

2 is a root of f(x) = x4 − 6x2 + 1. However,
by the Rational Roots Theorem, f(x) has no rational roots. �

Let x =
√

3− 2
√

2. So x2 = 3 − 2
√

2. So x2 − 3 = −2
√

2. So x4 − 6x2 + 9 =
(−2
√

2)2 = 8. That is, x4 − 6x2 + 1 = 0. The only possible rational roots
of f(x) = x4 − 6x2 + 1 are ±1. However, f(±1) = −4 6= 0. Any roots of
f(x) = x4 − 6x2 + 1 must therefore be irrational.

77. Sketch. Observe that
4√3√

2
is a root of f(x) = 4x4 − 3. However, by the

Rational Roots Theorem, f(x) has no rational roots. �

Let x =
4√3√

2
. So x4 = 3

4 . Hence, 4x4 − 3 = 0. The only possible rational roots

of f(x) = 4x4 − 3 are ±1, ± 1
2 , ± 1

4 , ±3, ± 3
2 , and ± 3

4 . However, f(±1) = 1,
f(± 1

2 ) = − 11
4 , f(± 1

4 ) = − 191
64 , f(±3) = 321, f(± 3

2 ) = 69
4 , and f(± 3

4 ) = − 111
64 .

Any roots of f(x) = 4x4 − 3 must therefore be irrational.

79. Proof. Suppose r = π+1
2 is rational. So π = 2r − 1. However, 2r − 1 is

rational, and π is irrational. This is a contradiction. �

81. We prove the contrapositive.
Proof. Suppose

√
x is rational. So

√
x = a

b for some a, b ∈ Z with b 6= 0. Thus,

x = (
√
x)2 = a2

b2 , and a2, b2 ∈ Z with b2 6= 0. Hence x is rational. �

83. Proof. Suppose r ∈ Q. So r = a
b for some a, b ∈ Z with b 6= 0. Observe that

r is a root of f(x) = bx− a and is hence algebraic. �

85. Sketch. Let g(x) = rnx
n + rn−1x

n−1 + · · ·+ r1x+ r0 be a polynomial with
rational coefficients. For each 0 ≤ i ≤ n, write ri = ai

bi
, where ai, bi ∈ Z with

bi 6= 0. Define f(x) = g(x)
∏n
i=1 bi. Observe that f(x) is a polynomial with

integer coefficients, and f and g have exactly the same roots. Since the roots of
f are algebraic, so are the roots of g. �
Notice that multiplying g(x) by

∏n
i=1 bi clears all of the denominators from

the coefficients, yielding integer coefficients. Since
∏n
i=1 bi 6= 0, it follows that

g(x)
∏n
i=1 bi = 0 if and only if g(x) = 0. Since f(x) = 0 if and only if g(x) = 0,

we see that f and g have the same roots. By definition, the roots of f are
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algebraic.

87. No.
√

2 is algebraic since it is a root of x2 − 2.

89. Proof. Suppose not. So 2e is algebraic. Thus 2e is a root of some polynomial
f(x) = cnx

n + cn−1x
n−1 + · · ·+ c1x+ c0, where n ∈ Z+, cn, cn−1, . . . , c1, c0 ∈ Z.

That is, 0 = f(2e) = cn2nen + cn−12n−1en−1 + · · · + c12e + c0. Define g(x) =
cn2nxn+ cn−12n−1xn−1 + · · ·+ c12x+ c0. Since cn2n, cn−12n−1, . . . , c12, c0 ∈ Z,
and g(e) = 0, we see that e is algebraic. This is a contradiction. �

Section 3.5

1. True.
10 | (55− 15).

3. False.
6 - (−7− 21).

5. Thursday.
1/8/1987 is 284 days before 10/19/1987 and −284 mod 7 = 3. Note that Mon-
day + 3 = Thursday.

7. 9 P.M.
279 mod 24 = 15 and 9 P.M. is 15 hours after 6 A.M.

9. Theorem: (a) a ≡ a (mod n).
(b) If a ≡ b (mod n), then b ≡ a (mod n).
(c) If a ≡ b (mod n) and b ≡ c (mod n), then a ≡ c (mod n).
(a) Sketch. a− a = 0 and n | 0. �
(b) Since b − a = −(a − b), if n | (a − b), then n | (b − a). (c) Proof. Suppose
a ≡ b (mod n) and b ≡ c (mod n). So n | (a − b) and n | (b − c). That is,
a−b = nj and b−c = nk for some j, k ∈ Z. Observe that a−c = (a−b)+(b−c) =
nj + nk = n(j + k). So n | (a− c). That is, a ≡ c (mod n). �

11. Proof. Suppose a1 ≡ a2 (mod n). So n | a1 − a2. That is, a1 − a2 = nk for
some k ∈ Z. Hence, −a1 − (−a2) = −(a1 − a2) = −nk = n(−k). Since −k ∈ Z,
we see that −a1 ≡ −a2 (mod n). �

13. Proof. Suppose a ≡ b (mod n). So a − b = nk for some k ∈ Z. So
a2 − b2 = (a + b)(a − b) = (a + b)nk = n(a + b)k. Since (a + b)k ∈ Z, we see
that a2 ≡ b2 (mod n). �

15. Proof. Lemma 3.29 tells us that [n1 mod d] ≡ n1 ( mod d) and that [n2 mod
d] ≡ n2 (mod d). (→) Suppose n1 mod d = n2 mod d. Then, [n2 mod d] ≡
n1 (mod d). It now follows from Theorem 3.26 that n1 ≡ [n2 mod d] ≡
n2 (mod d). (←) Suppose n1 ≡ n2 (mod d). So [n1 mod d] ≡ n2 (mod d).
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Since 0 ≤ n1 mod d < d, it follows from the uniqueness assertion in Lemma 3.29
that n1 mod d = n2 mod d. �

17. 8763 + 536 ≡ 13 + 11 ≡ 24 (mod 25).
8763 ≡ 13 (mod 25) and 536 ≡ 11 (mod 25). So 8763 + 536 ≡ 13 + 11 ≡
24 (mod 25).

19. 4.
Note that 105379 ≡ 0 (mod 10) and 14 ≡ 4 (mod 10).

21. 16.
2517 ≡ (252)825 ≡ (−2)825 ≡ 256 · 25 ≡ 9 · 6 ≡ 54 ≡ 16 (mod 19).

23. 1.
2050 ≡ (−1)50 ≡ 1 (mod 3).

25. 1.
13200 ≡ (−1)200 ≡ 1 (mod 7).

27. Proof. Let n ∈ Z. If n ≡ 0 (mod 3), then n3 − n − 1 ≡ 0 − 0 − 1 ≡ −1 ≡
2 (mod 3). If n ≡ 1 (mod 3), then n3 − n − 1 ≡ 1 − 1 − 1 ≡ −1 ≡ 2 (mod 3).
If n ≡ 2 (mod 3), then n3 − n − 1 ≡ 8 − 2 − 1 ≡ 5 ≡ 2 (mod 3). In each case,
n3 − n− 1 ≡ 2 (mod 3). �

29. Sketch. If n ≡ 1, 2, or 4 (mod 7), then n3 ≡ 1 (mod 7). If n ≡ 3, 5, or 6
(mod 7), then n3 ≡ −1 (mod 7). �
That is, 13 ≡ 1 ≡ 1 (mod 7), 23 ≡ 8 ≡ 1 (mod 7), 33 ≡ 27 ≡ −1 (mod 7),
43 ≡ 64 ≡ 1 (mod 7), 53 ≡ 125 ≡ −1 (mod 7), and 63 ≡ 216 ≡ −1 (mod 7),

31. (a) Sketch. We have n ≡ 1, 3, 5, or 7 (mod 8).
So n2 ≡ 1, 9, 25, or 49 (mod 8), respectively.
That is, n2 ≡ 1 (mod 8). �
(b) Multiply both sides of n2 ≡ 1 (mod n) by n.

33. Proof. Suppose n ≡ r (mod 3). So 3 | (n− r). That is, n− r = 3k for some
k ∈ Z. Observe that 2n − 2r = 2r(2n−r − 1) = 2r(23k − 1) = 2r(8k − 1). Since
8 ≡ 1 (mod 7), we have 8k ≡ 1 (mod 7). That is, 7 | 8k − 1. So 7 | 2n − 2r.
Therefore, 2n ≡ 2r (mod 7). �

35. Proof. Suppose a ≡ b (mod m) and a ≡ −b (mod n) So m | (a − b) and
n | (a + b). Hence, mn | (a + b)(a − b). That is, mn | (a2 − b2). Therefore,
a2 ≡ b2 (mod mn) �

37. 23.
See Exercise 19 from Section 3.3. Since 55(−5) + 12(23) = 1, we see that
12 · 23 ≡ 1 (mod 55).
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39. 7.
18(7) + 25(−5) = 1.

41. “PZSNQRURHGJUX”.
We use y = (2x+8) mod 27. E.g., D = 4 encrypts to (2·4+8) mod 27 = 16 = P .

43. “BORAT”.
Note that 14 is a multiplicative inverse of 2 modulo 27. Hence, we use x =
14(y − 13) mod 27. E.g., Q = 17 decrypts to 14(17− 13) mod 27 = 2 = B.

45. Proof. Suppose to the contrary that x, y ∈ {0, 1, . . . , n− 1} and x ≡ y (mod
n). Say x > y. Observe that 0 ≤ x − y < n. (In fact, 0 < x − y ≤ n − 1.)
However, n | (x− y) and n > x− y is impossible here. This is a contradiction.
�

47. Sketch. Existence of an inverse is given by Lemma 3.31. That a representa-
tive can be chosen in {0, 1, . . . , n − 1} is given by Lemma 3.29. Its uniqueness
is then guaranteed by Exercise 45. �

49. 6.
Use 29 = 16 + 8 + 4 + 1, and 132 ≡ 15, 134 ≡ 71, 138 ≡ 36, 1316 ≡ 64 (mod 77).

51. 79.
Use 17 = 16 + 1, and 312 ≡ 4, 314 ≡ 16, 318 ≡ 82, 3116 ≡ 25 (mod 87).

53. Note that n = 5 · 11 = 55.
(a) y = 2, since xa mod n = 87 mod 55 = 2.
(b) y = 14, since xa mod n = 497 mod 55 = 14.
(c) Discover, since yc mod n = 123 mod 55 = 23 = Discover.
(d) MasterCard, since yc mod n = 353 mod 55 = 30 = MasterCard.

55. 16.
By Fermat’s Little Theorem, 1016 ≡ 1 (mod 17). By hand, we can see that
102 ≡ −2 (mod 17). So 101000 ≡ (1016)62108 ≡ 108 ≡ (102)4 ≡ (−2)4 ≡
16 (mod 17).

57. Corollary: If a, p ∈ Z with p prime, then ap ≡ a (mod p).
Sketch. When p | a, ap ≡ 0 ≡ a (mod p). When p - a, multiply both sides of
ap−1 ≡ 1 (mod p) by a. �
We apply Fermat’s Little Theorem in the case that p - a.

59. Sketch. 2253 ≡ (28)3125 ≡ 2563125 ≡ 33125 ≡ (35)63 · 25 ≡ 24363 · 25 ≡
(−10)63 · 25 ≡ 162 6≡ 2 (mod 253). �

61. Sketch. Observe that x ∈ {1, . . . , p − 1} and x2 ≡ 1 (mod p) if and only if
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x = 1 or p−1. Hence, the suggested pairing off of values in the product (p−1)!

gives (p− 1)! = (p− 1) · 1
p−3

2 · 1 ≡ −1 (mod p). �
Note that p divides x2 − 1 = (x− 1)(x+ 1) if and only if p | x− 1 or p | x+ 1.
With x ∈ {1, . . . , p − 1}, this happens only if x − 1 = 0 or x + 1 = p. That is,
x = 1 or x = p− 1.

63. 10d1 + 9d2 + 8d3 + 7d4 + 6d5 + 5d6 + 4d7 + 3d8 + 2d9 + d10 =
−(d1 + 2d2 + 3d3 + 4d4 + 5d5 + 6d6 + 7d7 + 8d8 + 9d9 + 10d10)+
11(d1 + d2 + d3 + d4 + d5 + d6 + d7 + d8 + d9 + d10).
We appeal to Lemma 3.29, so that we may work with congruence modulo 11.
The above equation shows that [10d1 +9d2 +8d3 +7d4 +6d5 +5d6 +4d7 +3d8 +
2d9+d10] ≡ −[d1+2d2+3d3+4d4+5d5+6d6+7d7+8d8+9d9+10d10] ( mod 11).
If these are congruent to 0 modulo 11, then so are their negatives.

65. x = 3.
Note that 32 ≡ 9 ≡ −1 (mod 10).

67. x = 2, y = 5.
Note that 2 6≡ 0 (mod 10), 5 6≡ 0 (mod 10), and 2 · 5 ≡ 0 (mod 10).

69. [2]3.
Note that 8 ≡ 2 (mod 3) and 0 ≤ 2 < 3.

71. [3]4.
Note that 10 + 5 ≡ 15 ≡ 3 (mod 4) and 0 ≤ 3 < 4.

73. [1]10.
Note that 18 + 217 + 3146 ≡ 8 + 7 + 6 ≡ 21 ≡ 1 (mod 10) and 0 ≤ 1 < 10.

75. {k : k ≡ a (mod n)} = {k : k ≡ b (mod n)} if and only if a ≡ b (mod n).
Proof. (→) Suppose [a]n = [b]n. Since b ∈ [b]n = [an], the definition of [a]n
gives b ≡ a (mod n). (←) Suppose a ≡ b (mod n). Since it follows that
k ≡ a (mod n) if and only if k ≡ b (mod n), we get [a]n = [b]n. �

77. Proof. (⊆) Suppose k ∈ [a]n + [b]n. So k = s + t for some s ∈ [a]n and
t ∈ [b]n. Thus s ≡ a (mod n) and t ≡ b (mod n). Since s+ t ≡ a+ b (mod n),
it follows that k ∈ [a + b]n. (⊇) Suppose k ∈ [a + b]n. So k ≡ a + b (mod n).
That is, n | (k − a − b). Note that k = a + (k − a) and k − a ≡ b (mod n).
Therefore, k ∈ [a]n + [b]n. �

79. Sketch. By Exercises 77 and 78, [a]n − [b]n = [a]n + [−b]n = [a− b]n. �

81. Sketch. Any k ≡ a (mod n) can be written as k = 0 + k. �
This is also a special case of Exercise 77.
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83. Note that n = 10(10k−1ak + 10k−2ak−1 + · · ·+ a1) + a0

and 10(10k−1ak + 10k−2ak−1 + · · · + a1) ≡ 0 (mod 5). So n ≡ 0 + a0 ≡
a0 (mod 5).

85. Note that 10kak + 10k−1ak−1 + · · · + 100a0 ≡ 1kak + 1k−1ak−1 + · · · +
10a0 (mod 9). Also, n is divisible by 3 iff n ≡ 0, 3, or 6 (mod 9).
Note that 10 ≡ 1 (mod 9). So

n ≡ 10kak + 10k−1ak−1 + · · ·+ 100a0

≡ 1kak + 1k−1ak−1 + · · ·+ 10a0

≡ ak + ak−1 + · · ·+ a0

≡ m (mod 9).

Observe that n is divisible by 3 iff n ≡ 0, 3, or 6 (mod 9).

Review

1. Proof. Let m and n be even integers. So m = 2j and n = 2k for some
j, k ∈ Z. Observe that mn = 2(2jk). Since 2jk ∈ Z, we see that mn is even. �

2. Proof. Suppose n is even. So n = 2k for some k ∈ Z. So n2 = 4k2. Hence,
4 | n2. �

3. No,
since 6 - 52.

4. Sketch. (a+ b)3 − b3 = a(a2 + 3ab+ 3b2). �
(a+b)3−b3 = a3+3a2b+3ab2+b3−b3 = a(a2+3ab+3b2) and a2+3ab+3b2 ∈ Z.

5. Proof. (→) Suppose a | b. So b = ak for some k ∈ Z. Since b = (−a)(−k),
we see that −a | b. (←) Suppose −a | b. So b = −ak for some k ∈ Z. Since
b = a(−k), we see that a | b. �

6. No, 91 = 7 · 13.
No, by definition, primes are greater than 1.

7. Yes.
gcd(14, 33) = 1.

8. Proof. Suppose a | n and a | (n + 2). So n = aj and n + 2 = ak for some
j, k ∈ Z. Observe that 2 = (n+ 2)− n = ak − aj = a(k − j). So a | 2. �

9. 91.
gcd(7 · 11 · 13, 5 · 7 · 13) = 7 · 13 = 91.

10. Proof. Let n ∈ Z with n 6= 0. Case 1 : n > 0. So n > 0, n | n, and
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n | −n. Also, if c | n and c | −n, then, in particular, c | n, whence c ≤ n.
So gcd(n,−n) = n = |n|. Case 2 : n < 0. So −n > 0, −n | n, and −n | −n.
Also, if c | n and c | −n, then, in particular, c | −n, whence c ≤ −n. So
gcd(n,−n) = −n = |n|. �
In each case (d = n or d = −n), we verify that gcd(n,−n) = d by checking the
three conditions:
(i) d > 0,
(ii) d | n and d | −n, and
(iii) if c | n and c | −n, then c ≤ d.

11. (a) a = 2, b = 3,m = 2, n = 2.
Note that gcd(2, 3) = 1 = gcd(22, 32).
(b) Proof. Let d = gcd(a, b). Since d | a and d | b, it follows that d | am and
d | bn. Therefore d ≤ gcd(am, bn). �
(c) gcd(a, b) > 1, since if gcd(a, b) = 1, then gcd(am, bn) = 1. At least one of
m > 1 or n > 1, since gcd(a, b) = gcd(a1, b1). Note that gcd(4, 6) < gcd(41, 62).
So both m,n > 1 is not forced.

12. 840.
120 = 12 · 10, 84 = 12 · 7, and 12 · 10 · 7 = 840.

13. Sketch. Let i = max{j, k}. So mi > 0, mj | mi, and mk | mi. If c ∈ Z+,
mj | c, and mk | c, then mi | c, whence mi ≤ c. �
We verify that lcm(mj ,mk) = l by checking the three conditions:
(i) l > 0,
(ii) mj | l and mk | l, and
(iii) if mj | c and mk | c, then l ≤ c.

14. 5.
Observe that 5 = 10(−2) + 25(1). Note that 5 | (10x + 25y). Since 5 does not
divide 1, 2, 3, or 4, there is no element smaller than 5.

15. False.
2113 − 1 = 3391 · 23279 · 65993 · 1868569 · 1066818132868207.

16. 12 remainder 5.
101 = 8(12) + 5 and 0 ≤ 5 < 8.

17. (a) 6 and 1, since 43 = 7(6) + 1 and 0 ≤ 1 < 7.
(b) −6 and 3, since −51 = 9(−6) + 3 and 0 ≤ 3 < 9.

18. 2 remain, and each have 17.
104 mod 6 = 2. 104 div 6 = 17.

19. Proof. Write n = 3q + r, where r = 0, 1, or 2.
So n3−n = 27q3 + 9q2r+ 3qr2 + r3− (3q+ r) = 3(9q3 + 3q2r+ qr2− q) + r3− r.
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If r = 0, then r3− r = 0. If r = 1, then r3− r = 0. If r = 2, then r3− r = 3(2).
In each case, 3 | (r3 − r), so 3 | (n3 − n). Thus, (n3 − n) mod 3 = 0. �
With the tools of Section 3.5, the following argument also works.
Sketch. If n ≡ 0 (mod 3), then n3 − n ≡ 0− 0 ≡ 0 (mod 3).
If n ≡ 1 (mod 3), then n3 − n ≡ 1− 1 ≡ 0 (mod 3).
If n ≡ 2 (mod 3), then n3 − n ≡ 8− 2 ≡ 6 ≡ 0 (mod 3). �

20. Proof. Suppose n is odd. So n = 2k+ 1 for some k ∈ Z. So n2 = 4k2 + 4k+
1 = 4(k2 + k) + 1. Since n2 mod 4 = 1 6= 0, we see that 4 - n2. �
Alternative via contrapositive. Proof. Suppose 4 | n2. So n2 = 4k for some
k ∈ Z. Since n2 = 2(2k), we see that n2 is even. Hence, n is even. That is, n is
not odd. �

21. (a) 6, since 6 ≤ 6.6 < 7.
(b) −7, since −7 ≤ −6.6 < −6.

22. (a) 6, since 5 < 5.4 ≤ 6.
(b) −5, since −6 < −5.4 ≤ −5.

23. Proof. Suppose 4 | n. So n = 4k for some k ∈ Z. Thus, n
4 = k ∈ Z. Also,

n
4 ≤

n+2
4 and n+2

4 < n
4 + 1. Therefore, bn+2

4 c = n
4 . �

24. Sketch. Certainly dxe ∈ Z and dxe − 1 < dxe ≤ dxe. �
Since dxe is an integer, this is effectively the fact that ∀ n ∈ Z, dne = n.

25. 3. No.
Let c = #. So 10(0) + 9(8) + 8(2) + 7(1) + 6(8) + 5(c) + 4(4) + 3(6) + 2(1) + 4 =
183 + 5c. Since 11 | (183 + 5 · 3), we get c = 3. Suppose the check digit 4 was
also smudged. Call its now unknown value d. So 179 + 5c+ d is divisible by 11
both when c = 3, d = 4 and when c = 2, d = 9.

26. “MDPSZIDXSQ”.
Use y = x+ 4 mod 27. E.g., I = 9 encrypts to y = 9 + 4 mod 27 = 13 = M .

27. n
gcd(b,n) .

Note in the given example that 9 = 27
gcd(6,27) . In general, let m be the number

of cycles. So mk = n. By using the ideas in Exercise 45(c) from Section 3.1, we
see that m = gcd(b, n).

28. x = 3 and y = −2.
35(3) + 49(−2) = 7.

29. Sketch. Let x = −11, y = 24. �
Observe that 85(−11) + 39(24) = 1.
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30. gcd(110, 88) = gcd(88, 22) = gcd(22, 0) = 22.

31. gcd(810, 245) = gcd(245, 75) = gcd(75, 20) = gcd(20, 15) = gcd(15, 5) =
gcd(5, 0) = 5.

32. x = −1, y = 2.
Note that gcd(81, 45) = 9, 81 = 45 + 36, and 45 = 36 + 9. So 9 = 45 − 36 =
45− (81− 45) = 85(−1) + 45(2).

33. x = 5, y = −16.
Note that gcd(77, 24) = 1, 77 = 3(24) + 5, 24 = 4(5) + 4, and 5 = 4 + 1. So
1 = 5 − 4 = 5 − (24 − 4(5)) = 24(−1) + 5(5) = 24(−1) + (77 − 3(24))(5) =
77(5) + 24(−16).

34. Proof. Suppose 5 | ambn. Since 5 is prime, Corollary 3.17 tells us that 5 | am
or 5 | bn. By Corollary 3.19, it follows that 5 | a or 5 | b. �

35. Sketch. 6 | 52n iff 3 | 26n iff 3 | n, by Euclid’s Lemma. �
Note that 52n = 6k iff 26n = 3k. Also, gcd(3, 26) = 1.

36. No.
Take a = 2 and b = 5.

37. (a) Since 5 | (25x + 10y) for all integers x, y, only multiples of 5 can be
achieved. For example, all values of the form 5k + 1 cannot be achieved.
(b) 5¢ and 15¢.
(c) n¢, for all odd n < 25.

38. Proof. Observe that 6 3
4 = 27

4 and 27, 4 ∈ Z with 4 6= 0. Thus, 6 3
4 ∈ Q. �

39. Proof. Observe that 1.414 = 157
111 and 157, 111 ∈ Z with 111 6= 0. Thus,

1.414 ∈ Q. �
Since ( 157

111 )2 = 24649
12321 >

24642
12321 = 2, it follows that 1.414 >

√
2.

40. Proof. Observe that 1.625 = 1609
990 and 1609, 990 ∈ Z with 990 6= 0. �

41. Proof. Suppose r ∈ Q. So r = a
b for some a, b ∈ Z with b 6= 0. Observe that

3r
4 = 3a

4b and 3a, 4b ∈ Z with 4b 6= 0. So 3r
4 ∈ Q. �

42. Proof. Suppose r ∈ Q. So r = a
b for some a, b ∈ Z with b 6= 0. Observe that

r2 = a2

b2 and a2, b2 ∈ Z with b2 6= 0. So r2 ∈ Q. �

43. Sketch. Suppose p is a prime such that p | a2 and p | b2. It follows that
p | a and p | b. So p | gcd(a, b). Thus, if gcd(a, b) = 1, then it must also be that
gcd(a2, b2) = 1. �
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44. 0.45.

. 4 5
1 1 ) 5. 0 0 0

- 4 4
6 0 remainder 6

- 5 5
5 remainder 5← REPEAT

45. Sketch. Write
√

7 = a
b in lowest terms. So b

√
7 = a. So b27 = a2. So 7 | a2.

By Corollary 3.19, 7 | a. Write a = 7c. So b27 = a2 = 49c2. So b2 = 7c2. So
7 | b2. By Corollary 3.19, 7 | b. So gcd(a, b) ≥ 7. This is a contradiction. �

46. Proof. Suppose r = 5+
√

7
3 is rational. So

√
7 = 3r − 5. However, 3r − 5

is rational, and
√

7 is irrational. This is a contradiction. Therefore, r = 5+
√

7
3

must be irrational. �

47. Sketch. Write log3 11 = a
b with a, b ∈ Z+. So 3

a
b = 11. So 3a = 11b. By the

Fundamental Theorem of Arithmetic, this is impossible. �

48. Sketch. (a) Suppose r = e2−4
3 ∈ Q. However, we get e2 = 3r + 4 ∈ Q.

(b) Write ln 2 = a
b for a, b ∈ Z+. So e

a
b = 2. However, ea = 2b ∈ Z. �

49. Sketch. Observe that
√

3 +
√

2 is a root of f(x) = x4 − 6x2 + 7. By the
Rational Roots Theorem, f has no rational roots. �
The only possibilities ±1,±7 are not roots.

50. Sketch. Observe that
3√2√

5
is a root of f(x) = 125x6 − 4. By the Rational

Roots Theorem, f has no rational roots. �
The only possibilities ± 2a

3b , for 0 ≤ a ≤ 3 and 0 ≤ b ≤ 2, are not roots.

51. Sketch. Observe that 1
2

√
2 +

√
2 +
√

2 is a root of f(x) = 256x8 − 512x6 +

320x4 − 64x2 + 2. By the Rational Roots Theorem, f has no rational roots. �
The only possibilities ± 1

2a , for 0 ≤ a ≤ 7, are not roots.

52. No, it equals 4.
Call it x, and observe that x2 = 16.

53. Yes, they are the same as the roots of 15x2 − 8x+ 12.
That is, multiplying the given polynomial by 12 clears the denominators and
leaves integer coefficients.

54. Wednesday,
since (28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 27) mod 7 = 3 and Sunday + 3
= Wednesday.
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55. Proof. Suppose a ≡ b (mod n). So n | (a − b). That is, a − b = nk for
some k ∈ Z. So ac − bc = (a − b)c = nkc. Since n | (ac − bc), it follows that
ac ≡ bc (mod n). �

56. (a) 7.
Note that 11 ≡ 2 (mod 9) and 1110 ≡ 210 ≡ 1024 ≡ 7 (mod 9).
(b) 11.
Note that 23 ≡ −1 (mod 12) and 234321 ≡ (−1)4321 ≡ −1 ≡ 11 (mod 12).

57. Proof. Suppose n is odd. So n ≡ 1 or 3 (mod 4). If n ≡ 1 (mod 4), then
n2 ≡ 12 ≡ 1 (mod 4). If n ≡ 3 (mod 4), then n2 ≡ 32 ≡ 9 ≡ 1 (mod 4). In
both cases, n2 ≡ 1 (mod 4). �

58. Sketch. If n ≡ 1 (mod 3), then n2 ≡ 12 ≡ 1 (mod 3).
If n ≡ 2 (mod 3), then n2 ≡ 22 ≡ 4 ≡ 1 (mod 3). �

59. “RSA”.
Note that c = 7 is a multiplicative inverse of a = 4 modulo 27.
Use x = 7(y − 1) mod 27.
E.g., S = 19 decrypts to 7(19− 1) mod 27 = 126 mod 27 = 18 = R.

60. −9,
since 11(−9) + 50(2) = 1.

61. 172.
Use 49 = 32 + 16 + 1, and 192 ≡ −30, 194 ≡ 118, 198 ≡ 239, 1916 ≡ 35,
1932 ≡ 52 (mod 391).

62. (a) 32. (b) “The package has been received.” is the message that was sent.
Note that n = 7 · 13 = 91 and m = lcm(6, 12) = 6. Moreover, c = 5 is a
multiplicative inverse of a = 17 modulo 6.

63. 4.
By Fermat’s Little Theorem, 910 ≡ 1 (mod 11). So 95432 ≡ 92 ≡ 4 (mod 11).

64. [2]5,
since 7 ≡ 2 (mod 5).

65. [1]3,
since 8 + 2 ≡ 10 ≡ 1 (mod 3).

66. [4]7,
since 17− 208 + 1343 ≡ 3− 5 + 6 ≡ 4 (mod 7).

67. Proof. Since a ≡ a (mod n), we have a ∈ [a]n. �
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2.4 Chapter 4

Section 4.1

1. 3628800.
10 · 9 · 8 · 7 · 6 · 5 · 4 · 3 · 2 · 1 = 3628800.

3. 21.
7!

5!2! = 7·6
2 = 21.

5. 126.
9!

4!5! = 9·8·7·6
4·3·2 = 126.

7.
(
n
k

)
= n!

k!(n−k)! = n!
(n−k)!k! = n!

(n−k)!(n−(n−k))! =
(
n

n−k
)
.

9. False.
It fails for n = 2, since (22)! = 24 and (2!)2 = 4.

11. False.
It fails for n = 4, since 2! 6= 12 = 4!

2 .

13. 4, 2, 0,−2.
4− 2(0) = 4, 4− 2(1) = 2, 4− 2(2) = 0, 4− 2(3) = −2.

15. 6, 12, 40, 180.
3!

3−2 = 6, 4!
4−2 = 12, 5!

5−2 = 40, 6!
6−2 = 180.

17. 7, 9, 11, 13.
3 + 2(2) = 7, 3 + 2(3) = 9, 3 + 2(4) = 11, 3 + 2(5) = 13.

19. 47.
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47.

21. ∀ n ≥ 1, tn = 2n.
This is an arithmetic sequence with common difference c = 2 and s0 = 2. So
∀ n ≥ 0, sn = 2 + 2n works in addition to the above formula.

23. ∀ n ≥ 0, sn = 3 · 2n.
This is a geometric sequence with multiplying factor r = 2 and s0 = 3.

25. ∀ n ≥ 0, sn = (−1)n(2n+ 1).
This is an alternating sequence. Thus the factor (−1)n appears in the formula.
If we remove the signs, then the sequence becomes 1, 3, 5, 7, 9, . . .. This is an
arithmetic sequence and can also be seen to be the sequence of odd positive
integers.
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27. ∀ n ≥ 1, sn = 1
n .

The terms are fractions with numerator one. The sequence of denominators is
1, 2, 3, 4, 5, . . ..

29. (a) 6000(1.03) = 6180 after 1 period. 6180(1.03) = 6365.40 after 2 periods.
(b) 1000(1 + i)2. No, since i = .02 yields $40.40 in interest and i = .01 yields
$20.10.
(c) ∀ n ≥ 0, sn = P (1 + i)n. A geometric sequence.
Note that s0 = P , s1 = P + Pi = P (1 + i), s2 = s1(1 + i) = P (1 + i)(1 + i) =
P (1 + i)2, etc. This is a geometric sequence with multiplying factor r = i and
s0 = P .

31. ∀ n ≥ 0, tn = 10n−2.
Let m = n− 1. So n = m+ 1. Thus, sn = 10n−3 = 10m+1−3 = 10m−2 = tm.

33. ∀ n ≥ 0, tn = 7 + 2n.
Let m = n−2. So n = m+2. Thus, sn = 3+2n = 3+2(m+2) = 7+2m = tm.

35. ∀ n ≥ 0, tn = (−1)n n
n+2 .

Let m = n − 2. So n = m + 2. Thus, sn = (−1)n n−2
n = (−1)m+2m+2−2

m+2 =

(−1)m(−1)2 m
m+2 = (−1)m m

m+2 = tm.

37. 4, 10, 28, 82.
s1 = 4, s2 = 3s1 − 2 = 3(4) − 2 = 10, s3 = 3s2 − 2 = 3(10) − 2 = 28,
s4 = 3s3 − 2 = 3(28)− 2 = 82.

39. 5, 3, 1,−1.
s2 = 5, s3 = s2−2 = 5−2 = 3, s4 = s3−2 = 3−2 = 1, s4 = s3−2 = 1−2 = −1.

41. −1,−4,−19,−94. Use s1 = − 1
4 .

In general, sm+1 = 5sm + 1 ≥ sm iff 4sm ≥ −1 iff sm ≥ −1
4 .

43. t1 = 2, and ∀ n ≥ 2, tn = 2 + tn−1.
This is an arithmetic sequence with common difference c = 2 and s0 = 2. So
t0 = 2, and ∀ n ≥ 1, tn = 2 + tn−1 also works.

45. s0 = 3, and ∀ n ≥ 1, sn = 2sn−1.
This is a geometric sequence with multiplying factor r = 2 and s0 = 3.

47. s0 = 1, and ∀ n ≥ 1, sn = sn−1 + (−1)n4n.
Consider the differences between terms: −3− 1 = −4, 5− (−3) = 8, −7− 5 =
−12, 9 − (−7) = 16, etc. So the differences form an alternating sequence of
multiples of 4. That is, sn − sn−1 = (−1)n4n.
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49. s1 = 1, and ∀ n ≥ 2, sn = sn−1

1+sn−1
.

51. (a) s2 = 1000(1.05)+1000 = 2050, s3 = s2(1+ i)+D = 2050(1.05)+1000 =
3152.50. (b) s11 = s10(1.04) + 100 = 1348.63. (c) s0 = 0, and ∀ n ≥ 1, sn =
(1 + i)sn−1 +D. Notice the pattern in the previous parts.

53. sk+1 = 3s(k+1)−1 − 2 = 3sk − 2.

55. sk+1 = s(k+1)−1 − 2 = sk − 2.

57. s2 = 5(1)− 3(−1) = 8,
s3 = 5(−1)− 3(8) = −29,
sk+1 = 5s(k+1)−2 − 3s(k+1)−1 = 5sk−1 − 3sk.

59. ∀ n ≥ 2, sn = sn−1 − 2.
Let m = n+ 1. So ∀ m ≥ 2, sm = sm−1 − 2.

61. ∀ n ≥ 2, sn = 5sn−2 − 3sn−1.
Let m = n+ 2. So ∀ m ≥ 2, sm = 5sm−2 − 3sm−1.

63. (a) In Mathematica, use

In[1]:= AppRt2[n_] := 1 + 1/(1 + AppRt2[n - 1])

In[2]:= AppRt2[0] := 1

(b) 1.41421. (c) The 12th.
You should play with this in Mathematica or some other mathematical software.

Section 4.2

1. 65
24 ≈ 2.708. Here, 1

0! + 1
1! + 1

2! + 1
3! + 1

4! = 65
24 .

3. 25·26·51
6 = 5525.

5.
∑10
i=1 i

3 = 3025. Apply Theorem 4.2(d) with n = 10, since 103 = 1000.

7.
∑10
i=1 2i = 2047.

Note 1 = 20 and 1024 = 210. Apply Theorem 4.3 with r = 2 and n = 10.

9.
∑9
i=1(−2)i = −342.

Theorem 4.3 with r = −2 and n = 9 gives 1− 2 + 4− 8 + 16−· · ·− 512 = −341.
From this we must subtract the extraneous 1 = (−2)0.

11.
∑n
i=2 3i2 = n(n+1)(2n+1)

2 − 3.
The last term 3n2 gives us a clue. Note that 3i2 works for the general term and
that the first term is when i = 2.
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13.
∑n
i=1 4i = 4

3 (4n − 1). Note that 4 = 41, so our sum starts with i = 1. Since
the formula in Theorem 4.3 requires starting at i = 0, we must subtract the

i = 0 term from that sum. That is, 4n+1−1
4−1 − 40 = 4

3 (4n − 1).

15.
∑n
i=2(−3)i = 9−(−3)n+1

4 .

Theorem 4.3 with r = −3 gives (−3)n+1−1
−3−1 . From this we must subtract the

extraneous (−3)0 + (−3)1.

17. (a) s2 = D(1 + i) + D, s3 = s2(1 + i) + D = [D(1 + i) + D](1 + i) + D =
D(1+ i)2 +D(1+ i)+D. s4 = s3(1+ i)+[D(1+ i)2 +D(1+ i)+D](1+ i)+D =
D(1+i)3+D(1+i)2+D(1+i)+D. (b) 100(1.01)3+100(1.01)2+100(1.01)+100 =

406.04. (c) sn = D(1+i)n−1+D(1+i)n−2+· · ·+D(1+i)+D =
∑n−1
j=0 D(1+i)j =

D
∑n−1
j=0 (1 + i)j = D (1+i)n−1

(1+i)−1 = D (1+i)n−1
i . (d) 10000 = D (1.01)12−1

.01 gives

D = 1000 .01
(1.01)12−1 = 788.49. (e) Since F = D (1+i)n−1

i , deposit D = iF
(1+i)N−1

.

19. 4
∑n
i=1 i

3 − 6
∑n
i=1 i−

∑n
i=1 1 = 4[n(n+1)

2 ]2 − 6n(n+1)
2 − n =

n4 + 2n3 − 2n2 − 4n = n(n+ 2)(n2 − 2).

21. Let j = i− 1. So
∑n−1
j=0 j

2 =
∑n−1
j=1 j

2 = (n−1)n[2(n−1)+1]
6 = n(n−1)(2n−1)

6 =
2n3−3n2+n

6 .

23.
3−( 1

3 )n

2 . Here,
1−( 1

3 )n+1

1− 1
3

= 3
3 ·

1−( 1
3 )n+1

1− 1
3

=
3−( 1

3 )n

2 .

25. 2101 − 210. Note 1024 = 210.
We have

∑100
i=10 2i =

∑100
i=0 2i −

∑9
i=0 2i = 2101−1

2−1 −
210−1
2−1 = 2101 − 210.

27. 5
3 (465 − 16).∑64

i=0 5 · 4i −
∑1
i=0 5 · 4i = 5 465−1

4−1 − (5 + 20) = 5
3 (465 − 16).

29. 2(1− 1
3100 ).∑100

i=1 4 1
3i = 4

∑100
i=1( 1

3 )i = 4[(
∑100
i=0( 1

3 )i)− 1] = 4[
( 1

3 )101−1
1
3−1

− 1] = 2(1− 1
3100 ).

31.
∑n
i=1(4i − 3) = 4

∑n
i=1 i − 3

∑n
i=1 1 = 4n(n+1)

2 − 3n = 2n(n + 1) − 3n =
2n2 − n = n(2n− 1).

33.
∑n
i=1(3i2 − i) = 3

∑n
i=1 i

2 −
∑n
i=1 i = 3n(n+1)(2n+1)

6 − n(n+1)
2 =

n(n+1)(2n+1)−n(n+1)
2 = n(n+1)

2 (2n+ 1− 1) = n2(n+ 1).

35.
∑2n
i=1 i = 2n(2n+1)

2 = n(2n+ 1).

We substitute m = 2n into the formula
∑m
i=1 i = m(m+1)

2 to get
∑2n
i=1 i =

2n(2n+1)
2 = n(2n+ 1).
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37. 3+5+7+ · · ·+(2n+1) =
∑n
i=1(2i+1) = 2

∑n
i=1 i+

∑n
i=1 1 = 2n(n+1)

2 +n =
n(n+ 1) + n = n(n+ 2).

39.
∏n
i=1 k.

That is,

k · k · · · k︸ ︷︷ ︸
n times

=

n∏
i=1

k.

41. 2
n(n+1)

2 .
That is,

21 · 22 · 23 · · · 2n = 21+2+3+···+n = 2
∑n

i=1 i = 2
n(n+1)

2 .

43. L(x) =

n∑
i=1

yi n∏
j=1,j 6=i

x− xj
xi − xj

.

45. Since 2S = (n+ 1) + (n+ 1) + · · ·+ (n+ 1)︸ ︷︷ ︸
n times

= n(n + 1), it follows that

S = n(n+1)
2 .

Organize the sum of the two equations as follows.

S = 1 + 2 + · · · + (n− 1) + n
S = n + (n− 1) + · · · + 2 + 1

2S = (n+ 1) + (n+ 1) + · · · + (n+ 1) + (n+ 1)

47. n2(n+1)2(2n2+2n−1)
12 .

By Theorem 4.4,

n∑
i=1

i5 =
(n+ 1)((n+ 1)5 − 1)−

∑4
j=1

[(
6
j

)∑n
i=1 i

j
]

6
.

Note that

4∑
j=1

[(
6

j

) n∑
i=1

ij

]
=

(
6

1

) n∑
i=1

i+

(
6

2

) n∑
i=1

i2 +

(
6

3

) n∑
i=1

i3 +

(
6

4

) n∑
i=1

i4.

By Example 4.17,

n∑
i=1

i4 =
n(n+ 1)(2n+ 1)(3n2 + 3n− 1)

30
.

Also see the formulas in Theorem 4.2. After substitutions we get

n∑
i=1

i5 =
n2(n+ 1)2(2n2 + 2n− 1)

12
.
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49. (a)
s6

(b) The area of s4 is 1 + 1
4 + 1

16 + 1
64 = 85

64 = 1.32815. The area of s5 is
85
64 + 1

256 = 341
256 = 1.33203125 > 1.33.

(c) an = 1 + 1
4 + ( 1

4 )2 + · · ·+ ( 1
4 )n−1 =

∑n−1
i=0 ( 1

4 )i.

(d) an =
1−( 1

4 )n

1− 1
4

= 4
3 (1− 1

4n ).

Section 4.3

1. Proof. Base case: (n = 3). Note that 32 + 1 ≥ 3(3). Inductive step: Suppose
k ≥ 3 and k2 + 1 ≥ 3k. (Goal: (k + 1)2 + 1 ≥ 3(k + 1).) Observe that
(k+1)2+1 = k2+2k+1+1 = (k2+1)+(2k+1) ≥ 3k+(2k+1) ≥ 3k+3 = 3(k+1).
�

3. Proof. Base case: (n = 3). Note that 32 ≥ 2(3) + 1. Inductive step: Suppose
k ≥ 3 and k2 ≥ 2k + 1. (Goal: (k + 1)2 ≥ 2(k + 1) + 1 = 2k + 3.) Observe that
(k + 1)2 = k2 + 2k + 1 = k2 + (2k + 1) ≥ 2k + 1 + (2k + 1) = 2k + (2k + 2) ≥
2k + 3 = 2(k + 1) + 1. �

5. Proof. Base case: (n = 4). Note that 24 ≥ 42. Inductive step: Suppose k ≥ 4
and 2k ≥ k2. (Goal: 2k+1 ≥ (k + 1)2.) Observe that 2k+1 = 2 · 2k ≥ 2 · k2 =
k2 +(k2) ≥ k2 +(2k+1) = (k+1)2. The last inequality follows from Exercise 3.
�

7. Proof. Base case: (n = 4). Note that 4! ≥ 42. Inductive step: Suppose k ≥ 4
and k! ≥ k2. (Goal: (k + 1)! ≥ (k + 1)2.) Observe that (k+1)! = (k+1) · k! ≥
(k+1) · k2 ≥ (k+1) · (k+1) = (k+1)2. The last inequality holds since k2 ≥ k+ 1
for k ≥ 4. �

9. Proof. Base case: (n = 4). Note that 4! > 24. Inductive step: Suppose k ≥ 4
and k! > 2k. (Goal: (k + 1)! > 2k+1.) Observe that (k + 1)! = (k + 1) · k! >
(k + 1) · 2k ≥ 2 · 2k = 2k+1. �

11. Proof. Base case: (n = 0). Note that 3 | (40 − 1). Inductive step: Suppose
k ≥ 0 and 3 | (4k − 1). So, 4k − 1 = 3c for some c ∈ Z. (Goal: 3 | (4k+1 − 1).)
Observe that 4k+1−1 = 4 ·4k−1 = (3+1)4k−1 = 3 ·4k+(4k−1) = 3 ·4k+3c =
3(4k + c). Thus, 3 | (4k+1 − 1). �
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13. Proof. Base case: (n = 0). Note that 4 | (60 − 20). Inductive step: Suppose
k ≥ 0 and 4 | (6k−2k). So, 6k−2k = 4c for some c ∈ Z. (Goal: 4 | (6k+1−2k+1).)
Observe that 6k+1− 2k+1 = 6 · 6k − 2 · 2k = 4 · 6k + 2(6k − 2k) = 4 · 6k + 2(4c) =
4(6k + 2c). Thus, 4 | (6k+1 − 2k+1). �

15. Proof. Base case: (n = 0). Note that 6 | (03 − 0). Inductive step: Suppose
k ≥ 0 and 6 | (k3 − k). So, k3 − k = 6c for some c ∈ Z.
(Goal: 6 | ((k + 1)3 − (k + 1)).) Observe that (k + 1)3 − (k + 1) = k3 + 3k2 +

3k + 1 − k − 1 = (k3 − k) + 3k2 + 3k = 6c + 3(k2 + k) = 6(c + k2+k
2 ). Since

k2 and k have the same parity, it follows that k2 + k is even, whence k2+k
2 ∈ Z.

Thus, 6 | ((k + 1)3 − (k + 1)). �

17. Proof. Base case: (n = 1). Note that 31 + 1 = 4. Inductive step: Suppose
k ≥ 1 and sk = 3k+1. (Goal: sk+1 = 3k+1 +1.) Observe that sk+1 = 3sk−2 =
3(3k+1)− 2 = 3k+1 + 1. �

19. Proof. Base case: (n = 2). Note that 9 − 2(2) = 5. Inductive step:
Suppose k ≥ 2 and sk = 9 − 2k. (Goal: sk+1 = 9 − 2(k + 1).) Observe that
sk+1 = sk − 2 = 9− 2k − 2 = 9− 2(k + 1). �

21. (a) s0 = 0 = D (1+i)0−1
i , s1 = D = D (1+i)1−1

i , s2 = (1 + i)D + D =

(i+ 2)D = D (1+i)2−1
i .

(b) (1 + i)(D (1+i)n−1−1
i ) +D = D( (1+i)n−(1+i)

i + i
i ) = D (1+i)n−1

i .

(c) Proof. Base case: (n = 0). Note that D (1+i)0−1
i = 0. Inductive step:

Suppose k ≥ 0 and sk = D (1+i)k−1
i . Observe that sk+1 = (1 + i)sk + D =

(1 + i)[D (1+i)k−1
i ] +D = D[(1 + i) (1+i)k−1

i + i
i ] = D (1+i)k+1−1

i . �

(d) 200 (1.0075)24−1
.0075 = $5237.69.

23. (a) A∩(B1∪B2∪B3) = A∩((B1∪B2)∪B3) = (A∩(B1∪B2))∪(A∩B3) =
((A ∩B1) ∪ (A ∩B2)) ∪ (A ∩B3) = (A ∩B1) ∪ (A ∩B2) ∪ (A ∩B3).
(b) Proof. Base case: (n = 1). Let B1 be any set. Note that A∩(B1) = (A∩B1).
Inductive step: Suppose k ≥ 1 and, for all sets B1, B2, . . . , Bk, A ∩ (B1 ∪ B2 ∪
· · ·∪Bk) = (A∩B1)∪(A∩B2)∪· · ·∪(A∩Bk). Let B1, B2, . . . , Bk+1 be any sets.
Observe that A∩ (B1 ∪B2 ∪ · · · ∪Bk+1) = A∩ ((B1 ∪B2 ∪ · · · ∪Bk)∪Bk+1) =
(A ∩ (B1 ∪ B2 ∪ · · · ∪ Bk)) ∪ (A ∩ Bk+1) = ((A ∩ B1) ∪ (A ∩ B2) ∪ · · · ∪ (A ∩
Bk)) ∪ (A ∩Bk+1) = (A ∩B1) ∪ (A ∩B2) ∪ · · · ∪ (A ∩Bk+1). �
(c) Reverse ∩ and ∪ in part (b).

25. (a) ¬(p1∨p2∨p3)≡ ¬((p1∨p2)∨p3)≡ ¬(p1∨p2)∧¬p3 ≡ (¬p1∧¬p2)∧¬p3 ≡
¬p1 ∧ ¬p2 ∧ ¬p3.
(b) Proof. Base case: (n = 1). Let p1 be any statement form. Note that
¬(p1) ≡ ¬p1. Inductive step: Suppose k ≥ 1 and, for all statement forms
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p1, p2, . . . , pk, ¬(p1 ∨ p2 ∨ · · · ∨ pk) ≡ ¬p1 ∧¬p2 ∧ · · · ∧ ¬pk. Let p1, p2, . . . , pk+1

be any statement forms. Observe that
¬(p1∨ p2∨ · · ·∨ pk+1)≡ ¬((p1∨ p2∨ · · ·∨ pk)∨ pk+1)≡ ¬(p1∨ p2∨ · · ·∨ pk)∧¬pk+1

≡ (¬p1 ∧ ¬p2 ∧ · · · ∧ ¬pk) ∧ ¬pk+1 ≡ ¬p1 ∧ ¬p2 ∧ · · · ∧ ¬pk+1. �
(c) Reverse ∧ and ∨ in part (b).

27. (a) Proof. Base case: (m = 1). Obvious. Inductive step: Suppose k ≥ 1
and,
∀ a1, a2, . . . , ak, b1, b2, . . . , bk ∈ Z, if a1 ≡ b1 (mod n), a2 ≡ b2 (mod n), . . .,

ak ≡ bk (mod n), then
∑k
i=1 ai ≡

∑k
i=1 bi (mod n).

Let a1, a2, . . . , ak+1, b1, b2, . . . , bk+1 be any integers. Suppose a1 ≡ b1 (mod n),
a2 ≡ b2 (mod n), . . ., ak+1 ≡ bk+1 (mod n). By the induction hypoth-

esis,
∑k
i=1 ai ≡

∑k
i=1 bi (mod n). By Theorem 3.27(i), we therefore have

(
∑k
i=1 ai)+ak+1 ≡ (

∑k
i=1 bi)+bk+1 ( mod n). That is,

∑k+1
i=1 ai ≡

∑k+1
i=1 bi ( mod

n). �
(b) Proof. Base case: (m = 1). Obvious. Inductive step: Suppose k ≥ 1 and,
∀ a1, a2, . . . , ak, b1, b2, . . . , bk ∈ Z, if a1 ≡ b1 (mod n), a2 ≡ b2 (mod n), . . .,

ak ≡ bk (mod n), then
∏k
i=1 ai ≡

∏k
i=1 bi (mod n).

Let a1, a2, . . . , ak+1, b1, b2, . . . , bk+1 be any integers. Suppose a1 ≡ b1 (mod n),
a2 ≡ b2 (mod n), . . ., ak+1 ≡ bk+1 (mod n). By the induction hypothesis,∏k
i=1 ai ≡

∏k
i=1 bi (mod n). We therefore have (

∏k
i=1 ai) · ak+1 ≡ (

∏k
i=1 bi) ·

bk+1 (mod n). That is,
∏k+1
i=1 ai ≡

∏k+1
i=1 bi (mod n). �

29. Proof. Base case: (|S| = 1). If S = {s1}, then max(S) = s1. Inductive step:
Suppose k ≥ 1, and any set S with |S| = k has a maximal element. (Goal: Any
set S with |S| = k + 1 has a maximal element.) Suppose s1, s2, . . . , sk+1 are
distinct real numbers and S = {s1, s2, . . . , sk+1}. By the induction hypothesis,
the set {s1, s2, . . . , sk} has a maximal element, say sj . Observe that {sj , sk+1}

has a maximal element m =

{
sj if sj > sk+1

sk+1 otherwise.
Note that m is the maximum

element of S. �

31. Proof. Base case: (n = 1). Obvious. Inductive step: Suppose k ≥ 1 and[
1 1
0 1

]k
=

[
1 k
0 1

]
. Observe that

[
1 1
0 1

]k+1

=

[
1 1
0 1

] [
1 1
0 1

]k
=[

1 1
0 1

] [
1 k
0 1

]
=

[
1 k + 1
0 1

]
. �

33. Proof. Base case: (n = 1). Obvious. Inductive step: Suppose k ≥ 1 and[
1 1
0 2

]k
=

[
1 2k−1
0 2k

]
. Observe that

[
1 1
0 2

]k+1

=

[
1 1
0 2

] [
1 1
0 2

]k
=[

1 1
0 2

] [
1 2k−1
0 2k

]
=

[
1 2k+1−1
0 2k+1

]
. �

35. Proof. Base case: (n = 1). Obvious. Inductive step: Suppose k ≥ 1 and
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[
cos θ sin θ
− sin θ cos θ

]k
=

[
cos kθ sin kθ
− sin kθ cos kθ

]
. Observe that

[
cos θ sin θ
− sin θ cos θ

]k+1

=[
cos θ sin θ
− sin θ cos θ

] [
cos θ sin θ
− sin θ cos θ

]k
=

[
cos θ sin θ
− sin θ cos θ

] [
cos kθ sin kθ
− sin kθ cos kθ

]
=[

cos(θ + kθ) sin(θ + kθ)
− sin(θ + kθ) cos(θ + kθ)

]
=

[
cos(k + 1)θ sin(k + 1)θ
− sin(k + 1)θ cos(k + 1)θ

]
. �

37. (a) sin(2θ) = sin(θ + θ) = sin θ cos θ + cos θ sin θ = 2 sin θ cos θ.
(b) sin 4θ = 2 sin 2θ cos 2θ = 2 · 2 sin θ cos θ cos 2θ = 4 sin θ cos θ cos 2θ.
(c)Proof. Base case: (n = 1). By the double angle identity, sin 2θ = 2 sin θ cos θ.

Inductive step: Suppose k ≥ 1 and sin 2kθ = 2k sin θ
∏k−1
i=0 cos 2iθ. Now,

sin 2k+1θ = sin(2(2kθ)) = 2 sin 2kθ cos 2kθ = 2(2k sin θ
∏k−1
i=0 cos 2iθ) cos 2kθ =

2k+1 sin θ
∏k
i=0 cos 2iθ. �

39. ∀ n ≥ 0, n ≥ 1.
Obviously, 0 ≥ 1 does not hold. However, suppose k ≥ 0 and k ≥ 1. Then
k + 1 ≥ k ≥ 1. So the inductive step holds.

41. Proof. Suppose ∀ n ≥ a, P (n). Suppose k ≥ a and P (k) holds. Since
k + 1 ≥ a, it follows that P (k + 1) also holds. �

43. Proof. Base case: (n = 0). 80 = 1. Inductive step: Suppose k ≥ 0 and
8k ≡ 1 (mod 7). Observe that 8k+1 ≡ 8 · 8k ≡ 1 · 1 ≡ 1 (mod 7). �

45. (a) C0 = 1,

C1 = 2(2·1−1)
1+1 C0 = 1,

C2 = 2(2·2−1)
2+1 C1 = 2,

C3 = 2(2·3−1)
3+1 C2 = 5,

C4 = 2(2·4−1)
4+1 C3 = 14.

(b) Base case: (n = 0). C0 = 1 = 1
0+1

(
0
0

)
. Inductive step: Suppose k ≥ 0

and Ck = 1
k+1

(
2k
k

)
. Observe that Ck+1 = 2(2(k+1)−1)

k+2 Ck = 2(2k+1)
k+2 · 1

k+1

(
2k
k

)
=

2(2k+1)(2k)!
(k+2)(k+1)k!k! = 2(k+1)(2k+1)(2k)!

(k+2)(k+1)k!(k+1)k! = (2k+2)(2k+1)(2k)!
(k+2)(k+1)!(k+1)! = 1

k+2 ·
(2k+2)!

(k+1)!(k+1)! =
1
k+2

(
2(k+1)
k+1

)
. �

(c) n = 0: a.
n = 1: ab.
n = 2: (ab)c or a(bc).
n = 3: (ab)(cd), ((ab)c)d, (a(bc))d, a((bc)d), or a(b(cd)).
n = 4: ((ab)c)(de), (a(bc))(de), (ab)((cd)e), (ab)(c(de)), a((bc)(de)), a(((bc)d)e),
a((b(cd))e), a(b((cd)e)), a(b(c(de))), ((ab)(cd))e, (((ab)c)d)e, ((a(bc))d)e, (a((bc)d))e,
(a(b(cd)))e.
That is, (abc)(de) in two ways, (ab)(cde) in two ways, a(bcde) in five ways,
(abcd)e in five ways.
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Section 4.4

1. Proof. Base case: (n = 1). Note that
∑1
i=1 0 = 0. Inductive step: Suppose

k ≥ 1 and
∑k
i=1 0 = 0. (Goal:

∑k+1
i=1 0 = 0.)

Observe that
∑k+1
i=1 0 = (

∑k
i=1 0) + 0 = 0 + 0 = 0. �

3. (a) Proof. Base case: (n = 1). Note that
∑1
i=1 i = 1 = 1(1+1)

2 . Inductive

step: Suppose k ≥ 1 and
∑k
i=1 i = k(k+1)

2 . (Goal:
∑k+1
i=1 i = (k+1)(k+2)

2 .)

Observe that
∑k+1
i=1 i =

∑k
i=1 i+ (k + 1) = k(k+1)

2 + (k + 1) = (k+1)(k+2)
2 . �

(b)
∑n
i=1 2i = 2

∑n
i=1 i = 2n(n+1)

2 = n(n+ 1).

(c) n
2 (n2 + 1) = n(n+2)

4 . (d) n−1
2 (n−1

2 + 1) = n2−1
4 .

5. Proof. Base case: (n = 1). Note that
∑1
i=1(3i2−i)=2=12(1 + 1). Inductive

step: Suppose k ≥ 1 and
∑k
i=1(3i2 − i) = k2(k + 1).

(Goal:
∑k+1
i=1 (3i2 − i) = (k + 1)2(k + 2).) Observe that

∑k+1
i=1 (3i2 − i) =∑k

i=1(3i2 − i) + (3(k + 1)2 − (k + 1)) = k2(k + 1) + 3(k + 1)2 − (k + 1) =

(k+1)[k2+3(k+1)−1] = (k+1)2(k+2). That is,
∑k+1
i=1 (3i2−i) = (k+1)2(k+2).

�

7. Proof. Base case: (n = 1). Note
∑1
i=1(2i)3 = 8 = 2(1)(4). Inductive

step: Suppose k ≥ 1 and
∑k
i=1(2i)3 = 2k2(k + 1)2. (Goal:

∑k+1
i=1 (2i)3 =

2(k + 1)2(k + 2)2.) Observe that
∑k+1
i=1 (2i)3 =

∑k
i=1(2i)3 + (2(k + 1))3 =

2k2(k + 1)2 + (2(k + 1))3 = 2(k + 1)2(k + 2)2. �

9. Proof. Base case: (n = 1). Note that
∑1
i=1(4i−3)=1=1(2(1)−1). Inductive

step: Suppose k ≥ 1 and
∑k
i=1(4i− 3) = k(2k − 1).

(Goal:
∑k+1
i=1 (4i − 3) = (k + 1)(2(k + 1) − 1).) Observe that

∑k+1
i=1 (4i − 3) =∑k

i=1(4i − 3) + (4(k + 1) − 3) = k(2k − 1) + (4k + 1) = 2k2 + 3k + 1 =

(k + 1)(2(k + 1)− 1). That is,
∑k+1
i=1 (4i− 3) = (k + 1)(2(k + 1)− 1). �

11. We prove
∑n
i=1(2i+ 1) = n(n+ 2).

Proof. Base case: (n = 1). Note that
∑1
i=1(2i+1) = 3 = 1(1 + 2). Inductive

step: Suppose k ≥ 1 and
∑k
i=1(2i + 1) = k(k + 2). (Goal:

∑k+1
i=1 (2i + 1) =

(k + 1)(k + 3).) Observe that
∑k+1
i=1 (2i+ 1) =

∑k
i=1(2i+ 1) + (2(k+ 1) + 1)

= k(k+2)+2(k+1)+1 = k2 +4k+3 = (k+1)(k+3). That is,
∑k+1
i=1 (2i+1) =

(k + 1)(k + 3). �

13. We prove
∑n
i=0 2i = 2n+1 − 1.

Proof. Base case: (n = 0). Note that
∑0
i=0 2i = 1 = 20+1 − 1. Inductive step:

Suppose k ≥ 0 and
∑k
i=0 2i = 2k+1 − 1. (Goal:

∑k+1
i=0 2i = 2k+2 − 1.) Observe

that
∑k+1
i=0 2i =

∑k
i=0 2i + 2k+1 = 2k+1−1 + 2k+1 = 2 · 2k+1−1 = 2k+2−1. That

is,
∑k+1
i=0 2i = 2k+2−1. �
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15. Proof. Base case: (n = 2). Note that
∑2
i=2 i2

i = 8 = (2−1)22+1. Inductive

step: Suppose k ≥ 0 and
∑k
i=2 i2

i = (k − 1)2k+1. (Goal:
∑k+1
i=2 i2

i = k2k+2.)

Observe that
∑k+1
i=2 i2

i =
∑k
i=2 i2

i + (k+ 1)2k+1 = (k− 1)2k+1 + (k+ 1)2k+1 =

2k2k+1 = k2k+2. That is,
∑k+1
i=2 i2

i = k2k+2. �

17. Proof. Base case: (n = 1). Note that
∑1
i=1 i

22i= 2 = (12−2 · 1+3)21+1−6.

Inductive step: Suppose k ≥ 1 and
∑k
i=1 i

22i = (k2 − 2k+ 3)2k+1 − 6. Observe

that
∑k+1
i=1 i

22i=
∑k
i=1 i

22i+(k+1)22k+1 =(k2−2k+3)2k+1−6+(k + 1)22k+1 =
[k2 − 2k + 3 + (k + 1)2]2k+1 − 6 = ((k + 1)2 − 2(k + 1) + 3)2k+2 − 6. �

19. Proof. Base case: (n = 1). Note that
∑1
i=1(i · i!) = 1 = (1 + 1)! − 1.

Inductive step: Suppose k ≥ 1 and
∑k
i=1(i · i!) = (k + 1)! − 1. Observe that∑k+1

i=1 (i · i!) =
∑k
i=1(i · i!) + (k+ 1) · (k+ 1)! = (k+ 1)!− 1 + (k+ 1) · (k+ 1)! =

[1 + (k + 1)](k + 1)!− 1 = (k + 2)!− 1. �

21. Proof. Base case: (n = 1). Note that
∑2
i=1 i = 3 = 1(2 · 1 + 1). Inductive

step: Suppose k ≥ 1 and
∑2k
i=1 i = k(2k + 1). Observe that

∑2(k+1)
i=1 i =∑2k

i=1 i+(2k+1)+(2k+2) = k(2k+1)+(2k+1)+(2k+2) = (k+1)(2(k+1)+1).
�
Notice how the proof is affected by the last index in the sum being i = 2n. In
the inductive step, effectively two terms are split off: the i = 2k + 1 term and
the i = 2k + 2 term.

23. Proof. Base case: (n = 1). Note that
∑1
i=1

1
i(i+1) = 1

2 = 1
1+1 . Inductive

step: Suppose k ≥ 1 and
∑k
i=1

1
i(i+1) = k

k+1 . (Goal:
∑k+1
i=1

1
i(i+1) = k+1

k+2 .)

Observe that
∑k+1
i=1

1
i(i+1) =

∑k
i=1

1
i(i+1) + 1

(k+1)(k+2) = k
k+1 + 1

(k+1)(k+2) = k+1
k+2 .

�

25. Proof. Base case: (n = 1). Note that
∑1
i=1

1
2i = 1

2 = 1− 1
21 . Inductive step:

Suppose k ≥ 1 and
∑k
i=1

1
2i = 1− 1

2k . Observe that
∑k+1
i=1

1
2i = (1− 1

2k )+ 1
2k+1 =

1− 1
2k+1 . �

27. Proof. Base case: (n = 1). Note that
∏1
i=1

i
i+2 = 1

3 = 2
(1+1)(1+2) . In-

ductive step: Suppose k ≥ 1 and
∏k
i=1

i
i+2 = 2

(k+1)(k+2) . (Goal:
∏k+1
i=1

i
i+2 =

2
(k+2)(k+3) .) Observe that

∏k+1
i=1

i
i+2 = (

∏k
i=1

i
i+2 )(k+1

k+3 ) = ( 2
(k+1)(k+2) )(k+1

k+3 ) =
2

(k+2)(k+3) . �

29. Proof. Base case: (n = 1). Note that
∏1
i=1 r

2i = r2 = r1(1+1). Inductive

step: Suppose k ≥ 1 and
∏k
i=1 r

2i = rk(k+1). (Goal:
∏k+1
i=1 r

2i = r(k+1)(k+2).)

Observe that
∏k+1
i=1 r

2i = (
∏k
i=1 r

2i)(r2(k+1)) = (rk(k+1))(r2(k+1)) = r(k+1)(k+2).
�
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31. Proof. Base case: (n = 0). Obvious. Inductive step: Suppose k ≥ 0 and

x2k − y2k

= (x− y)
∏k−1
i=0 (x2i

+ y2i

).

Observe that x2k+1 − y2k+1

= (x2k − y2k

)(x2k

+ y2k

) =

((x− y)
∏k−1
i=0 (x2i

+ y2i

))(x2k

+ y2k

) = (x− y)
∏k
i=0(x2i

+ y2i

). �

33. Proof. Base case: (n = 0). We have s1 ≥ 2s0 ≥ s0.

Inductive step: Suppose k ≥ 0 and sk+1 ≥
∑k
i=0 si.

Observe that sk+2 ≥ 2sk+1 = sk+1 + sk+1 ≥ sk+1 +
∑k
i=0 si =

∑k+1
i=0 si. �

35. Proof. Base case: (n = 1). Note that
∑1
i=1

1
i2 = 1 = 3

2 −
1
2 .

Inductive step: Suppose k ≥ 1 and
∑k
i=1

1
i2 ≥

3
2 −

1
k+1 .

(Goal:
∑k+1
i=1

1
i2 ≥

3
2 −

1
k+2 .) Observe that∑k+1

i=1
1
i2 =

∑k
i=1

1
i2 + 1

(k+1)2 ≥ 3
2 −

1
k+1 + 1

(k+1)2 ≥ 3
2 −

1
k+2 . �

Note that k(k + 2) = k2 + 2k ≤ k2 + 2k + 1 = (k + 1)2. So k
(k+1)2 ≤ 1

k+2 , and

hence − 1
k+1 + 1

(k+1)2 = −(k+1)+1
(k+1)2 = − k

(k+1)2 ≥ − 1
k+2 .

37. Proof. Base case: (n = 1). Note that
∑1
i=1

1
i2 = 1 = 2− 1.

Inductive step: Suppose k ≥ 1 and
∑k
i=1

1
i2 ≤ 2− 1

k .

(Goal:
∑k+1
i=1

1
i2 ≤ 2− 1

k+1 .) Observe that∑k+1
i=1

1
i2 =

∑k
i=1

1
i2 + 1

(k+1)2 ≤ 2− 1
k + 1

(k+1)2 ≤ 2− 1
k+1 . �

Since k(k + 2) = k2 + 2k ≤ k2 + 2k + 1 = (k + 1)2, we have 1
(k+1)2 + 1

k+1 =
k+2

(k+1)2 ≤ 1
k . Hence − 1

k + 1
(k+1)2 ≤ − 1

k+1 .

39. Theorem:
∑b
i=a(si ± ti) =

∑b
i=a si ±

∑b
i=a ti.

Since both sides are 0 when b < a, it suffices to consider b ≥ a. We can consider
a fixed, and so our proof is by induction on b. The base case b = a is also easy
to check.
Sketch. We focus on + since − is handled similarly.
Suppose

∑b
i=a(si + ti) =

∑b
i=a si +

∑b
i=a ti. Then,

∑b+1
i=a(si + ti) =∑b

i=a(si+ti)+sb+1+tb+1 =
∑b
i=a si+

∑b
i=a ti+sb+1+tb+1 =

∑b+1
i=a si+

∑b+1
i=a ti.

�

Section 4.5

1. Proof. Base cases: (n = 0, 1). Note that 0 = 20−1 and 1 = 21−1. Inductive
step: Suppose k ≥ 1 and that, for each 0 ≤ i ≤ k, si = 2i − 1.
(Goal: sk+1 = 2k+1 − 1.) Observe that sk+1 = 3sk − 2sk−1 =
3(2k − 1)− 2(2k−1 − 1) = 3 · 2k − 3− 2k + 2 = 2 · 2k − 1 = 2k+1 − 1. �

3. Proof. Base cases: (n = 0, 1). Note that 2 = 1 + 1 and 11 = 4 + 7.
Inductive step: Suppose k ≥ 1 and that, for each 0 ≤ i ≤ k, si = 4i + 7i.
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(Goal: sk+1 = 4k+1 + 7k+1.) Observe that sk+1 = 11sk − 28sk−1 =
11(4k+7k)−28(4k−1 +7k−1) = 11(4k)+11(7k)−7(4k)−4(7k) = 4(4k)+7(7k) =
4k+1 + 7k+1. �

5. Proof. Base cases: (n = 0, 1). Note that 1 = 20 and 2 = 21.
Inductive step: Suppose k ≥ 1 and that, for each 0 ≤ i ≤ k, si = 2i.
(Goal: sk+1 = 2k+1.) Observe that sk+1 = 4sk−1 = 4 · 2k−1 = 2k+1. �

7. Proof. Base cases: (n = 0, 1, 2). Note that −1 = 50−30−20, 0 = 51−31−21,
and 12 = 52 − 32 − 22. Inductive step: Suppose k ≥ 2 and that, for each
0 ≤ i ≤ k, si = 5i − 3i − 2i. (Goal: sk+1 = 5k+1 − 3k+1 − 2k+1.) Observe that
sk+1 = 10sk − 31sk−1 + 30sk−2 =
10(5k − 3k − 2k)− 31(5k−1 − 3k−1 − 2k−1) + 30(5k−2 − 3k−2 − 2k−2) =
250·5k−2−90·3k−2−40·2k−2−155·5k−2+93·3k−2+62·2k−2+30·5k−2−30·3k−2−30·2k−2 =
125 · 5k−2 − 27 · 3k−2 − 8 · 2k−2 = 5k+1 − 3k+1 − 2k+1. �

9. Proof. Base cases: (n = 0, 1). Note that 1 and 3 are odd.
Inductive step: Suppose k ≥ 1 and that, for each 0 ≤ i ≤ k, si is odd.
(Goal: sk+1 is odd.) Since sk−1 is odd, we have c ∈ Z such that sk−1 = 2c+ 1.
Observe that sk+1 = 3sk−1 − 2sk = 3(2c + 1) − 2sk = 6c − 2sk + 2 + 1 =
2(3c− sk + 1) + 1. Since 3c− sk + 1 ∈ Z, we see that sk+1 is odd. �

11. (a) s2 = −6(−1) + 5(0) = 6,
s3 = −6(0) + 5(6) = 30,
s4 = −6(6) + 5(30) = 114.
(b)Proof. Base cases: (n = 0, 1). Note that −1 = 2·30−3·20 and 0 = 2·31−3·21.
Inductive step: Suppose k ≥ 1 and that, for each 0 ≤ i ≤ k, si = 2 · 3i − 3 · 2i.
(Goal: sk+1 = 2 · 3k+1 − 3 · 2k+1.) Observe that sk+1 = −6sk−1 + 5sk =
−6(2 · 3k−1 − 3 · 2k−1) + 5(2 · 3k − 3 · 2k) = −4 · 3k + 9 · 2k + 10 · 3k − 15 · 2k =
6 · 3k − 6 · 2k = 2 · 3k+1 − 3 · 2k+1. �
(c) Since sn+1 − sn = (2 · 3n+1 − 3 · 2n+1)− (2 · 3n − 3 · 2n) = 2 · 3 · 3n − 3 · 2 ·
2n − 2 · 3n + 3 · 2n = 4 · 3n − 3 · 2n ≥ 3(3n − 2n) ≥ 0, we have sn+1 ≥ sn for all
n ≥ 0.

13. (a) s2 = 2(1) + 1 = 3,
s3 = 2(3) + 1 = 7,
s4 = 2(7) + 3 = 17.
(b) Proof. Base cases: (n = 0, 1). Note that 1 = 1

2 ((1 +
√

2)0 + (1−
√

2)0) and

1 = 1
2 ((1 +

√
2)1 + (1−

√
2)1). Inductive step: Suppose k ≥ 1 and that, for each

0 ≤ i ≤ k, si = 1
2 ((1 +

√
2)i + (1−

√
2)i). Observe that sk+1 = 2sk + sk−1 =

2( 1
2 )[(1 +

√
2)k + (1−

√
2)k] + 1

2 ((1 +
√

2)k−1 + (1−
√

2)k−1) =
1
2 ((2+2

√
2)(1+

√
2)k−1 +(2−2

√
2)(1−

√
2)k−1 +(1+

√
2)k−1 +(1−

√
2)k−1) =

1
2 ((3 + 2

√
2)(1 +

√
2)k−1 + (3− 2

√
2)(1−

√
2)k−1) =

1
2 ((1 +

√
2)2(1 +

√
2)k−1 + (1−

√
2)2(1−

√
2)k−1) =

1
2 ((1 +

√
2)k+1 + (1−

√
2)k+1). �
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(c) Here is a trace of the function call.

Encode(3, [5, 2, 7])
Encode(2, [2, 7]),

Encode(1, [7]),
Print 7,

Encode(0, [7]),
Print 0,

Encode(1, [2]),
Print 2,

Encode(1, [2, 7]),
Print 2,

Encode(2, [5, 2]).
Encode(1, [2]),

Print 2,
Encode(0, [2]),

Print 0,
Encode(1, [5]),

Print 5.

In sequence, it prints 7, 0, 2, 2, 2, 0, 5.

15. This can be proven with regular induction. However, the ability to refer back
two previous cases instead of just one is helpful. Sketch. Base cases: (n = 0, 1).
These are easy to check. Inductive step: Suppose k ≥ 1 and, for each 0 ≤ m ≤ k,∑m
i=0(−1)i =

{
1 if m is even,

0 if m is odd.
.

Observe that
∑k+1
i=0 (−1)i =

∑k−1
i=0 (−1)i+(−1)k+(−1)k+1 =

∑k−1
i=0 (−1)i. Since

k + 1 and k − 1 have the same parity, the result follows. �
The point is that (−1)k + (−1)k+1 is either (−1) + (1) or (1) + (−1). Also, the

inductive hypothesis applies to
∑k−1
i=0 (−1)i. Moreover, k + 1 is even iff k − 1 is

even.

17. (a) We prove that, for all n ≥ 4, it is possible to attain $n with $2 bills and
$5 bills.
Proof. Base cases: (n = 4, 5). We see that $4 = 2 × $2, and $5 = 1 × $5.
Inductive step: Suppose k ≥ 5 and that, for each 4 ≤ i ≤ k, it is possible to
attain $i with $2 bills and $5 bills. By the induction hypothesis, $(k − 1) =
a×$2+ b×$5, for some a, b ∈ N. Observe that $(k+1) = a×$2+ b×$5+$2 =
(a+ 1)× $2 + b× $5. �
(b) Increase. All odd amounts would be unachievable.

19. Proof. Base cases: (n = 25, 26, 27, 28). We see that
25 inches = 6× 4 inches + 0× 9 inches + 1,
26 inches = 4× 4 inches + 1× 9 inches + 1,
27 inches = 2× 4 inches + 2× 9 inches + 1, and
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28 inches = 0× 4 inches + 3× 9 inches + 1. Inductive step: Suppose k ≥ 28 and
that, for each 25 ≤ i ≤ k, it is possible to attain i inches from 4-inch bricks and
9-inch bricks and a sheet of plywood 1 inch thick. By the induction hypothesis,
(k− 3) inches = a× 4 inches + b× 9 inches + 1, for some a, b ∈ N. Observe that
(k + 1) inches = (a+ 1)× 4 inches + b× 9 inches + 1. �

21. (a) Sketch. Base cases: 4(5¢) = 20¢ = 2(10¢) and 5(5¢) = 25¢ = 1(25¢).
Inductive step: Use (k + 1)(5¢) = (k − 1)(5¢) + 10¢. �
(b) 5, 6, 7, 8, 9, 15, 16, 17, 18, 19¢.
We are showing that, for each k ≥ 4, we can achieve (5k)¢ (i.e., k(5¢)).

23. 1260 = 22 · 32 · 5 · 7.

25. 3549 = 3 · 7 · 132.

27. 12! = (223)(11)(2 · 5)(32)(23)(7)(2 · 3)(5)(22)(3)(2)(1) = 210 · 35 · 52 · 7 · 11.

29. (a) Proof. Base case: (n = 2). Note that 22 | 22. Inductive step: Suppose
k ≥ 2 and that each integer i with 2 ≤ i ≤ k has a squared prime divisor.
(Goal: k + 1 has a squared prime divisor.) Case 1: k + 1 is prime. Clearly,
(k + 1)2 | (k + 1)2. Case 2: k + 1 is composite. Write k + 1 = rs, where
2 ≤ r ≤ k and 2 ≤ s ≤ k. So, there exists a prime p such that p2 | r2. That is,
r2 = p2t for some integer t. It follows that (k + 1)2 = r2s2 = p2ts2. �
(b) Sketch. Write n = pe11 ·p

e2
2 · · · · ·pemm . So, n2 = (p2

1)e1 ·(p2
2)e2 · · · · ·(p2

m)em .
Take p = p1. �
Effectively, the Fundamental Theorem of Arithmetic gives us, in particular, that
a prime p divides n. It then immediately follows that p2 | n2.

31. Sketch. By reordering if necessary, we may assume that p1 < p2 < · · · < pm.

Let d = p
min{e1,f1}
1 p

min{e2,f2}
2 · · · pmin{em,fm}

m , let a = pe11 p
e2
2 · · · pemm , and let

b = pf1

1 p
f2

2 · · · pfmm . Observe that d ≥ 1 > 0, d | a, and d | b. Suppose c ∈ Z+

and c | a and c | b. By the Fundamental Theorem of Arithmetic, we have
a unique standard factorization c = qg1

1 q
g2

2 · · · qgnn for some primes q1, q2, . . . , qn
and natural numbers g1, g2, . . . , gn. Since c | a, we have q1 | a. Since q1 is prime,
it must be that q1 = p1. Moreover, since qg1

1 | a, it must be that qg1

1 | p
e1
1 , whence

g1 ≤ e1. Similarly, g1 ≤ f1. Hence, g1 ≤ min{e1, f1}. Repeating this argument,
we conclude that, for each i, we have gi ≤ min{ei, fi}. Therefore, c | d, and it
follows that c ≤ d. �

33. Sketch. Write a = pe11 · p
e2
2 · · · · · pemm and b = pf1

1 · p
f2

2 · · · · · pfmm ,
where e1, e2, . . . , em, f1, f2, . . . , fm are nonnegative integers. Let d = gcd(a, b),
and write d = pc11 · p

c2
2 · · · · · pcmm , where, for each 1 ≤ i ≤ m, ci = min{ei, fi}.

Note that a2 = p2e1
1 · p2e2

2 · · · · · p2em
m , b2 = p2f1

1 · p2f2

2 · · · · · p2fm
m , and

d2 = p2c1
1 · p2c2

2 · · · · · p2cm
m . Since, for each 1 ≤ i ≤ m, 2ci = min{2ei, 2fi}, we

see that d2 = gcd(a2, b2). �
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35. (a) Proof. Existence: The base case n = 1 is obvious, so we focus on the
inductive step. Suppose k ≥ 1 and each 1 ≤ i ≤ k has a binary representation.
By the Division Algorithm, k + 1 = 2j + r for some r = 0 or 1 and some
positive integer j ≤ k. Write j = bm2m + bm−12m−1 + b12 + b0. Observe that
k + 1 = 2j + r = bm2m+1 + bm−12m + b122 + b02 + r. Thus, k + 1 has a binary
representation. Uniqueness: Suppose to the contrary that some n > 1 has two
different binary representations. If necessary, by padding the shorter one with
zeros on the left, we may assume that they have the same number of digits. Say,

bm2m + bm−12m−1 + b12 + b0 = am2m + am−12m−1 + a12 + a0. (2.1)

Let j be the largest index where bj 6= aj , say bj = 1 and aj = 0. Since,∑j−1
i=0 ai2

i < 2j , equation (2.1) is impossible. Thus we have a contradiction. �
(b) Proof. Existence: The base case n = 1 is obvious, so we focus on the in-
ductive step. Suppose k ≥ 1 and each 1 ≤ i ≤ k has a base s representation.
By the Division Algorithm, k + 1 = sj + r for some 0 ≤ r < s and some pos-
itive integer j ≤ k. Write j = bms

m + bm−1s
m−1 + b1s + b0. Observe that

k + 1 = sj + r = bms
m+1 + bm−1s

m + b1s
2 + b0s+ r. Thus, k + 1 has a base s

representation. Uniqueness: Suppose to the contrary that some n > 1 has two
different base s representations. If necessary, by padding the shorter one with
zeros on the left, we may assume that they have the same number of digits. Say,

bms
m + bm−1s

m−1 + b1s+ b0 = ams
m + am−1s

m−1 + a1s+ a0. (2.2)

Let j be the largest index where bj 6= aj , say bj > aj . Since,
∑j−1
i=0 ais

i < sj ,
equation (2.2) is impossible. Thus we have a contradiction. �

37. Proof. The base case is Theorem 4.2(b). Suppose k ≥ 1 and that, for each
1 ≤ j ≤ k, n(n+ 1) is a factor of

∑n
i=1 i

j . By Theorem 4.4,

n∑
i=1

ik+1 =
(n+ 1)((n+ 1)k+1 − 1)−

∑k
j=1

[(
k+2
j

)∑n
i=1 i

j
]

k + 2
.

Since n is a factor of (n+ 1)k+1 − 1 and, by the inductive hypothesis, n(n+ 1)
is a factor of each

∑n
i=1 i

j , it follows that n(n+ 1) is a factor of the numerator
above as asserted. �
That n is a factor of (n + 1)k+1 − 1 can be proven here by induction on k or
can be seen by the Binomial Theorem in the next section.
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39. Note that only regular induction is needed here. Proof. Base case: (n = 0).

Note that F0 = F2− 1. Inductive step: Suppose k ≥ 0 and
∑k
i=0 Fi = Fk+2− 1.

Observe that
∑k+1
i=0 Fi = (Fk+2 − 1) + Fk+1 = Fk+3 − 1. �

41. Note that only regular induction is needed here.

Proof. Base case: (n = 2). Note that

[
1 1
1 0

]2

=

[
2 1
1 1

]
=

[
F2 F1

F1 F0

]
.

Inductive step: Suppose k ≥ 2 and

[
1 1
1 0

]k
=

[
Fk Fk−1

Fk−1 Fk−2

]
. Observe that[

1 1
1 0

]k+1

=

[
Fk Fk−1

Fk−1 Fk−2

] [
1 1
1 0

]
=[

Fk + Fk−1 Fk
Fk−1 + Fk−2 Fk−1

]
=

[
Fk+1 Fk
Fk Fk−1

]
. �

43. Proof. Base case: (n = 0). Note that gcd(F0, F1) = gcd(1, 1) = 1. Induc-
tive step: Suppose k ≥ 0 and gcd(Fk, Fk+1) = 1. Suppose to the contrary that
gcd(Fk+1, Fk+2) > 1. So we have some integer c > 1 such that c divides Fk+1

and Fk+2. That is, we have a, b ∈ Z such that Fk+1 = ca and Fk+2 = cb. Hence,
Fk = Fk+2−Fk+1 = cb−ca = c(b−a). Now c divides Fk and Fk+1, which contra-
dicts the fact that gcd(Fk, Fk+1) = 1. So we conclude that gcd(Fk+1, Fk+2) = 1.
�

45. Proof. Assume conditions (i) and (ii) in the hypotheses of the theorem.
Suppose it is not true that P (n) holds ∀ n ≥ a. Let S be the set of those integers
n ≥ a for which P (n) does not hold. By our assumptions, S is nonempty.
Hence, by the Generalized Well-Ordering Principle, S has a smallest element,
say s. Since P (a), P (a+ 1), . . . , P (b) all hold, it must be that s > b. Therefore,
s − 1 ≥ b. Since a, . . . , s − 1 /∈ S, it follows that P (a), . . . , P (s − 1) all hold.
However, for k = s−1, by condition (ii), P (k+1) must also hold. That is, P (s)
holds. This contradicts the fact that s ∈ S. �

47. Sketch. Attempting to write 23 = 5t + 2c for t = 0, . . . , 4 shows that it
is impossible. Now observe that 24, . . . , 28 are achievable. For any number of
points k ≥ 29, we can always score (k − 5) points first and then score another
try. �
The requirement that t ≥ c forces us to consider 5 base cases instead of just
choosing the smaller number 2.

Section 4.6

1. (n−1)!
(k−1)!(n−k)!

n!
(k+1)!(n−1−k)!

(n+1)!
k!(n+1−k)! = (n−1)!

k!(n−1−k)!
n!

(k−1)!(n+1−k)!
(n+1)!

(k+1)!(n−k)! .

The numerators are the same. In the denominators, the factors on the right-
hand side are the same as those on the left-hand side. They just appear in a
different order.
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3. x5 + 5x4y + 10x3y2 + 10x2y3 + 5xy4 + y5.
(x+ y)5 =

(
5
0

)
x5y0 +

(
5
1

)
x4y1 +

(
5
2

)
x3y2 +

(
5
3

)
x2y3 +

(
5
4

)
x1y4 +

(
5
5

)
x0y5 =

x5 + 5x4y + 10x3y2 + 10x2y3 + 5xy4 + y5.

5. 729x6 + 1458x5y + 1215x4y2 + 540x3y3 + 135x2y4 + 18xy5 + y6.
(3x + y)6 =

(
6
0

)
(3x)6y0 +

(
6
1

)
(3x)5y1 +

(
6
2

)
(3x)4y2 +

(
6
3

)
(3x)3y3 +

(
6
4

)
(3x)2y4 +(

6
5

)
(3x)1y5 +

(
6
6

)
(3x)0y6 = 729x6 + 1458x5y + 1215x4y2 + 540x3y3 + 135x2y4 +

18xy5 + y6.

7. 32x5 − 80x4y + 80x3y2 − 40x2y3 + 10xy4 − y5.
(2x − y)5 = (2x + (−y))5 =

(
5
0

)
(2x)5(−y)0 +

(
5
1

)
(2x)4(−y)1 +

(
5
2

)
(2x)3(−y)2 +(

5
3

)
(2x)2(−y)3 +

(
5
4

)
(2x)1(−y)4 +

(
5
5

)
(2x)0(−y)5 = 32x5 − 80x4y + 80x3y2 −

40x2y3 + 10xy4 − y5.

9. xn − nxn−1 +
(
n
2

)
xn−2 −

(
n
3

)
xn−3 + · · ·+ (−1)n.

(x − 1)n = (x + (−1))n =
(
n
0

)
xn(−1)0 +

(
n
1

)
xn−1(−1)1 +

(
n
2

)
xn−2(−1)2 +(

n
3

)
xn−3(−1)3+· · ·+

(
n
n

)
x0(−1)n = xn−nxn−1+

(
n
2

)
xn−2−

(
n
3

)
xn−3+· · ·+(−1)n.

11. (a) (x + 1
2 )n =

(
n
0

)
xn( 1

2 )0 +
(
n
1

)
xn−1( 1

2 )1 +
(
n
2

)
xn−2( 1

2 )2 +
(
n
3

)
xn−3( 1

2 )3 +

· · · +
(
n
n

)
x0( 1

2 )n = xn + 1
2nx

n−1 + 1
4

(
n
2

)
xn−2 + 1

8

(
n
3

)
xn−3 + · · · + 1

2n . (b) The

relevant term is
(
n
n−5

)
x5( 1

2 )n−5 = 1
2n−5

(
n
5

)
x5. So the coefficient of x5 is 1

2n−5

(
n
5

)
.

13. x8 + 4x6y2 + 6x4y4 + 4x2y6 + y8.
(x2 + y2)4 =

(
4
0

)
(x2)4(y2)0 +

(
4
1

)
(x2)3(y2)1 +

(
4
2

)
(x2)2(y2)2 +

(
4
3

)
(x2)1(y2)3 +(

4
4

)
(x2)0(y2)4 = x8 + 4x6y2 + 6x4y4 + 4x2y6 + y8.

15. 243x10 + 405x8y3 + 270x6y6 + 90x4y9 + 15x2y12 + y15.
(3x2+y3)5 =

(
5
0

)
(3x2)5(y3)0+

(
5
1

)
(3x2)4(y3)1+

(
5
2

)
(3x2)3(y3)2+

(
5
3

)
(3x2)2(y3)3+(

5
4

)
(3x2)1(y3)4 +

(
5
5

)
(3x2)0(y3)5 = 243x10 + 405x8y3 + 270x6y6 + 90x4y9 +

15x2y12 + y15.

17. (a) (x2 + 1)n =
(
n
0

)
(x2)n10 +

(
n
1

)
(x2)n−111 +

(
n
2

)
(x2)n−212 +

(
n
3

)
(x2)n−313 +

· · ·+
(
n
n−1

)
(x2)11n−1 +

(
n
n

)
(x2)01n = x2n+nx2n−2 +

(
n
2

)
x2n−4 +

(
n
3

)
x2n−6 + · · ·+

nx2 + 1. (b) The relevant term is
(
n
n−4

)
(x2)41n−4 =

(
n
4

)
x8. So the coefficient of

x8 is
(
n
4

)
.

19.
(
n
2

)
nn−2 −

(
n
3

)
nn−3 + · · ·+ (−1)n−1n2 + (−1)n.

In Exercise 9, substitute x = n. Note that the first two terms nn − n · nn−1

cancel.

21. (a) (1 + 1
100 )100 ≈ 2.7048, (1 + 1

1000 )1000 ≈ 2.7169, (1 + 1
10000 )10000 ≈ 2.7181.

(b) (1+ 1
n )n =

∑n
i=0

(
n
i

)
1n−i( 1

n )i =
∑n
i=0

n!
i!(n−i)!

1
ni =

∑n
i=0

1
i!

(n−1)(n−2)···(n−i+1)
ni−1 .
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23.
(

100
40

)
360240.

Note that 60 + 40 = 100 and (3x + 2y)100 = · · · +
(

100
40

)
(3x)60(2y)40 + · · · =

· · ·+
(

100
40

)
360240x60y40 + · · · . So

(
100
40

)
360240 is the coefficient of x60y40.

25.
(

400
10

)
210.

Note that (x2)10(y3)390 = x20y1170, that 10+390 = 400 and, that (2x2+y3)400 =
· · ·+

(
400
10

)
(2x2)10(y3)390 + · · · = · · ·+

(
400
10

)
210x20y1170 + · · · . So

(
400
10

)
210 is the

coefficient of x20y1170.

27. 0.
Note that (x2)30−i(y2)i = x60−2iy2i can never be x50y50, since there is no value
of i for which both 60− 2i = 50 and 2i = 50.

29. (a) (x + x−1)10 = x10 + 10x8 + 45x6 + 120x4 + 210x2 + 252 + 210x−2 +
120x−4 + 45x−6 + 10x−8 + x−10 and 1

210 · 120 = 15
128 .

(b) (x2+x−2)10 = x20+10x16+45x12+120x8+210x4+252+210x−4+120x−8+
45x−12 + 10x−16 + x−20 and 1

210 · 210 = 105
512 .

(c) (x3 + x−1)10 = x30 + 10x26 + 45x22 + 120x18 + 210x14 + 252x10 + 210x6 +
120x2 + 45x−2 + 10x−6 + x−10 and 1

210 · 0 = 0.

31. Proof. 9n = (1 + 8)n =
∑n
i=0

(
n
i

)
1n−i8i =

∑n
i=0

(
n
i

)
8i. �

33. Proof. 12n = (10 + 2)n =
∑n
i=0

(
n
i

)
10n−i2i. �

35. Proof. 23n = 8n = (5 + 3)n =
∑n
i=0

(
n
i

)
5n−i3i. �

37. Proof. 2n = (3− 1)n =
∑n
i=0

(
n
i

)
3n−i(−1)i =

∑n
i=0(−1)i

(
n
i

)
3n−i. �

39. (a) Proof. 6n = (2+4)n =
∑n
i=0

(
n
i

)
2n−i4i =

∑n
i=0

(
n
i

)
2n−i22i =

∑n
i=0

(
n
i

)
2n+i.

�
(b)

∑n
i=0

(
n
i

)
2i = 3n. Consider (1 + 2)n = 3n.

41. Proof. ( 2
3 )n = (1− 1

3 )n =
∑n
i=0

(
n
i

)
1n−i(− 1

3 )i =
∑n
i=0

(
n
i

)
(−1)i( 1

3 )i =∑n
i=0(−1)i

(
n
i

)
( 1

3 )i. �

43. Proof. Suppose a and b are relatively prime. By Corollary 3.14, we get
ax+ by = 1, for some x, y ∈ Z. So, bnyn = (1− ax)n =
1− nax+

(
n
2

)
a2x2 −

(
n
3

)
a3x3 + · · ·+ (−1)nanxn =

1 + x(−na+
(
n
2

)
a2x−

(
n
3

)
a3x2 + · · ·+ (−1)nanxn−1).

With c = −na+
(
n
2

)
a2x−

(
n
3

)
a3x2 + · · ·+ (−1)nanxn−1, we have bnyn = 1−xc.

That is, cx+ bnyn = 1. By Corollary 3.14, a and bn are relatively prime. �
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Review

1. 8, 64, 320, 1280, 4480.
23
(

3
3

)
= 8,

24
(

4
3

)
= 64,

25
(

5
3

)
= 320,

26
(

6
3

)
= 1280,

27
(

7
3

)
= 4480.

2. 3, 5, 21, 437, 190965.
s1 = 3,
s2 = 32 − 4 = 5,
s3 = 52 − 4 = 21,
s4 = 212 − 4 = 437,
s5 = 4372 − 4 = 190965.

3. ∀ n ≥ 1, sn = n
2n .

Note that these are fractions. The numerators form the sequence 1, 2, 3, 4, 5, . . ..
The denominators are the powers of two 21, 22, 23, 24, 25, . . ..

4. s0 = −6, and ∀ n ≥ 1, sn = sn−1 + 12. This is an arithmetic sequence.
The difference between consecutive terms is always 12.

5. ∀ n ≥ 0, sn = −2(−3)n.
This is a geometric sequence. The multiplying factor is −3.

6. (a) 500(1 + .06
12 )2 = 505.01.

(b) Note that 2 years is 24 months and 500(1 + .06
12 )24 = 563.58.

7. ∀ n ≥ 0, sn = 8 · 2n
(
n+3

3

)
.

Let m = n− 3. So 2n
(
n
3

)
= 2m+3

(
n+3

3

)
= 2m23

(
n+3

3

)
= 8 · 2m

(
m+3

3

)
.

8. s2
k − 4. Let n = k + 1. So sk+1 = s2

(k+1)−1 − 4 = s2
k − 4.

9.
∑n
i=3 3 · 2i−1. The last term suggests that the general term might be 3 · 2i−1.

Note that the first term is 12 = 3 · 23−1.

10. 125250.∑500
i=1 i = 500(501)

2 = 125250.

11. 411−1
3 .∑10

i=0 4i = 410+1−1
4−1 = 411−1

3 .

12. (a)
∑20
i=1 i = 20(21)

2 = 210. (b)
∑20
i=1 i

2 = 20(21)(41)
6 = 2870.
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13. 1010200.
3
∑100
i=1 i

2 −
∑100
i=1 i+

∑100
i=1 2 = 3100(101)(201)

6 − 100(101)
2 + 2(100) = 1010200.

14. n(2n2−9n+13)
6 .∑n

i=1(i2−4i+4) =
∑n
i=1 i

2−4
∑n
i=1 i+

∑n
i=1 4 = n(n+1)(2n+1)

6 −4n(n+1)
2 +4n =

n(2n2−9n+13)
6 .

15. 1−(−2)n+1

3 .
(−2)n+1−1
−2−1 = 1−(−2)n+1

1−(−2) = 1−(−2)n+1

3 .

16. 1 · 3 · 5 · 7 · 9 = 945.

17. (a) s10 = 80000(1.05)12(10) −
∑12(10)−1
i=0 500(1.05)i = 63, 612.07 and s20 =

80000(1.05)12(20) −
∑12(20)−1
i=0 500(1.05)i = 83, 395.81.

(b) We want M(1.005)12(30) = 500
∑359
i=0(1.005)i = 500 1.005360−1

0.005 . So M =
$83,395.81.

18. (a) Let j = i− 5. So
∑198
j=0

2
3j+5 = 2

35

∑198
j=0( 1

3 )j .

(b)
∑198
j=0( 1

3 )j = 2
35

1−( 1
3 )199

1− 1
3

=
1−( 1

3 )199

34 .

19. Proof. Base case: (n = 9). Note that 9! > 49. Inductive step: Suppose
k ≥ 9 and k! > 4k. (Goal: (k+ 1)! > 4k+1.) Observe that (k+ 1)! = (k+ 1)k! >
(k + 1)4k ≥ 4 · 4k = 4k+1. That is, (k + 1)! > 4k+1. �

20. Proof. Base case: (n = 6). Note that 62 > 4(6 + 2). Inductive step:
Suppose k ≥ 6 and k2 > 4(k + 2). (Goal: (k + 1)2 > 4(k + 3).) Observe that
(k+ 1)2 = k2 + 2k+ 1 > 4(k+ 2) + 2k+ 1 = 4k+ 2k+ 9 > 4k+ 12 = 4(k+ 3). �

21. Proof. Base case: (n = 0). Note that 30 ≥ 02 + 1. Inductive step: Suppose
k ≥ 0 and 3k ≥ k2 + 1. (Goal: 3k+1 ≥ (k + 1)2 + 1.) Observe that 3k+1 =
3 · 3k ≥ 3(k2 + 1) = 3k2 + 3 = k2 + (2k2 + 3) ≥ k2 + (2k + 2) = (k + 1)2 + 1. �

22. Proof. Base case: (n = 0). Clearly, 3 | 6. Inductive step: Suppose k ≥ 0
and 3 | (k3 − 4k + 6). So k3 − 4k + 6 = 3c for some c ∈ Z. Observe that
(k + 1)3 − 4(k + 1) + 6 = (k3 − 4k + 6) + (3k2 + 3k − 3) = 3(c + k2 + 3k − 1).
So 3 | ((k + 1)3 − 4(k + 1) + 6). �

23. Proof. Base case: (n = 0). Clearly, 6 | 0. Inductive step: Suppose k ≥ 0
and 6 | (7k − 1). So 7k − 1 = 6c for some c ∈ Z. Observe that 7k+1 − 1 =
7 · 7k − 1 = 6 · 7k + 7k − 1 = 6(7k + c). So 6 | (7k+1 − 1). �

24. Proof. Base case: (n = 0). Clearly, 3 | 0. Inductive step: Suppose k ≥ 0
and 3 | (5k − 2k). So 5k − 2k = 3c for some c ∈ Z. Observe that 5k+1 − 2k+1 =
5 · 5k − 2 · 2k = 3 · 5k + 2(5k − 2k) = 3(5k + 2c). So 3 | (5k+1 − 2k+1). �
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25. (a) s1 = 1.005(0) + 300 = 300,
s2 = 1.005(300) + 300 = 601.50,
s3 = 1.005(601.50) + 300 = 904.51.
(b) Proof. Base case: (n = 0). Note that 0 = 60000(1.0050− 1). Suppose k ≥ 0
and sk = 60000(1.005k − 1). Observe that
sk+1 = 1.005sk + 300 = (1.005)60000(1.005k − 1) + 300 =
60000(1.005k+1)− 60300 + 300 = 60000(1.005k+1 − 1). �

26. Proof. The base case is the Distributive Law. Suppose k ≥ 2 and
a(x1 + · · ·+ xk) = ax1 + · · ·+ axk. Observe that a(x1 + · · ·+ xk + xk+1) =
a((x1 + · · ·+xk) +xk+1) = a(x1 + · · ·+xk) + axk+1 = ax1 + · · ·+ axk + axk+1.
�

27. Proof. Base case: (|S| = 1). If S = {s1}, then min(S) = s1. Inductive step:
Suppose k ≥ 1 and, any set S with |S| = k has a minimal element. (Goal: Any
set S with |S| = k + 1 has a minimal element.) Suppose s1, s2, . . . , sk+1 are
distinct real numbers and S = {s1, s2, . . . , sk+1}. By the induction hypothesis,
the set {s1, s2, . . . , sk} has a minimal element, say sj . Observe that {sj , sk+1}

has a minimal element m =

{
sj if sj < sk+1

sk+1 otherwise.
Note that m is the minimum

element of S. �

28. Proof. Base case: (n = 1). Note that
∑1
i=1( 1

i −
1
i+1 ) = 1

2 = 1 − 1
1+1 .

Inductive step: Suppose k ≥ 1 and
∑k
i=1( 1

i −
1
i+1 ) = 1 − 1

k+1 . Observe that∑k+1
i=1 ( 1

i −
1
i+1 ) =

∑k
i=1( 1

i −
1
i+1 )+( 1

k+1−
1
k+2 ) = 1− 1

k+1 + 1
k+1−

1
k+2 = 1− 1

k+2 .
�

29. We prove ∀ n ≥ 1,
∑n
i=1(3i+ 1) = n

2 (3n+ 5).
Proof. Base case: (n = 1). Note that 4 = 1

2 (3 + 5). Inductive step: Suppose

k ≥ 1 and
∑k
i=1(3i+ 1) = k

2 (3k + 5). Observe that
∑k+1
i=1 (3i+ 1) =∑k

i=1(3i + 1) + (3(k + 1) + 1) = k
2 (3k + 5) + (3k + 4) = k(3k+5)+2(3k+4)

2 =
3k2+11k+8

2 = (k+1)(3k+8)
2 = k+1

2 (3(k + 1) + 5). �

30. Proof. Base case: (n = 1). Note that 31 = 3
2 (31 − 1). Inductive step:

Suppose k ≥ 1 and
∑k
i=1 3i = 3

2 (3k − 1). Now,
∑k+1
i=1 3i =

∑k
i=1 3i + 3k+1 =

3
2 (3k − 1) + 3k+1 = 3(3k−1)+2(3k+1)

2 = 3(3k+1)−3
2 = 3

2 (3k+1 − 1). �

31. Proof. Base case: (n = 0). Note that
∑0
i=0(i + 1)2i = 1 = 0 · 20+1 + 1.

Inductive step: Suppose k ≥ 0 and
∑k
i=0(i + 1)2i = k2k+1 + 1. Observe that∑k+1

i=0 (i+1)2i =
∑k
i=0(i+1)2i + (k+2)2k+1 = k2k+1 + 1 + (k+2)2k+1 =

(2k+2)2k+1 + 1 = (k+1)2k+2 + 1. �
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32. Proof. Base case: (n = 1). Note that 3 + 5 = 1(2)(4). Inductive step:

Suppose k ≥ 1 and
∑k
i=1(3i2 + 5i) = k(k + 1)(k + 3). Now,

∑k+1
i=1 (3i2 + 5i) =∑k

i=1(3i2 +5i)+(3(k+1)2 +5(k+1)) = k(k+1)(k+3)+(k+1)(3(k+1)+5) =
(k + 1)((k + 1) + 1)((k + 1) + 3). �

33. Proof. Base case: (n = 1). Note that
∑1
i=1 i4

i = 4 = 4
9 [4(2) + 1]. Inductive

step: Suppose k ≥ 1 and
∑k
i=1 i4

i = 4
9 [4k(3k − 1) + 1]. Observe that∑k+1

i=1 i4
i =

∑k
i=1 i4

i + (k + 1)4k+1 = 4
9 [4k(3k − 1) + 1] + (k + 1)4k+1 =

4
9 [4k(3k−1)+1+9(k+1)4k] = 4

9 [4k(3k−1+9k+9)+1] = 4
9 [4k(12k+8)+1] =

4
9 [4k+1(3k + 2) + 1]. �

34. Sketch. The case when n = 1 is obvious, and the case when n = 2 is one
of the Laws of Exponents from Appendix A. In the inductive step, we have

b
∑n+1

i=1 ai = b(
∑n

i=1 ai)+an+1 = b(
∑n

i=1 ai)ban+1 = (
∏n
i=1 b

ai)ban+1 =
∏n+1
i=1 b

ai . �

35. Proof. Base cases: (n = 0, 1). Note that 3 | 6 and 3 | 3. Inductive step:
Suppose k ≥ 1 and that, for each 0 ≤ i ≤ k, 3 | si. (Goal: 3 | sk+1.) Since
3 | sk−1 and 3 | sk, we have c, d ∈ Z such that sk−1 = 3c and sk = 3d. Observe
that sk+1 = 2sk−1 + sk = 2(3c) + 3d = 3(2c+ d). Thus, 3 | sk+1. �

36. Proof. Base cases: (n = 0, 1). Note that 3 | 6 and 3 | 3. Inductive step:
Suppose k ≥ 1 and that, for each 0 ≤ i ≤ k, si = 4 · 5i + 3 · 4i. (Goal:
sk+1 = 4 ·5k+1 +3 ·4k+1.) Observe that sk+1 = −20sk−1 +9sk = −20(4 ·5k−1 +
3 ·4k−1)+9(4 ·5k+3 ·4k) = −16 ·5k−14 ·4k+36 ·5k+27 ·4k = 20 ·5k+12 ·4k =
4 · 5k+1 + 3 · 4k+1. �

37. Proof. Base cases: (n = 0, 1). Note that 5 = 21 + 3 · 20 and 16 = 22 + 3 · 22.
Inductive step: Suppose k ≥ 0 and that, for 0 ≤ i ≤ k, si = 2i+1 + 3 · 22i. Now,
sk+1 = 6sk − 8sk−1 = 6(2k+1 + 3 · 22k)− 8(2k + 3 · 22(k−1)) =
3 ·2k+2 + 9 ·22k+1−2 ·2k+2−3 ·22k+1 = 2k+2 + 6 ·22k+1 = 2(k+1)+1 + 3 ·22(k+1).
�

38. (a) Four 3¢ stamps and one 8¢ stamp.
(b) Sketch. 14 = 2(3) + 1(8), 15 = 5(3), and 16 = 2(8). Further, k + 1 =
(k − 2) + 1(3). Therefore, if, for some k ≥ 16, we can obtain (k − 2)¢, then an
additional 3¢ stamp will yield (k + 1)¢. �
Three base cases suffice, since 3¢ is the smallest value for a single stamp.

39. 1001 = 7 · 11 · 13.

40. 78408 = 23 · 34 · 112.

41. 22 · 52 · 72 · 11 · 23 · 43 · 47.(
50
9

)
= 50·49·48·47·46·45·44·43·42

9·8·7·6·5·4·3·2 = 22 · 52 · 72 · 11 · 23 · 43 · 47.
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42. Sketch. Note that 1 = 4 − 3. If k ≥ 1 and
∑k
i=1 Li = Lk+2 − 3, then∑k+1

i=1 Li = (
∑k
i=1 Li) + Lk+1 = (Lk+2 − 3) + Lk+1 = (Lk+1 + Lk+2) − 3 =

Lk+3 − 3. �

43. Proof. Base cases: (n = 0, 1). Note that s0 = 0 = 30(30 − 1) and s1 =
6 = 31(31 − 1). Inductive step: Suppose k ≥ 1 and that, for each 0 ≤ i ≤ k,
si = 3i(3i − 1). (Goal: sk+1 = 3k+1(3k+1 − 1).) Observe that
sk+1 = 3(4sk − 9sk−1) = 3(4[3k(3k − 1)]− 9[3k−1(3k−1 − 1)] =
3·3k−1(4·3(3k−1)−9(3k−1−1)) = 3k(4·3k+1−12−3k+1+9) = 3k(3·3k+1−3) =
3k+1(3k+1 − 1). �

44. x4 + 4x3y + 6x2y2 + 4xy3 + y4.
(x+ y)4 =

(
4
0

)
x4y0 +

(
4
1

)
x3y1 +

(
4
2

)
x2y2 +

(
4
3

)
x1y3 +

(
4
4

)
x0y4 =

x4 + 4x3y + 6x2y2 + 4xy3 + y4.

45. 6561x8−69984x7y+326592x6y2−870912x5y3+1451520x4y4−1548288x3y5+
1032192x2y6 − 393216xy7 + 65536y8.
(3x−4y)8 = (3x+(−4y))8 =

(
8
0

)
(3x)8(−4y)0+

(
8
1

)
(3x)7(−4y)1+

(
8
2

)
(3x)6(−4y)2+(

8
3

)
(3x)5(−4y)3 +

(
8
4

)
(3x)4(−4y)4 +

(
8
5

)
(3x)3(−4y)5 +

(
8
6

)
(3x)2(−4y)6+(

8
7

)
(3x)1(−4y)7+

(
8
8

)
(3x)0(−4y)8 = 6561x8−69984x7y+326592x6y2−870912x5y3+

1451520x4y4 − 1548288x3y5 + 1032192x2y6 − 393216xy7 + 65536y8.

46. x10 − 5x8y2 + 10x6y4 − 10x4y6 + 5x2y8 − y10.
(x2−y2)5 = (x2+(−y2))5 =

(
5
0

)
(x2)5(−y2)0+

(
5
1

)
(x2)4(−y2)1+

(
5
2

)
(x2)3(−y2)2+(

5
3

)
(x2)2(−y2)3 +

(
5
4

)
(x2)1(−y2)4 +

(
5
5

)
(x2)0(−y2)5 =

x10 − 5x8y2 + 10x6y4 − 10x4y6 + 5x2y8 − y10.
Be careful that −y2 does not mean (−y)2.

47.
(

100
10

)
290.

Since (x− 2)10 = (x + (−2))100 = · · ·+
(

100
90

)
x10(−2)90 + · · · , the coefficient of

x10 is
(

100
10

)
(−2)90 =

(
100
10

)
290.

48. −
(

100
25

)
325.

Since (3x−y)100 = (3x+(−y))100 = · · ·+
(

100
75

)
(3x)25(−y)75 +· · · , the coefficient

of x25y75 is
(

100
75

)
325(−1)75 = −

(
100
25

)
325.

49. 0. Since the exponents 30 and 40 do not add up to 80, there will be no
nonzero coefficient of x30y40.

50. Proof. 6n = (1 + 5)n =
∑n
i=0

(
n
i

)
1n−i5i =

∑n
i=0

(
n
i

)
5i. �

51. Proof. 5n = (1 + 4)n =
∑n
i=0

(
n
i

)
1n−i4i =

∑n
i=0

(
n
i

)
4i =

∑n
i=0

(
n
i

)
22i. �

52. Proof. (−1)n = (3− 4)n =
∑n
i=0

(
n
i

)
3n−i(−4)i =

∑n
i=0(−1)i

(
n
i

)
3n−i4i. �
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2.5 Chapter 5

Section 5.1

1. (a) False. 5 - 1.
(b) True. 3 | 6.
(c) False. 2 - 7.

3. (a) True. ∅ ⊆ Z, by Theorem 1.3.
(b) False. 0 6∈ X = P(R), since 0 is not a subset of R.
(c) True. {1, 2} ⊆ R+, since 2 > 1 > 0.

5. True. B ⊇ A if and only if A ⊆ B.

7. False. The y-axis is perpendicular to the x-axis, but the x-axis is not parallel
to the y-axis.

9. (a) No. (b) Brazil, Colombia, Guyana.

A

A = Guinea

B
B = SurinameC

C = Guyana

D

D = Venezuela

E

E = Colombia

F

F = Ecuador

G

G = Peru
H

H = Bolivia
I

I = Chile

J

J = Paraguay

K

K = Argentina

L

L = Uruguay

M

M = Brazil

11. The “is a son of” relation.
That is, B “is a son of” A if and only if A “is the father of” B.

13. ⊇. That is, B ⊇ A if and only if A ⊆ B.

15. ⊥. That is, l2 ⊥ l1 if and only if l1 ⊥ l2.

17. R itself.
That is, y2 + x2 = 1 if and only if x2 + y2 = 1.

19. (a) GameCo. (b) No. (c) Yes.
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21.

t ∅
t {0}
t {1}
t {2}
t {0, 1}
t {0, 2}
t {1, 2}
t {0, 1, 2}

t0
t1
t2
Q
Q
Q
Q
QQs

��
��

��1

�
�
�
�
��3

�
�
�
�
�
�
�
�7

Q
Q
Q
Q
QQs

-�
�
�
�
��3

�
�
�
�
�
��

Q
Q
Q
Q
QQs

-��
��

��1

�
�
�
�
��3

23. t GameCot
MediComp

tNBA Dunkfest tRx Tracker tSkate Rats

-

-

�
�
�
�
��3

25. q
8 q2
q6q4@

@�
�

6-

�

6I�

27.
{1, 2, 3}

{1, 2} {2, 3}

{1} {2}

6
�
��

��*

HH
H
HHY6 6

�
�
�
�
�
��

	

�

R

R

I I

29. 0 3 6 9
0
1
2

 1 0 0 0
1 1 1 1
1 0 1 0


31. ∅ {1} {2} {1, 2}

∅
{1}
{2}
{1, 2}


1 1 1 1
0 1 0 1
0 0 1 1
0 0 0 1


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33.

(a)

x

y
(b)

x

y

We reflect the picture from (a) about the line y = x.

35.

(a)

x

y (b)

x

y

We reflect the picture from (a) about the line y = x.

37 through 53.

Exercise Reflexive Symmetric Antisymmetric Transitive
37 F T F F
39 T T F F
41 F T T T
43 F F T T
45 F F T F
47 T T F T
49 T F F F
51 T F F T
53 T F T T

37. Not reflexive, since 0 6R 0. Symmetric, since 1
x = y implies 1

y = x. Not

antisymmetric, since 1
2 = 1/2 and 1

1/2 = 2, but 2 6= 1/2. Not transitive, since
1
2 = 1/2 and 1

1/2 = 2, but 1
2 6= 2.

39. Reflexive, since a line (being nonempty) always intersects itself. Symmetric,
since l1 intersects l2 implies l2 intersects l1. Not antisymmetric, since the x-axis
and y-axis intersect each other but are not equal to each other. Not transitive,
since y = 0 intersects x = 0, and x = 0 intersects y = 1, but y = 0 and y = 1
are distinct lines.
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41. Not reflexive, since −1 ∈ R but
√
−1 6∈ R. So −1 6R −1 Symmetric, since√

x =
√
y implies

√
y =

√
x. Antisymmetric, since

√
x =

√
y and

√
y =

√
x

implies x = y (and x, y > 0). Transitive, since
√
x =
√
y and

√
y =
√
z implies√

x =
√
z.

43. Not reflexive, since no set is a proper subset of itself. Not symmetric, since
A ⊂ B and B ⊂ A is impossible. Antisymmetric, since A ⊂ B and B ⊂ A
is impossible, and an if-then statement is true when its hypothesis is false.
Transitive, by the same argument as the transitivity of ⊆ (Example 2.14).

45. Not reflexive, since 0+1 6= 0. Not symmetric, since 0+1 = 1 and 1+1 6= 0.
Antisymmetric, since the hypothesis x + 1 = y and y + 1 = x can never hold.
Not transitive, since 0 + 1 = 1 and 1 + 1 = 2, but 0 + 1 6= 2.

47. Reflexive, since a and a are equal. Symmetric, since, if a and b are divisible
by the same primes, then so are b and a. Not antisymmetric, since 2 and 4 are
divisible by the same primes, as are 4 and 2, but 2 6= 4. Transitive, since, if a
and b are divisible by the same primes and so are b and c, then so are a and c.

49. Reflexive, since x ≤ |x|. Not symmetric, since 1 ≤ |2| but 2 6≤ |1|. Not
antisymmetric, since 1 ≤ |− 1| and −1 ≤ |1| but 1 6= −1. Not transitive, as can
be seen for x = 2, y = −2, z = 1.

51. Reflexive, since A ⊆ A∪Z. Not symmetric, since ∅ ⊆ R∪Z but R * ∅ ∪Z.
Not antisymmetric, since ∅ ⊆ Z∪Z and R * ∅∪Z but ∅ 6= Z. Transitive, since,
if A ⊆ B ∪ Z and B ⊆ C ∪ Z, then A ⊆ B ∪ Z ⊆ C ∪ Z ∪ Z = C ∪ Z.

53. Reflexive, since A ⊆ A. Not symmetric, since ∅ ⊆ {1} but {1} * ∅.
Antisymmetric, since A ⊆ B and B ⊆ A implies A = B (see Section 2.3).
Transitive, by Example 2.14.

55. Symmetric.
Two countries must share a border with each other. Counterexamples to the
other properties exist in the South America example in Exercise 9.

57. Proof. (→) Suppose R is symmetric. Since, ∀ x, y ∈ X,x R y ↔ y R x and
x R−1 y ↔ y R−1 x, it follows that R−1 = R. (←) Suppose R−1 = R. Suppose
x, y ∈ R. Since x R y ↔ x R−1 y ↔ y R x, it follows that R is symmetric. �

59. Proof. (→) Suppose R is antisymmetric. Suppose (x, y) ∈ R ∩ R−1. Since
(x, y) ∈ R and (x, y) ∈ R−1, we have x R y and x R−1 y. That is, x R y and
y R x. Hence x = y, and we see that (x, y) = (x, x) ∈ ∆. Thus, R ∩ R−1 ⊆ ∆.
(←) Suppose R ∩ R−1 ⊆ ∆. Suppose x R y and y R x. Hence, x R y and
x R−1 y. So (x, y) ∈ R and (x, y) ∈ R−1. Since (x, y) ∈ R ∩ R−1 ⊆ ∆, we see
that x = y. Thus, R is antisymmetric. �
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Section 5.2

1. Proof.
Reflexive: Let a ∈ Z+. Since a = a · 1, we see that a | a.
That is, a R a.
Antisymmetric: Let a, b ∈ Z+. Suppose a | b and b | a.
By Exercise 17 of Section 3.1, we have a = ±b.
Since a, b > 0, it must be that a = b.
Transitive: Let a, b, c ∈ Z+. Suppose a | b and b | c.
By Example 3.4 of Section 3.1, we have a | c. �

3. Proof. Let x, y, z be arbitrary elements of X.
Reflexive: Since x R x, we have x R−1 x.
Antisymmetric: Suppose x R−1 y and y R−1 x.
That is, y R x and x R y. Hence, x = y.
Transitive: Suppose x R−1 y and y R−1 z.
That is, y R x and z R y.
Thus, z R x, and we have x R−1 z. �

5. Just the one in Exercise 53.
That is the only one of those relations that is reflexive, antisymmetric, and tran-
sitive. See the answers to the odd numbered exercises in Exercises 37 through
54 from Section 5.1

7. No. It is not antisymmetric.
Note that {1, 3} R {1, 2, 3} and {1, 2, 3} R {1, 3}, but {1, 3} 6= {1, 2, 3}.

9. No. It is not reflexive.
Note that Algebra 6R Algebra.

11. Yes. r1 r2
r

4

r
3

�
��� �
���

�
��� �
���

-

6

@
@
@
@

@
@R

13.

{a, b}

{a} {b}

∅
�@

� @
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15.

1
@�

2 3
@� @�

4 6 9
�� ��

8 12 18
� @� @

24 36
� @

72

17. (a) No. (b) O−, O+, A−, A+.

(c)
AB+

A+ AB− B+

A− O+ B−

O−

6
��

��
�*

HH
HH

HY

��
�
��*

��
�
��*

HH
H

HHY

HH
H

HHY6 6

6

H
HH

H
HHY

�
��

�
��*

�
�
�
�
�
��

@
@
@

@
@
@I

@
@
@

@
@
@I

�
�
�
�
�
��

	

R
6

��

R

R R

II

I

(d)
AB+

A+ AB− B+

A− O+ B−

O−

��
��
�

HH
HH

H

��
�
��

��
�
��

HH
H

HH

HH
H
HH

H
HH

H
HH

�
��

�
��

In (a), note that A+ contains the antigen Rh and A− does not. In (b), note
that O−, O+, A−, A+ are the types that contain fewer antigens than A+.

19. Proof. Suppose to the contrary that a Hasse diagram contains a triangle.
Since there can be no horizontal lines, the three elements involved must be at
distinct heights. The line from the lowest element to the highest element follows
from transitivity from the other two lines. This is a contradiction. �

21. b12vitaminC b6vitamin.
Note that 1 < 6. Do not be fooled by the twelve.

23. (2,−3, 1, 0)C (2,−1, 5, 3).
Note that −3 < −1.

25. an−1an−2 · · · a0 < bn−1bn−2 · · · b0 iff
an−12n−1 + an−22n−2 + · · ·+ a0 < bn−12n−1 + bn−22n−2 + · · ·+ b0 iff
an−1 = bn−1, . . . , ak = bk and ak−1 < bk−1.
Regard an−1an−2 · · · a0 and bn−1bn−2 · · · b0 as integers represented in binary.
So we have an−1an−2 · · · a0 < bn−1bn−2 · · · b0 iff
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an−12n−1 + an−22n−2 + · · ·+ a0 < bn−12n−1 + bn−22n−2 + · · ·+ b0. Let k ≥ 1

be the largest index where ak−1 6= bk−1. Since,
∑k−2
i=0 bi2

i < 2k−1, we must
equivalently have an−1 = bn−1, . . . , ak = bk and ak−1 = 0 < 1 = bk−1. This
characterizes the lexicographic ordering.

27. Proof. Let x, y, z ∈ R.
Reflexive: Of course, bxc = bxc.
Symmetric: Suppose bxc = byc. So byc = bxc.
Transitive: Suppose bxc = byc and byc = bzc. Hence, bxc = byc = bzc. �

29. Sketch. Reflexive: m1 − n1 = m1 − n1.
Symmetric: m1 − n1 = m2 − n2 → m2 − n2 = m1 − n1.
Transitive: m1 − n1 = m2 − n2, m2 − n2 = m3 − n3 → m1 − n1 = m2 − n2 =
m3 − n3. �

31. Proof. Let (x1, y1), (x2, y2), (x3, y3) ∈ R2 \ {(0, 0)}.
Reflexive: Since 1x1 = x1 and 1y1 = y1, we have (x1, y1) R (x1, y1).
Symmetric: Suppose (x1, y1) R (x2, y2). So we have c 6= 0 with cx1 = x2 and
cy1 = y2. Hence, 1

cx2 = x1 and 1
cy2 = y1. Thus, (x2, y2) R (x1, y1).

Transitive: Suppose (x1, y1) R (x2, y2) and (x2, y2) R (x3, y3). So we have
c, d 6= 0 such that cx1 = x2, cy1 = y2, dx2 = x3, and dy2 = y3. Since cd 6= 0,
cdx1 = x3, and cdy1 = y3, it follows that (x1, y1) R (x3, y3). �

33. For example, it is not reflexive.
Note that (1, 0) 6R (1, 0) since 1 + 1 6= 0 + 0.

35. Just the one in Exercise 47. That is the only one of those relations that
is reflexive, symmetric, and transitive. See the answers to the odd numbered
exercises in Exercises 37 through 54 from Section 5.1.

37. Proof. Suppose x, y ∈ X and x ∈ [y]. So x R y. Since R is symmetric,
y R x. Thus y ∈ [x]. The converse is handled similarly. �

39. (m1 − n1, 0) if m1 ≥ n1, and (0, n1 −m1) if m1 < n1.
Note that both coordinates must be greater than or equal to zero. If m1 ≥ n1,
then m1−n1 ≥ 0. Also, (m1, n1) R (m1 − n1, 0) since m1−n1 = (m1−n1)−0.

41. ( x1√
x2

1+y2
1

, y1√
x2

1+y2
1

).

Here, we use c = 1√
x2

1+y2
1

. Also, note that

(
x1√
x2

1+y2
1

)2

+

(
y1√
x2

1+y2
1

)2

=

x2
1

x2
1+y2

1
+

y2
1

x2
1+y2

1
= 1.

43. Yes.
Each element of {1, 2, 3, 4, 5, 6} is present in exactly one of the sets Ai.
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45. No.
The element 1 ∈ R+ appears in no set Ai.

47. No.
Halmos is on two subcommittees.

49. Each integer is either odd or even, and not both.
Sketch. Since no integer can be both odd and even, A1 and A2 are disjoint.
Since each integer is either odd or even, A1 ∪A2 = Z. �

51. Proof. (Disjoint) Suppose r1, r2 ∈ Q with r1 6= r2 and Ar1 ∩Ar2 6= ∅. So we
have some (a, b) ∈ Ar1 ∩Ar2 and r1 = a

b = r2, a contradiction. (Union) Suppose
(a, b) ∈ Z× Z∗. Let r = a

b . Then, (a, b) ∈ Ar ⊆
⋃
r∈QAr. �

53. ∀ n ∈ Z, let An = [n, n+ 1).
Recall that bxc = n if and only if n ∈ Z and n ≤ x < n+ 1 (i.e. x ∈ [n, n+ 1)).

55. ∀ b ∈ Z, let Ab = {(m,n) : m,n ∈ N and m− n = b}.
We simply group together elements (m,n) according to the difference m − n
that characterizes the equivalence relation.

57. ∀ m ∈ R, let Am = {(x, y) : y = mx}.
Additionally, let A∞ = {(x, y) : x = 0}.
Notice that, for a fixed point (x1, y1), the set of points of the form (cx1, cy1) lie
on a line through the origin. Hence, each equivalence class corresponds to a line
through the origin. Since the y-axis cannot be described by an equation of the
form y = mx, we need a separate description for that line.

59. (a) {apple}, {eat, ear}, {peace}, {car, call}.
(b) {apple,peace}, {call}, {eat, car, ear}.
(c) {apple, eat,peace, ear}, {car, call}.

61. m R n↔ m− n is even.
Notice that m− n is even precisely when m and n are both even or both odd.

63. (a1, b1) R (a2, b2)↔ a1

b1
= a2

b2
.

That is, we want (a1, b1) and (a2, b2) to be in the same equivalence class precisely
when a1

b1
and a2

b2
are the same rational number.

65. (a) “has the same suffix as” or “has the same file type as.”
(b) “has the same base (or file) name as.”
We are adopting here the usual naming conventions of name.suffix.

67. Theorem: Let X be a set, R be an equivalence relation on X, and A be a
partition of X. Then, A is the partition of X corresponding to R if and only if
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R is the equivalence relation on X corresponding to A.
Proof. (→) Suppose A is the partition of X corresponding to R. Let R′ be the
equivalence relation on X corresponding to A. So, x R′ y if and only if ∃ A ∈ A
such that x, y ∈ A if and only if ∃ z ∈ X such that x, y ∈ [z]R if and only if
∃ z ∈ X such that x R z and y R z if and only if x R y. Hence R = R′. (←)
Suppose R is the equivalence relation on X corresponding to A. So x R y if and
only if ∃ A ∈ A such that x, y ∈ A. Let A′ be the partition of X corresponding
to R. So A′ = {[x]R : x ∈ X}. Suppose A ∈ A. Since A 6= ∅, we have some
y ∈ A. We claim that A = [y]R. (⊆) Suppose x ∈ A. Since x, y ∈ A, we have
x R y. Hence x ∈ [y]R. (⊇) Suppose x ∈ [y]R. So x R y. Hence, we have
some A′ ∈ A with x, y ∈ A′. Since y ∈ A, and A′ and A are either identical or
disjoint, it must be that A′ = A. So x ∈ A. Therefore, A ∈ A′. We have shown
that A ⊆ A′. Since A and A′ are both partitions (each with union X), it must
be that A = A′. �

69. Proof. (⊆) Suppose x ∈
(⋃

A∈A1
A
)
∪
(⋃

A∈A2
A
)
. In the case that x ∈⋃

A∈A1
A, we have x ∈ A1 for some A1 ∈ A1. Since A1 ∈ A1 ∪ A2, we have

x ∈
⋃
A∈A1∪A2

A. The case in which x ∈
⋃
A∈A2

A is handled similarly. (⊇)
Suppose x ∈

⋃
A∈A1∪A2

A. So x ∈ A0 for some A0 ∈ A1 ∪A2. If A0 ∈ A1, then

x ∈
⋃
A∈A1

A. If A0 ∈ A2, then x ∈
⋃
A∈A2

A. In any case, x ∈
(⋃

A∈A1
A
)
∪(⋃

A∈A2
A
)
. �

Section 5.3

1. No. The range can be a proper subset of the codomain.

3. It is not. f(0) = 1
2 6∈ Z+.

5. It is not. ±
√
x does not specify a unique output value.

7. (a) It is not, since f(1) = 1
2 6∈ Z.

(b) It is. If n ∈ Z, then 2n ∈ Z.

9. It is. ∀ n ∈ Z, 2n− 1 6= 0.

11. (a) It is not. 1
1 = 2

2 , but f( 1
1 ) = 1 6= 2 = f( 2

2 ).
(b) It is not. See part (a).

(c) It is. If m′

n′ = m
n then, m′ = 0 iff m = 0, and n′

m′ = n
m when m′,m 6= 0.

13. (a) It is not. [0]5 = [5]5 but [0]10 6= [5]10.
(b) It is. If [a′]5 = [a]5 then 5 | (a′ − a), and hence 10 | (2a′ − 2a). So
[2a′]10 = [2a]10.

15. Yes.
It is a constant function.
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17. Domain = {−3,−2, . . . , 3} and range = {0, 1, 4, 9}.
Note that {f(−3), f(−2), f(−1), f(0), f(1), f(2), f(3)} = {9, 4, 1, 0, 1, 4, 9} =
{0, 1, 4, 9}.

19. Domain = {0, 1, . . . , 4} and range = {1, 2, 4, 8, 16}.
Note that {f(0), f(1), f(2), f(3), f(4)} = {20, 21, 22, 23, 24} = {1, 2, 4, 8, 16}.

21. Domain = R and range = [−1,∞).

x

y

-1

23. Domain = [1,∞) and range = [0,∞).

x

y

-1

25. Domain = R \ {−1} and range = R \ {0}.

x

y

-1

27. f(0) = f(4) = 4, f(1) = f(3) = 1, f(2) = 0, f(5) = 9, f(6) = 16.
That is, {y : f(x) = y for some x ∈ {0, 1, 2, 3, 4, 5, 6}} =
{f(0), f(1), f(2), f(3), f(4), f(5), f(6)} = {4, 1, 0, 1, 4, 9, 16} = {0, 1, 4, 9, 16}.
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29. Sketch. 0 ≤ x ≤ 2 iff 0 ≤ 3x ≤ 6 iff −2 ≤ 3x− 2 ≤ 4. �
That is, x ∈ [0, 2] = domain(f) if and only if f(x) = 3x− 2 ∈ [−2, 4].

31. Proof. Suppose x ∈ [0, 2]. So 0 ≤ x ≤ 2. Hence 0 ≤ x2 ≤ 4. That is,
x2 ∈ [0, 4]. Now suppose y ∈ [0, 4]. Let x =

√
y. Observe that 0 ≤ x ≤ 2 and

f(x) = (
√
y)2 = y. �

33. (g ◦ f)(n) = g(f(n)) = g(n!) = (n!)2.

35. (g ◦ f)(x) = g(f(x)) = g(1 + 3x) = 1− 3(1 + 3x) = −2− 9x.

37. (g ◦ f)(x) = 1
|x| .

g◦f : R\{0} −→ [0,∞) is defined by (g◦f)(x) = g(f(x)) = g( 1
x2 ) =

√
1
x2 = 1

|x| .

39. (a) Yes, they both toggle the bit from the value it has to the only other
possible value.
(b) 4. The constant 0, the constant 1, the identity, and the toggle map (0 7→ 1
and 1 7→ 0).

41. The “is the grandfather of” relation.
That is, the father of the father is the grandfather.

43. (a) Proof. (→) Suppose R is transitive and suppose x (R ◦R) z. So, there
is some y such that x R y and y R z. By transitivity, x R z. Hence, R ◦R ⊆ R.
(←) Suppose R◦R ⊆ R and x R y and y R z. Since x (R ◦R) z and R◦R ⊆ R,
it follows that x R z. Hence, R is transitive. �
(b) Proof. Suppose R is reflexive and transitive, and suppose x R y. Since x R x
and x R y, it follows that x (R ◦R) y. Thus, R ⊆ R ◦ R. Part (a) finishes the
job. �

45. (a) No.
(b) Artist Music Company

MandM Aristotle Records
Fifty Percent Bald Boy Records
MandM Bald Boy Records
M.C. Escher Aristotle Records

(c) Aristotle Records and Bald Boy Records.

47. (a) Programmer Client
Martha Lang GameCo
Megan Johnson MediComp
Charles Murphy GameCo

(b) Only GameCo.
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49. (a)

x

y

1

(b) Yes. Domain = R. (c) Range = (−∞, 1].

51. (a)

x

y

&%
'$

(b) No. (c) None.

53.(a)

x

y

(b) No. (c) None.

55. The relation is a function iff each row has at most one 1.
If some row x were to have two or more 1’s in it, then that x would relate to
two or more values, and so the relation would not be a function.

57. (a) ∀ x ∈ R, ((f + g) ◦ h)(x) = (f + g)(h(x)) = f(h(x)) + g(h(x)) =
(f ◦ h)(x) + (g ◦ h)(x) = (f ◦ h + g ◦ h)(x). (b) Define f(x) = x2 and g(x) =
h(x) = 1.
So (f ◦(g+h))(1) = f((g+h)(1)) = f(2) = 4, and f(g(1))+f(h(1)) = 1+1 = 2.

59. (a) ∀ x ∈ R, (c(f ◦ g))(x) = c((f ◦ g)(x)) = c(f(g(x))) = (cf)(g(x)) =
((cf) ◦ g)(x).
(b) Let c = 2, f(x) = x, and g(x) = 1.
In this case, (f ◦ (cg))(x) = 4 and (c(f ◦ g))(x) = 2.
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61. Yes.
Any constant function has this property. Also, f(x) = |x|.

Section 5.4

1. Proof. Suppose x3
1 + 8 = x3

2 + 8. So x3
1 = x3

2. Taking the cube root of both
sides gives that x1 = x2. �

3. Proof. Suppose n1, n2 ∈ Z− and 1 − n2
1 = 1 − n2

2. So n2
1 = n2

2. Since
n1, n2 ∈ Z−, we have n1 = n2. �

5. f(0) = f(1), but 0 6= 1.

7. Proof. Suppose y ∈ (1,∞). (Goal: y = x2 + 1.) Let x =
√
y − 1. Observe

that f(x) = (
√
y − 1)2 + 1 = y − 1 + 1 = y. �

9. Proof. Observe that 1
2 ∈ R+. However, f(x) = 1

2 is impossible, since x2 = − 1
2

has no solution in R. �

11. Sketch. Suppose y ∈ R+. Let x = −1+
√

1+4y
2 . Observe that x ∈ R+ and

x2 + x = y. �

13. (a) Let k ∈ Z. Observe that f(k, 1) = k.
(b) f(2, 1) = 2 = f(1, 2) but (2, 1) 6= (1, 2).

15. Proof. Suppose x1, x2 ∈ R and f(x1) = f(x2). Suppose to the contrary
that x1 6= x2. We may assume that x1 < x2. However, since f is increasing,
f(x1) < f(x2). This is a contradiction. �

17. (a) Suppose [n′] = [n]. Since n′ ≡ n (mod 6),we have 6 | (n′ − n). So
6 | (2n′ − 2n). That is, 2n′ ≡ 2n (mod 6). Hence, [2n′] = [2n].
(b) f([0]) = [0] = f([3]), but [0] 6= [3].
(c) It is not the case that gcd(2, 6) = 1 (as would be needed of a = 2 and n = 6
in Lemma 3.30).

19. (a) 1600081160 mod 625 = 535.
(b) 0000000003216 and 0000000009461.
Note that 321 mod 625 = 946 mod 625 = 321. Also [3(3 + 1) + 2 + 6] mod 10 =
[3(9 + 6) + 4 + 1] mod 10 = 0.

21. (a) Suppose x ∈ X. Observe that p(x, y0) = x. So x ∈ range(p).
(b) Suppose x1, x2 ∈ X and i(x1) = i(x2). So (x1, y0) = (x2, y0). Thus, x1 = x2.
(c) ∀ x ∈ X, (p ◦ i)(x) = p(i(x)) = p(x, y0) = x.
(d) ∀ x ∈ X, y ∈ Y, (i ◦ p)(x, y) = i(p(x, y)) = i(x) = (x, y0).
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23. Suppose i(a1) = i(a2). Then a1 = a2. That is, a1 = i(a1) = i(a2) = a2.

25. Proof. Suppose B ∈ P([0, 1]). That is, B ⊆ [0, 1]. Observe that B ⊆ R (so
B ∈ P(R)) and f(B) = B. �

27. f and g are onto. f and g are not one-to-one.
Note that f((A,A)) = g((A,A)) = A. Also, f(({0}, ∅)) = ∅ = f((∅, ∅)) and
g(({0}, ∅)) = {0} = g(({0}, {0}))

29. One-to-one.
Two guests cannot share a seat, and all the seats need not be filled.

31. Lemma: Let f : X −→ Y be any function. Then, f ◦ idX = f and
idY ◦ f = f .
∀ x ∈ X, (f ◦ idX)(x) = f(idX(x)) = f(x)
and (idX ◦ f)(x) = idX(f(x)) = f(x).

33. Since Exercise 1 established that f is one-to-one, it remains to show that
f is onto. Suppose y ∈ R. Observe that (y − 8)

1
3 ∈ R and f((y − 8)

1
3 ) =

((y − 8)
1
3 )3 + 8 = y − 8 + 8 = y.

35. Sketch. −2 7→ 0, −1 7→ 2, 0 7→ 4, 1 7→ 6, 2 7→ 8. �
Observe that all elements of the codomain are in the range. So f is onto. It is
also clear that, if k1 6= k2, then f(k1) 6= f(k2). So f is one-to-one.

37. Proof. (Onto) Let j ∈ Z with −n ≤ j ≤ n. Hence 1 ≤ j + 1 + n ≤ 2n + 1
and f(j + 1 + n) = j. So j ∈ range(f). (One-to-one) Suppose f(k1) = f(k2).
Since k1 − 1− n = k2 − 1− n, we have k1 = k2. So f is one-to-one. �

39. (a) Suppose [k′] = [k]. So [mk′] = [mk] and [m + k′] = [m + k]. That is,
mk′ ≡ mk (mod n) and m+ k′ ≡ m+ k (mod n), by Theorem 3.26.
(b) Proof. (→) Suppose f is a bijection. Since f is onto, there is some k ∈ Z
such that f([k]) = [1]. That is, [1] = [mk]. Since 1 ≡ mk (mod n), there is
j ∈ Z such that nj = 1 +mk. Since km+ jn = 1, it follows from Corollary 3.14
that gcd(m, k) = 1. (←) Suppose gcd(m, k) = 1. So there are j, k ∈ Z such that
mk+nj = 1. That is, f([k]) = [mk] = [1]. Hence, for each y ∈ Z, f([ky]) = [y].
Thus f is onto. Now suppose f([k1]) = f([k2]). So [mk1] = [mk2]. That
is, mk1 ≡ mk2 (mod n). By the Modular Cancellation Rule (Lemma 3.30),
k1 ≡ k2 (mod n). That is, [k1] ≡ [k2]. So f is one-to-one. �
(c) For any choice of m, the function g is a bijection.

41. If every column contains at most one 1, then f is one-to-one.
Each column represents a possible output value y. If there are two 1’s in a
column y, then two input values are mapped to y and f is not one-to-one.
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43. Theorem: Suppose f : X −→ Y and g : Y −→ Z.
(a) If f and g are one-to-one, then g ◦ f is one-to-one.
(b) If f and g are onto, then g ◦ f is onto.
(c) If f and g are bijective, then g ◦ f is bijective.
Proof of (b). Proof. Suppose f and g are onto. Suppose z ∈ Z. We have
y ∈ Y such that g(y) = z. We have x ∈ X such that f(x) = y. That is,
(g ◦ f)(x) = g(f(x)) = g(y) = z. Thus g ◦ f is onto. �
Proof for (c). Proof. Suppose f and g are bijective. Since f and g are one-to-
one, g ◦ f is one-to-one, by (a). Since f and g are onto, g ◦ f is onto, by (b).
Hence, g ◦ f is bijective. �

45. Proof. (→) Suppose f is symmetric and x ∈ X. Let f(x) = y. Since x f y,
it follows that y f x. That is f(y) = x. Now, (f ◦ f)(x) = f(f(x)) = f(y) = x.
Thus f ◦ f = idX . (←) Suppose f ◦ f = idX and x f y. That is, f(x) = y.
Observe that x = (f ◦ f)(x) = f(f(x)) = f(y). Hence y f x. Thus f is
symmetric. �

47. (a) Proof. Suppose x1, x2 ∈ X and f(x1) = f(x2). Thus, (g ◦ f)(x1) =
g(f(x1)) = g(f(x2)) = (g ◦ f)(x2). Since g ◦ f is one-to-one, it follows that
x1 = x2. So f is one-to-one. �
(b) X = Y = Z = (0,∞), f(x) = 1 +

√
x, g(x) = (x− 1)2.

Note that (g ◦ f)(x) = g(1 +
√
x) = (1 +

√
x− 1)2 = x. It follows that g ◦ f is

one-to-one. However, g(2) = g(0). So g is not one-to-one.

49. (a) Since g ◦ f is one-to-one, the result follows from Exercise 47(a).
(b) Since g ◦ f is onto, the result follows from Exercise 48(a).
(c) For X = Y = Z = [0,∞), f(x) = 1 +

√
x is not onto (since 0 6∈ range(f))

and g(x) = (x− 1)2 is not one-to-one (since g(2) = g(0)).

51. (a) Proof. Suppose f and g are increasing. Suppose x < y. Since f is
increasing f(x) < f(y). Since g is increasing, g(f(x)) < g(f(y)). Hence g ◦ f is
increasing. �
(b) f(x) = g(x) = −x gives (g ◦ f)(x) = x. Both f and g are decreasing here.

53. ∀ x ∈ R, g(f(x)) = g(2x + 5) = 2x+5−5
2 = x and f(g(x)) = f(x−5

2 ) =
2(x−5

2 ) + 5 = x.
That is, g ◦ f = idR and f ◦ g = idR.

55. ∀ x ∈ R, g(f(x)) = g(4 − 2x) = 2 − 1
2 (4 − 2x) = 2 − 2 + x = x and

f(g(x)) = f(2− 1
2x) = 4− 2(2− 1

2x) = 4− 4 + x = x.
That is, g ◦ f = idR and f ◦ g = idR.

57. g(f(2)) = g(1) = 2,
g(f(3)) = g(3) = 3,
g(f(4)) = g(6) = 4, and
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g(f(5)) = g(10) = 5.
One similarly shows that g ◦ f = id.
For a small domain (and codomain), it is reasonable to directly check every
possible input value. In fact, the formulas given for f and g are too awkward
to deal with generally here.

59. ∀ r ∈ Q+, (f ◦ f)(r) = f( 1
r ) = 1

1
r

= r.

That is, f ◦ f = idR (and f ◦ f = idR).

61. f−1(x) = 3

√
x−1

4 .

Let y = 4x3 + 1. So 4x3 = y − 1. So x3 = y−1
4 . So x = 3

√
y−1

4 . Thus,

f−1(y) = 3

√
y−1

4 .

63.
Phone Number Name

555-3148 Blair, Tina
555-3992 Walsh, Carol
555-4500 Tillman, Paul
555-6301 Jennings, Robert

The function need not be one-to-one and need not be onto.
The function would not be one-to-one, if two people from one household are
both listed with the same phone number. It is unlikely that the function is
onto, since there would then be no room for new phone numbers.

65. Proof. Suppose f : X −→ Y is a bijection. By Theorem 5.10(a), f−1 is
a function. Also, f and f−1 and f are inverses of one another. By Theo-
rem 5.10(b) (applied to g = f), f−1 is a bijection. �

67. (a) Proof. Suppose f1 and f2 are one-to-one. Suppose that (f1×f2)((x′1, x
′
2)) =

(f1 × f2)((x1, x2)). Since (f1(x′1), f2(x′2)) = (f1(x1), f2(x2)), we have f1(x′1) =
f1(x1) and f2(x′2) = f2(x2). Thus, x′1 = x1 and x′2 = x2. That is, (x′1, x

′
2) =

(x1, x2). �
(b) Proof. Suppose f1 and f2 are onto. Suppose (y1, y2) ∈ Y1 × Y2. We have
x1 ∈ X1 such that f1(x1) = y1 and x2 ∈ X2 such that f2(x2) = y2. That is,
(f1 × f2)((x1, x2)) = (f1(x1), f2(x2)) = (y1, y2). �
(c) Proof. Suppose f1 and f2 are bijective. Since f1 and f2 are one-to-one,
f1 × f2 is one-to-one, by part (a). Since f1 and f2 are onto, f1 × f2 is onto, by
part (b). Thus, f1 × f2 is bijective. �

69. (a) On the following picture of N×N, at each point (m,n), we plot the value
of f((m,n)). Indeed, compute several specific values of f((m,n)) to confirm this
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pattern. Note that each point (m,n) is assigned a unique value from N.

-m

6

n

0 1 3 6

2 4 7

5 8

9

(b) Sketch. ∀ m ∈ N, g(m + 1) = m. So g is onto. If n1 − 1 = n2 − 1, then
n1 = n2. So g is one-to-one. �
(c) This follows from part (b) and Exercise 67(c). That is, since g and g are
bijective, so is g × g.
(d) This follows from part (c), part (a), Exercise 65, and Theorem 5.9(c). Since
g is bijective, so is g−1. Since g × g and f are bijective, so is f ◦ (g × g). Since
f ◦ (g × g) and g−1 are bijective, so is g−1 ◦ f ◦ (g × g).

71. (a) −2, since 2−2 = 1
4 . (b) 4, since 34 = 81.

(c) 1
4 , since 16

1
4 = 4
√

16 = 2. (d) −1, e−1 = 1
3 . Recall that ln has base e.

73. log2 3. Let T be the tripling time. So a2T = p(T ) = 3p(0) = 3a. Since
2T = 3, it follows that T = log2 3.

75. (a) Since b0 = 1. (b) Since blogb y+logb z = blogb yblogb z = yz.
(c) Since ba logb y = (blogb y)a = ya.
In each case, we simply use the characterization of logarithms given in Equa-
tion (5.4) and the basic Laws of Exponents from Appendix A.

77. If a, b ∈ Z+ and 2a = 2b, then the Fundamental Theorem of Arithmetic tells
us that a = b. That is, if f(a) = f(b), then a = b. So f is one-to-one.

Section 5.5

1. (a) f({0, 1, 2, 3}) = {f(0), f(1), f(2), f(3)} = {1, 1, 2, 6} = {1, 2, 6}.
(b) No. f({3}) = {6}. The image of a set is a set.

3. {10,−5,−6,−5} = {−6,−5, 10}.

5. f([−2, 2]) = [−3, 5].
f([−2, 2]) = {t : t ∈ R and f(s) = t for some s ∈ [−2, 2]} =
{t : t ∈ R and 2s+ 1 = t for some − 2 ≤ s ≤ 2} =
{t : t ∈ R and s = t−1

2 for some− 2 ≤ s ≤ 2} = {t : t ∈ R and− 2 ≤ t−1
2 ≤ 2} =

{t : t ∈ R and − 4 ≤ t− 1 ≤ 4} = {t : t ∈ R and − 3 ≤ t ≤ 5} = [−3, 5].
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7. f([1, 3]) = [2, 10].
Proof. (⊆) Suppose t ∈ f([1, 3]). So s2 + 1 = t for some 1 ≤ s ≤ 3. So
2 = 12 + 1 ≤ t ≤ 32 + 1 = 10. That is, t ∈ [2, 10]. (⊇) Suppose t ∈ [2, 10].
So 2 ≤ t ≤ 10. Hence, 1 ≤ t − 1 ≤ 9. Thus, 1 ≤

√
t− 1 ≤ 3. Observe that

(
√
t− 1)2 + 1 = t and 1 ≤

√
t− 1 ≤ 3. Therefore, t ∈ f([1, 3]). �

9. Proof. (⊆) Suppose z ∈ g(range(f)). So we have y ∈ range(f) such that
g(y) = z. We must also have x ∈ X such that f(x) = y. Since z = g(y) =
g(f(x)) = (g ◦f)(x), we see that z ∈ range(g ◦f). (⊇) Suppose z ∈ range(g ◦f).
So we have x ∈ X such that (g ◦ f)(x) = z. Let y = f(x). So y ∈ range(f).
Since z = g(f(x)) = g(y), we see that z ∈ g(range(f)). �

11. (a) {0, 1, 2, 4}, since f(0) = f(1) = 1, f(2) = 2, and f(4).
(b) {3}, since f(3) = 6 and there is no value n such that f(n) = 10.
(c) No. f−1({120}) = {5}. The inverse image of a set is a set.

13. {−2,−1, 1, 2}. The set of x for which x4 − 6 = −5 or 10.
That is, x4 = 1 or 16.

15. f−1({−1}) = O, the set of odd integers.
If n is even, then f(n) = 1. If n is odd, then f(n) = −1. Thus, f(n) = −1 iff n
is odd.

17. The set of relatively prime pairs of positive integers.
Recall that m and n are relatively prime if and only if gcd(m,n) = 1.

19. f−1([1, 4]) = [−2,−1] ∪ [1, 2].
Proof. (⊇) Suppose x ∈ [−2,−1] ∪ [1, 2]. So −2 ≤ x ≤ −1 or 1 ≤ x ≤ 2.
Equivalently, 1 ≤ −x ≤ 2 or 1 ≤ x ≤ 2. Since (−x)2 = x2, in either case we
have x2 ∈ [1, 4]. (⊆) We prove the contrapositive. Suppose x 6∈ [−2,−1]∪ [1, 2].
So x ∈ (−∞,−2) ∪ (−1, 1) ∪ (2,∞). By considering each possible case, we see
that x2 ∈ [0, 1) ∪ (4,∞). That is, f(x) = x2 6∈ [1, 4]. Hence, x 6∈ f−1([1, 4]). �

21. Proof. (⊆) Suppose (x, y) ∈ f(R). So, we have some z ∈ R such that
(x, y) = f(z) = (z, z). Thus, y = z = x. Hence, g(x, y) = x− y = 0, and we see
that (x, y) ∈ g−1({0}). (⊇) Suppose (x, y) ∈ g−1({0}). Since x−y = g(x, y) = 0,
we get y = x. Thus, f(x) = (x, x) = (x, y). That is, (x, y) ∈ f(R). �

23. (a) Eagles and Huskies. Image.
(b) KSU, Northwestern, UNH, and Villanova. Inverse Image.
The function given by the table maps colleges to nicknames.

25. (a) The set E of even integers,
since R({2}) = {n : 2 R n} = {n : 2 | n} = E.
(b) {3, 5, 7}, since 3, 5, and 7 are the primes p such that p | 15 or p | 35.
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27. (a) {0}, {1}, and {0, 1}. Of course, each of these sets contains 0 or 1 as an
element. R({0, 1}) = {A : A ⊂ Z, A∩{0, 1} 6= ∅} is the set of sets that contain
0 or 1 as an element. (b) {0, 1, 2, 3, 4, 6}. An integer n is in this set if and only
if n ∈ {0, 1, 2, 3, } or n ∈ {0, 2, 4, 6}.

29. (a) No. Two customers ordered a wrench. (b) A wrench and pliers. Inverse
image. (c) Susan Brower and Abe Roth. Image. The function given by the
table maps parts to customers.

31. (a) Proof. Suppose S1 ⊆ S2. Now suppose y ∈ f(S1). So y = f(x) for some
x ∈ S1. Since S1 ⊆ S2, we have x ∈ S2 and f(x) = y. Thus y ∈ f(S2). �
(b) Proof. Suppose T1 ⊆ T2. Now suppose x ∈ f−1(T1). So f(x) ∈ T1. Since
T1 ⊆ T2, we have f(x) ∈ T2. Thus x ∈ f−1(T2). �

33. (a) (⊇) By the definition of f−1(Y ), we have f−1(Y ) ⊆ X. (⊆) Suppose
x ∈ X. Since f(x) ∈ Y , we have x ∈ f−1(Y ).
(b) Since Y is the codomain, this follows from the definition of f(X).
(c) Let X = Y = R and f(x) = x2. So f(X) = [0,∞) 6= Y .

35. (a) Sketch. (⊆) Suppose x ∈ f−1(T1 ∪ T2). So f(x) ∈ T1 ∪ T2. For i = 1, 2,
if f(x) ∈ Ti, then x ∈ f−1(Ti). Hence, x ∈ f−1(T1)∪ f−1(T2). (⊇) By Exercise
31(b), for i = 1, 2, f−1(Ti) ⊆ f−1(T1 ∪ T2). Hence, f−1(T1) ∪ f−1(T2) ⊆
f−1(T1 ∪ T2). �
(b) Sketch. By Exercise 31(b), for i = 1, 2, f−1(T1∩T2) ⊆ f−1(Ti). So f−1(T1∩
T2) ⊆ f−1(T1) ∩ f−1(T2). Now suppose x ∈ f−1(T1) ∩ f−1(T2). So for i = 1, 2,
f(x) ∈ Ti. Since f(x) ∈ T1 ∩ T2, x ∈ f−1(T1 ∩ T2). �
The proofs here rest mainly on the definition of the inverse image of a set.
However, some work is saved by appealing to the result in Exercise 31(b).

37. (a) Proof. Suppose x ∈ S ∩ f−1(T ). Since x ∈ S, f(x) ∈ f(S). Since
x ∈ f−1(T ), f(x) ∈ T . Hence, f(x) ∈ f(S) ∩ T . �
(b) Proof. Suppose x ∈ S ∩ f−1(T ). So f(x) ∈ f(S ∩ f−1(T )). By part (a),
f(x) ∈ f(S) ∩ T . Hence, x ∈ f−1(f(S) ∩ T ). �

39. (a) Proof. (→) Suppose f is one-to-one. Suppose F (A1) = F (A2). So
f(A1) = f(A2). We claim that A1 = A2. Suppose x ∈ A1. So f(x) ∈ f(A1) =
f(A2). Hence f(x) = f(x′) for some x′ ∈ A2. Since f is one-to-one, x = x′ ∈ A2.
Thus A1 ⊆ A2, and a symmetric argument gives that A2 ⊆ A1. Therefore, F
is one-to-one. (←) Suppose F is one-to-one. Suppose f(x1) = f(x2). Since
F ({x1}) = f({x1}) = f({x2}) = F ({x2}), it follows that {x1} = {x2} and
hence x1 = x2. Therefore, f is one-to-one. �
(b) Proof. (→) Suppose f is onto. Let B ∈ P(Y ), and let A = f−1(B). Since f
is onto, F (A) = f(A) = B. Thus F is onto. (←) Suppose F is onto. Let y ∈ Y .
We have some A ⊆ X such that f(A) = F (A) = {y}. Note that we must have
A 6= ∅. Pick x ∈ A. Then f(x) = y. Thus f is onto. �
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41. {0}.
Note that 0 is in every interval (−r2, r2). For any other value x ∈ R \ {0}, we
have x 6∈ (−(

√
x)2, (

√
x)2).

43. [1,∞). Note that 1 is the smallest element of Z+.
For any x ∈ [1,∞), we have x ∈ [bxc, bxc+ 2).

45. [0, 1].
Note that [0, 1] is one of the sets and ∀ n ∈ Z+, [0, 1] ⊆ [0, n].

47.
⋃
x∈[3,4)Ax.

49.
⋂
α is a vowelAα.

51. Sketch. (⊆) Suppose y ∈ f(
⋃
i∈I

Ai). So y = f(x) for some x ∈ Ai for some

i ∈ I. Note y ∈ f(Ai). (⊇) Suppose y ∈
⋃
i∈I

f(Ai). So for some i ∈ I, y = f(x)

for some x ∈ Ai. Note Ai ∈
⋃
i∈I

Ai. �

53. Sketch. (⊆) Suppose x ∈ f−1(
⋂
i∈I

Ai). So f(x) ∈ Ai for each i ∈ I. So

x ∈ f−1(Ai) for each i ∈ I. (⊇) Suppose x ∈
⋂
i∈I

f−1(Ai). So, for each i ∈ I,

x ∈ f−1(Ai). So f(x) ∈ Ai for each i ∈ I. �

55. (a) Sketch. Suppose x ∈
⋃
i∈J Ai. So x ∈ Ai0 for some i0 ∈ J ⊆ I.

Thus, x ∈
⋃
i∈I

Ai. �(b) Sketch. Suppose x ∈
⋂
i∈I

Ai. Since J ⊆ I, in particular,

∀ i ∈ J , x ∈ Ai. Thus, x ∈
⋂
i∈J

Ai. �

These are generalizations of the proofs that A ⊆ A ∪ B and A ∩ B ⊆ A. In
Section 2.2, see Exercise 35 and Example 2.13.

57. (a) Proof. (⊆) Suppose x ∈ B ∪
⋂
i∈I

Ai. If x ∈ B, then, ∀ i ∈ I, x ∈ B ∪Ai.

So x ∈
⋂
i∈I

(B ∪Ai). If x ∈
⋂
i∈I

Ai, then ∀ i ∈ I, x ∈ Ai ⊆ B ∪ Ai. So

x ∈
⋂
i∈I

(B ∪Ai). (⊇) Suppose x ∈
⋂
i∈I

(B ∪Ai). So, ∀ i ∈ I, x ∈ B ∪ Ai. If

x 6∈ B, then it must be that, ∀ i ∈ I, x ∈ Ai. So x ∈
⋂
i∈I

Ai. In any case,

x ∈ B ∪
⋂
i∈I

Ai. �
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(b) Proof. (⊆) Suppose x ∈ B ∩
⋃
i∈I

Ai. So x ∈ B and x ∈ Ai0 for some i0 ∈ I.

Thus x ∈ B ∩Ai0 ⊆
⋃
i∈I

(B ∩Ai). (⊇) Suppose x ∈
⋃
i∈I

(B ∩Ai). So x ∈ B ∩Ai0

for some i0 ∈ I. Hence, x ∈ B and x ∈ Ai0 ⊆
⋃
i∈I

Ai. Thus x ∈ B ∩
⋃
i∈I

Ai. �

59. It follows from Exercise 57(b) that

(
⋃
i∈I

Ai) \B = (
⋃
i∈I

Ai) ∩Bc =
⋃
i∈I

(Ai ∩Bc) =
⋃
i∈I

(Ai \B).

61. Yes.
Use Exercises 33(a), 53, and 52.

Section 5.6

1. 76.
Note that 10− (−65) + 1 = 76.

3. 3.
Note that {

(
4
0

)
,
(

4
1

)
,
(

4
2

)
,
(

4
3

)
,
(

4
4

)
} = {1, 4, 6, 4, 1} = {1, 4, 6}.

5. 3.
The set is {0, 2,−2}.

7. 4.
The set of clients is GameCo, MediComp, HealthCorp, PlayBox.

9. The function f : {0, 1, . . . , n} −→ {1, 2, . . . , n+ 1} given by f(k) = k+ 1 is a
bijection.
It has inverse g : {1, 2, . . . , n+ 1} −→ {0, 1, . . . , n} given by g(k) = k − 1.

11. The function f : {n2, n2 + 1, . . . , (n + 1)2} −→ {1, 2, . . . , 2n + 1} given by
f(k) = k − n2 + 1 is a bijection.
It has inverse g : {1, 2, . . . , 2n + 1} −→ {n2, n2 + 1, . . . , (n + 1)2} given by
g(k) = k + n2 − 1.

13. The function f : N −→ Z− given by f(n) = −n− 1 is a bijection.
It has inverse g : Z− −→ N given by g(n) = −n− 1.

15. The function f : Z+ −→ {k2 : k ∈ Z+} given by f(m) = m2 is a bijection.
It has inverse g : {k2 : k ∈ Z+} −→ Z+ given by g(m) =

√
m. Note that√

m ∈ Z+ for all m ∈ {k2 : k ∈ Z+}.

17. The function f(x) = 2(x− 3) + 1 is a bijection from [3, 8] to [1, 11].
It has inverse given by g(x) = 1

2 (x− 1) + 3.
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19. For (a), (b), and (c), the function given by f(x) = x−a
b−a is a bijection.

It has inverse given by g(x) = (b− a)x+ a.

21. f(x) = b−x
b−a gives a bijection.

It has inverse given by g(x) = (a− b)x+ b.

23. For (a) and (b), f(x) = x−a
b−x gives a bijection.

It has inverse given by g(x) = bx+a
x+1 .

25. f(x) =

{
x−a

2(b−a) if x ∈ [a, b),
1
2 + x−c

2(d−c) if x ∈ [c, d)
gives a bijection.

It has inverse given by g(x) =

{
2(b− a)x+ a if x ∈ [0, 1

2 ),
1
2 + 2(d− c)(x− 1

2 ) + c if x ∈ [ 1
2 , 1).

27. Theorem: If A has the same cardinality as B, then B has the same cardi-
nality as A.
Proof. Suppose A has the same cardinality as B. So we have a bijection f :
A −→ B. Since f−1 : B −→ A is also a bijection, B has the same cardinality
as A. �

29. Corollary: Let A have cardinality n 6= m. Then, A does not have cardinality
m.
Proof. We can assume that 0 ≤ m < n. Suppose to the contrary that A has
cardinality m. So m ∈ N, and we have a bijection f : A −→ {1, 2, . . . ,m}.
In particular, f is one-to-one. By the Pigeon Hole Principle, we cannot have
n > m. Note that f−1 : {1, 2, . . . ,m} −→ A is also a bijection and is, in
particular, one-to-one. Hence, by the Pigeon Hole Principle (applied to f−1)
we cannot have n < m. Therefore, it must be that m = n, a contradiction. We
conclude that A does not have cardinality m. �

31. Apply the contrapositive of Corollary 5.13.
The contrapositive says that, if n 6= m, then there is no bijection f : A −→ B.
This was argued in Exercise 29.

33. There are 216 possible integers, and 70000 > 216.
Since the set of indices has size greater than 216 = 65536, there must be two or
more indices assigned the same value.

35. Sketch. The bijections f : A −→ C and g : B −→ D can be used to form a
bijection f × g : A×B −→ C ×D, by Exercise 67(c) from Section 5.4. �

37. Assume m ≥ 1 and A = {1, . . . ,m}. By induction on n, we can prove that,
for any n ≥ 1, |A× {1, . . . , n}| = mn.
Sketch. When n = 1, we have |A × {1}| = |{(1, 1), . . . , (m, 1)}| = m = m · 1.
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Suppose k ≥ 1 and |A×{1, . . . , k}| = mk. Observe that A×{1, . . . , k, k+ 1} =
(A× {1, . . . , k}) ∪ (A× {k + 1}), a disjoint union. So |A× {1, . . . , k, k + 1}| =
mk +m = m(k + 1). �

39. Exercise 69(c) from Section 5.4 gives a bijection Z+ × Z+ −→ Z+.
Hence, Z+×Z+ has the same cardinality as Z+. That is, Z+×Z+ is countably
infinite.

41. Sketch. Let C1 and C2 be countable sets. So we have bijections
f : C1 −→ Z+ and g : C2 −→ Z+. By Exercise 67(c) from Section 5.4, we know
that f × g : C1 × C2 −→ Z+ × Z+ is a bijection. Exercise 39 gives a bijection
h : Z+ × Z+ −→ Z+. The composite h ◦ (f × g) is the desired bijection. �
That is, h ◦ (f × g) establishes that C1 × C2 has the same cardinality as Z+.

43. h(1) = z and ∀ k ≥ 2, h(k) = g(k − 1).
Since z 6∈ G and g is one-to-one, it follows that h is one-to-one. Since h(1) = z
and range(g) = G, it follows that range(h) = G ∪ {z}. That is, h is onto. So h
is a bijection.

45. (a) We show ∀ n ∈ N, for any set B with cardinality n and any subset
A ⊆ B, that A is finite. The proof is by induction on n.
Proof. Base case: n = 0. The only set with cardinality 0 is B = ∅. If A ⊆ B,
then A = ∅. So A has cardinality 0 and is finite as well. Inductive step: Let
k ≥ 0 and suppose, for any set B of cardinality k and any subset A ⊆ B, that
A is finite. Let B be a set with cardinality k + 1, and suppose A ⊆ B. If
A = B, then A has cardinality k + 1 and is finite as well. If A ⊂ B, then we
have some element b ∈ B \ A. Define B′ = B \ {b}. So A ⊆ B′. We claim that
B′ has cardinality k and thus the inductive hypothesis finishes the proof. Let
f : B −→ {1, 2, . . . , k+ 1} be a bijection, and define f ′ : B′ −→ {1, 2, . . . , k} by

f ′(b′) =

{
f(b′) if f(b′) < f(b),

f(b′)− 1 if f(b′) > f(b).

Thus f ′ is a bijection showing that B′ has cardinality k. �
(b) This is the contrapositive of part (a).

47. (a) Proof. Suppose A ⊆ Z+, and define the function f : Z+ −→ A by
f(n) = min(A \ {f(1), f(2), . . . , f(n− 1)}). In fact, f is an increasing function.
Hence, f is one-to-one. Now suppose a ∈ A ⊆ Z+. Let m be the cardinality of
{k : k ∈ A and k ≤ a}. In fact, f(m) = a. So f is onto. Therefore, f is a
bijection. �
(b) Proof. Suppose g : A −→ Z+ is one-to-one. Let A′ = g(A), and define
g′ : A −→ A′ by g′(a) = g(a). Since g′ is a bijection, A′ is an infinite subset of
Z+. By part (a), A′ is countably infinite. Hence, A is countably infinite. �

49. Proof. Suppose B is countable. If A is finite, then A is countable. So it
suffices to assume that A is infinite. We have a bijection f : B −→ Z+. Let
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i : A −→ B be the inclusion. So g = f ◦ i is a one-to-one map A −→ Z+. By
Exercise 47, A is countably infinite, hence countable. �

51. Proof. The bijection b : Z+ −→ Z given by b(n) =

{
n
2 if n is even
1−n

2 if n is odd,

together with the results in Exercise 69 from Section 5.4, enables us to construct
a bijection g : Z+ −→ Z×Z+. Since h : Z×Z+ −→ Q defined by h((m,n)) = m

n
is onto, the composite h ◦ g is an onto map Z+ −→ Q. By Exercise 48, Q is
countably infinite. �

53. Proof. Since B is countable, we have a bijection g : Z+ −→ B. For each
b ∈ B, since Ab is countable, we have a bijection fb : Z+ −→ Ab. We claim that
h : Z+ × Z+ −→

⋃
b∈B Ab defined by h((m,n)) = fg(m)(n) is onto. Suppose

a ∈
⋃
b∈B Ab. So a ∈ Ab0 for some b0 ∈ B. Since g is onto, we have m ∈ Z+

such that g(m) = b0. Since fb0 is onto, we have n ∈ Z+ such that fb0(n) = a.
Thus, h((m,n)) = fb0(n) = a. So h is onto. Since Exercise 69 from Section 5.4
guarantees a bijection w : Z+ −→ Z+ × Z+, we have an onto map
h ◦ w : Z+ −→

⋃
b∈B Ab. By Exercise 48,

⋃
b∈B Ab is countable. �

Review

1. (a) Yes, since 2 = 21.
(b) No, since 0 6= 20.
(c) No, since 1 6= 22.

2.
0 1 2

0
1
2
3
4


0 0 0
1 0 0
0 1 0
0 0 0
0 0 1


3. x R−1 y iff y = 2x.
Recall that x R−1 y iff y R x.

4. The transpose of the matrix in Exercise 2.

0 1 2 3 4
0
1
2

 0 1 0 0 0
0 0 1 0 0
0 0 0 0 1


5. (a) No.
(b) Yes.
(c) Computer Science and Mathematics.



2.5. CHAPTER 5 185

6.

ra rb r∅r{a}
r{b}r{a, b}

-

-

�
�
�
��3

��
���1

7. (a) NNSE. Let R be the given relation. First, we can move N to (0, 1). Since
N R N , we can move N to (0, 2). Next, since N R S, we can move S back to
(0, 1). Since S R E, we can move E to (1, 1).
(b) No. There is no way to move south without moving north first. Hence, our
initial position cannot be lowered.

(c) rN
r
S

rErW aa
aa

!!
!!
Y

*

m
?
6

�

Y

8. (a) No, since (
√

2)2 − (
√

3)2 = −1 6= 1.
(b) Yes, since (−1)2 − 02 = 1.
(c) No, since 02 − 12 = −1 6= 1.

9.

x

y

1

-1

This is a hyperbola, with asymptotes y = ±x.

10. x R−1 y iff x2 − y2 = 1.
That is, x R−1 y iff y R x.

11. Reflect the graph from Exercise 9 about the line y = x.

x

y

1-1

12. Not reflexive, since 1 6R 1.
Symmetric, since x2 + y2 = y2 + x2.
Not antisymmetric, as can be seen with x = 1√

2
and y = −1√

2
.

Not transitive, as can be seen with x = 1, y = 0, and z = 1.
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13. Not reflexive, since a | a but a = a.
Not symmetric, since 1 | 2 and 2 - 1.
Antisymmetric, since a | b, b | a, and a 6= b can never happen.
Transitive by Example 3.4 from Section 3.1.

14. Proof. Let x, y, and z represent arbitrary elements of X. Reflexive: Since
x R1 x and x R2 x, we automatically have x R x.
Antisymmetric: Suppose x R y and y R x. In particular, x R1 y and x R2 y.
Hence, x = y. Transitive: Suppose x R y and y R z. That is, x R1 y, x R2 y,
y R1 z, and y R2 z. Hence, x R1 z and x R2 z. Thus, x R z. �

15. =.
We need a relation R with all of the properties: reflexive, symmetric, antisym-
metric, and transitive. If x R y, then y R x (by symmetry), whence x = y (by
antisymmetry).

16.
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17. (6,−1,−3, 5, 2) � (6,−1, 2,−4, 7),
since −3 < 2.

18. (a) (40, 16, 4) ≺ (40, 18, 2) but (40, 16, 4) is a better record than (40, 18, 2).
(b) Use triples (W,T,L) instead.
If two teams have played the same number of games and they both have the
same number of wins, then the team with fewer losses should be considered
better.
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19. Proof. Let x, y, and z represent arbitrary elements of X. Reflexive: Since
x2 = x2, we automatically have x R x. Symmetric: Suppose x R y. That
is, x2 = y2. Since the symmetry of equality gives y2 = x2, we have y R x.
Transitive: Suppose x R y and y R z. That is, x2 = y2 and y2 = z2. From the
transitivity of equality it follows that x2 = z2. Therefore, x R z. �

20. (a) [x] = {x,−x}, since x2 = y2 iff x = ±y. Note that {0,−0} = {0}.
(b) |x|. The choices are x or −x, and |x| is the nonnegative choice. Recall that

0 ≤ |x| =

{
x if x ≥ 0,

−x if x < 0.

21. ∀ m,n ∈ Z, if m 6= n, then (m− 1,m] ∩ (n− 1, n] = ∅.
Also,

⋃
n∈Z(n− 1, n] = R.

In particular, ∀ x ∈ R, x ∈ (dxe−1, dxe] = Adxe, and each x has a unique ceiling.

22. (a) A vertical line through (x, 0).
(b) Each point (x, y) lies on a unique vertical line {x} × R.
∀ x1, x2 ∈ R, if x1 6= x2, then ({x1}×R)∩ ({x2}×R) = ∅ since {x1}∩{x2} = ∅.
Since

⋃
x∈R{x} = R, it follows that

⋃
x∈R({x} × R) = R2.

23. No. The sets An are not disjoint, since 1 ∈ A1 ∩A2.

24. ∀ x ∈ [0,∞), let Ax = {−x, x}. In Exercise 20, we saw that [x] = {−x, x}.
Since [−x] = [x], it suffices to use {−x, x} when x ≥ 0.

25. x R y iff dxe = dye.
Note that, for each n ∈ Z, we have x ∈ An if and only if n − 1 < x ≤ n. By
definition, n = dxe. So x, y ∈ An if and only if dxe = n = dye.

26. (x1, y1) R (x2, y2) iff x1 = x2.
For each x ∈ R, we have (x1, y1), (x2, y2) ∈ Ax = {x} × R if and only if x1 =
x = x2.

27. f(1) is not defined uniquely.
f(1) is defined both as 1 and 2. That is, x = 1 fits in both pieces of the
definition. However, 2− x = 2− 1 = 1 6= 2 = 1 + 1 = x+ 1.

28. No. f(−1) = 1
2 6∈ Z.

29. Domain = {2, 3, 4, 5} and range = {1, 3, 6, 10}.
Note that range(f) = {f(2), f(3), f(4), f(5)} = {

(
2
2

)
,
(

3
2

)
,
(

4
2

)
,
(

5
2

)
} = {1, 3, 6, 10}.

30. Proof. (⊆) Suppose y ∈ range(f). So y = 2 − x for some −1 ≤ x ≤ 2.
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Hence, 0 ≤ y = 2 − x ≤ 3. That is, y ∈ [0, 3]. (⊇) Suppose y ∈ [0, 3]. Observe
that 2− y ∈ [−1, 2] and f(2− y) = y. So y ∈ range(f). �

31. Domain = R \ {2} and range = R \ {1}.

x

y

2

1

32. g ◦ f : Z+ −→ R is given by (g ◦ f)(n) = n− 2.
That is, (g ◦ f)(n) = g(f(n)) = g(

√
n− 1) = (

√
n− 1)2− 1 = n− 1− 1 = n− 2.

Also, note that the domain is adopted from f , and the codomain is adopted
from g.

33. (a) Of Mice and Cats and Raisins of Wrath.
(b) Publisher Customer

Book Farm Raul Cortez
Authority Pubs Mary Wright
Word Factory Mary Wright
Book Farm David Franklin

(c) Raul Cortez and David Franklin.

34. Observe that x R y and y S z if and only if z S−1 y and y R−1 x. Hence,
x (S ◦R) z if and only if z (R−1 ◦ S−1) x.
By Definition 5.16 in the exercises from Section 5.3,

x (S ◦R) z if and only if ∃ y ∈ Y such that x R y and y S z.

Consequently,

z (R−1 ◦ S−1) x if and only if ∃ y ∈ Y such that z S−1 y and y R−1 x.

In fact, we can apply the same value y in both instances.

35. Proof. Suppose n1, n2 ∈ Z and f(n1) = f(n2). So 3n1 − 2 = 3n2 − 2. It
follows that n1 = n2. �

36. f(0) = f(1) but 0 6= 1.
Namely, f(0) = 03 − 0 = 0 = 13 − 1 = f(1). So two distinct input values have
the same output value.
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37. f(−1) = 0, f(2) = 3, and f(−3) = f(3) = 8.
We have explicitly displayed that each element of the codomain {0, 3, 8} is ac-
tually in the range.

38. f(x) = −11 is impossible.
∀ x ∈ R, x2 − 10 ≥ −10. So, there is no x ∈ R for which f(x) = −11.

39. (a) 84.
(b) 036−77−5484 and 036−77−5709.
Note that 5484 mod 225 = 84 and 5709 mod 225 = 84.

40. Proof. (One-to-one) Suppose f(r1) = f(r2). So r1
n = r2

n . Hence r1 = r2.
(Onto) Suppose s ∈ Q. Let r = ns, and observe that f(r) = s. �
Alternatively, s 7→ ns is the inverse of f .

41. Proof. (One-to-one) Suppose f(n1) = f(n2). Since the second coordinate
of the output is 0 for even input and 1 for odd input, it must be that n1 and
n2 have the same parity. In both the even and odd cases, it is easy to then see
that n1 = n2. (Onto) Suppose (m, i) ∈ Z × {0, 1}. Let n = 2m + i. Observe
that f(n) = (m, i). �

42. Sketch. If f ′(x1) = f ′(x2), then f(x1) = f(x2), and hence x1 = x2. So f ′ is
one-to-one. If y′ ∈ Y ′, then there is some x ∈ X such that f ′(x) = f(x) = y′.
So f ′ is onto. Thus, f ′ is a bijective. �

43. (a) Proof. Suppose f : [0, 2] −→ [0, 1]. Let x ∈ [0, 2]. Since f(x) ∈ [0, 1], it
follows that g(f(x)) = f(x). Hence g ◦ f = f . �
(b) Define f(x) = x

2 .
So (f ◦ g)(2) = f(1) = 1

2 and f(2) = 1. Thus, f ◦ g 6= f .

44. We confirm that ∀ x ∈ R, f(g(x)) = x and g(f(x)) = x.

∀ x ∈ R, (f ◦ g)(x) = f(g(x)) = f(2− 3x) = 2−(2−3x)
3 = x and

(g ◦ f)(x) = g(f(x)) = g( 2−x
3 ) = 2− 3( 2−x

3 ) = x.

45. Proof. Suppose f : X −→ Y . Let g1 : Y −→ X and g2 : Y −→ X be
inverses of f . That is, g1 ◦f = idX , f ◦g1 = idY , g2 ◦f = idX , and f ◦g2 = idY .
It follows that g2 = g2 ◦ idY = g2 ◦ (f ◦ g1) = (g2 ◦ f) ◦ g1 = idX ◦ g1 = g1. �

46. 3,
since 53 = 125.

47. 1,
since e1 = e and the base of ln is e.
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48. (a) f({−1, 0, 1, 2}) = {f(−1), f(0), f(1), f(2)} = {−1, 0,−1, 4} = {−1, 0, 4}.
(b) {−1, 0, 1, 2}.
Note that f(−1) = f(1) = −1; f(0) = 0; there is no n such that f(n) = 1;
f(2) = 4; and there is no n such that f(n) = 9.

49. (a) [0, 4]. (b) [−
√

3,
√

3].
Observe that, if −1 ≤ x ≤ 2, then 0 ≤ 4− x2 ≤ 4. And, if 1 ≤ 4− x2 ≤ 4, then
−
√

3 ≤ x ≤
√

3.

x

y

4

50.
S f(S)
{1} {−1}
[0, 1] [−1, 1]

(−1, 0) (1, 3)

T f−1(T )
{1} {0}

[1, 4) [−1, 0]
(−4,−2) ∅

Note the graph of the function and some of its individual function values.

x

y

A
A
A
A

q
q

(-1,3)

(1,-1)

q(0,1)

x f(x)
−1 3
0 1
1 −1

Hence, note that there are no values of x ∈ [−1, 1] = domain(f) such that
3 < f(x) < 4 or −4 < f(x) < −1. That is, range(f) = [−1, 3] ⊂ (−4, 4).
Consequently, f−1([1, 4)) = f−1([1, 3]) and f−1((−4,−2)) = ∅.

51. (a) Megan Johnson, Martha Lang, and Abe Roth.
(b) Inverse image.

Student Major
Abe Roth Computer Science
Megan Johnson Mathematics
Richard Kelley Computer Science
Martha Lang Physics
Abe Roth Mathematics
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52. (a) True. See Exercise 35 from Section 5.5.
(b) False. See Exercise 36 from Section 5.5.

53. (a) False. Let f(x) = 0, S1 = {−1}, and S2 = {1}. So f(S1 M S2) =
f({−1, 1}) = {0}, but f(S1) M f(S2) = {0} M {0} = ∅.
(b) True. f−1(T1 M T2) = f−1((T1 \ T2) ∪ (T2 \ T1)) =
f−1(T1 \ T2) ∪ f−1(T2 \ T1) = f−1(T1 ∩ T2

c) ∪ f−1(T2 ∩ T1
c) =

(f−1(T1) ∩ f−1(T2
c)) ∪ (f−1(T2) ∩ f−1(T1

c)) =
(f−1(T1) ∩ (f−1(T2))

c
) ∪ (f−1(T1) ∩ (f−1(T2))

c
) =

(f−1(T1) \ f−1(T2)) ∪ (f−1(T2) \ f−1(T1)) = f−1(T1) M f−1(T2).

54. (0, 5). Note that (0, 3) ∪ (2, 5) = (0, 5) and ∀ r ∈ [0, 2], (r, r + 3) ⊆ (0, 5).

55. {0}. Note that {m : m = nk for some n ∈ Z} is the set of multiples of k.
Hence, to be in the desired intersection, an integer would have to be a multiple
of every integer k. Of course, only 0 has that property.

56. S =
⋃
r∈[80,115]Ar. Also, S = A80 ∪A90 ∪A100 ∪A110 ∪A115.

Note that $115,000 + $10,000 = $125,000.

57. Proof. Since I 6= ∅, we have some j ∈ I. (⊆) Suppose x ∈
⋃
i∈I

(B ∪Ai). So

we have some i0 ∈ I such that x ∈ B ∪ Ai0 . If x 6∈ B, then x ∈ Ai0 ⊆
⋃
i∈I

Ai.

In any case, x ∈ B ∪
⋃
i∈I

Ai. (⊇) Suppose x ∈ B ∪
⋃
i∈I

Ai. If x 6∈ B, then

x ∈ Ai0 for some i0 ∈ I, and thus x ∈ B ∪ Ai0 ⊆
⋃
i∈I

(B ∪Ai). If x ∈ B, then

x ∈ B ∪Aj ⊆
⋃
i∈I

(B ∪Ai). �

58. 3. The set is {4, 5, 6}.

59. f : {−100,−99, . . . , 200} −→ {1, 2, . . . , 301} defined by f(n) = n+ 101 is a
bijection. Its inverse is given by g(n) = n− 101.

60. 3. Namely, Computer Science, Mathematics, and Physics.

61. f : [−1, 0) −→ (1, 7] defined by f(x) = 1− 6x is a bijection.
Its inverse is given by g(x) = 1−x

6 .

62. f : {2k : k ∈ Z, 0 ≤ k ≤ n} −→ {1, 2, . . . , n+ 1} defined by f(m) = m
2 + 1

is a bijection.
Its inverse is given by g(m) = 2m − 2. Be sure to note that m

2 ∈ N for each
m ∈ {2k : k ∈ Z, 0 ≤ k ≤ n}. So the definition of f is valid.
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63. f : Z −→ T defined by f(n) = 10n is a bijection.
Its inverse is given by g(n) = 10

n .

64. The function f : A×B −→ B ×A defined by (a, b) 7→ (b, a) is a bijection.
The function g : B ×A −→ A×B defined by (b, a) 7→ (a, b) is its inverse.

65. False. Let A = B = C = (0, 1) and D = (0, 2).
Then B \A = ∅ and D \ C = [1, 2) do not have the same cardinality.

66. Proof. Suppose to the contrary that, for some m ∈ N, there is a bijection
f : [1, 2] −→ {1, 2, . . . ,m}. Let i : {1 + 1

n : 1 ≤ n ≤ m + 1} −→ [1, 2] be the
inclusion of a set of cardinality m+ 1. The composite f ◦ i is a one-to-one map
that contradicts the Pigeon Hole Principle. �

67. f : {3k : k ∈ Z+} −→ Z+ defined by f(n) = n
3 is a bijection.

Its inverse is given by g(n) = 3n.

68. Proof. Suppose to the contrary that R2 is countable. Then the subset R×{0}
is countable. Since R and R × {0} have the same cardinality, R is countable.
This is a contradiction. �
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2.6 Chapter 6

Section 6.1

1. 6 · 8 = 48.

3. 31 · 3 · 4 = 372.

5. The possibilities are: AA, AB, AC, AD, BB, BC, BD, CC, CD, DD. So, 10.
The number of choices for the second letter depends on the first letter.

7. (a) The possible outcomes are: 2H, 2T , 4H, 4T , 6H, 6T , 1♣, 1♦, 1♥, 1♠,
3♣, 3♦, 3♥, 3♠, 5♣, 5♦, 5♥, 5♠. So, 18.
(b) No. There are 6 outcomes involving a coin and 12 involving a card. More
outcomes involve a card.

9. (a) 263 · 103 = 17576000.
(b) 263 · (103 − 1) = 17558424.
(c) (263 − 1) · (103 − 1) = 17557425.

11. 5040/3 = 1680 days.

13. 26 · 25 · 53 = 81250.

15. 26 · 364 · 10 = 436700160.

17. 104 = 10000.

19. 26 · 25 · 24 · 104 = 156000000.

21. 46 = 4096.

23. 1610 = 1099511627776.

25. 5 · 4 · 3 = 60.

27. 3 · 2 · 52 = 312.

29. 850− 85 + 1 = 766.

31. 100
10 + 1 = 11.

33. 7000
28 = 250.

35. |{84, 91, . . . , 7994}| = 7994
7 − 84

7 + 1 = 1131.
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37. |{204, 210, . . . , 1998}| = 1998
6 − 204

6 + 1 = 333.

39. 776
2 −

18
2 + 1 = 380.

41. 86.
Note that 0 is included. We have b 28

3 c+ 1 = 86.

43. 365(59) + 15 + 24 + 243 + 11 = 21828.

45. 365(65) + 17 + 14 + 181 + 120 = 23957.

47. 365(86) + 20 + 27 + 153 + 1 = 31591.

Section 6.2

1. 4! = 24.

3. 6! = 720.

5. 200 · 199 · · · · · 191 = P (200, 10).

7. 20 · 19 · 18 · 17 = 116280.

9. P (8, 3) = 336.

11. 20·19·18·17
4·3·2·1 = 4845.

13.
(

6
3

)
253 = 312500.

15.
(

10
5

)
155 = 191362500.

17.
(

8
2

)(
10
2

)(
20
2

)
= 239400.

19.
(

8
3

)(
6
2

)
= 840.

21.
(

26
6

)
= 230230.

23. (a)
(

12
5

)
= 792.

(b)
(

3
1

)(
5
2

)(
4
2

)
= 180.

25.
(

8
2

)(
6
2

)
144 = 16134720.

27.
(

10
4

)
P (7, 6) = 1058400.

29. (a) P (15, 5)P (15, 5)P (15, 4)P (15, 5)P (15, 5) = P (15, 5)4P (15, 4).
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(b) i. There are 5! possibilities for the column with BINGO.
So, 5!P (15, 5)3P (15, 4).
ii. Since the free cell starts with a chip, there are 4! possibilities for the column
with BINGO. So, 4!P (15, 5)4.

31. P (6, 5) = 720.

33.
(

5
2

)
53 = 1250.

35. 6 ·
(

5
3

)
· 5 = 300.

37. 3.
The run could start with a 1, a 2, or a 3. So, 3.

39.
(

6
4

)
= 15.

41. 6 ·
(

5
2

)
= 60.

43. 21090-9000.

︸︷︷︸
2

︸︷︷︸
1

︸︷︷︸
0

︸︷︷︸
9

︸︷︷︸
0

︸︷︷︸
9

︸︷︷︸
0

︸︷︷︸
0

︸︷︷︸
0

︸︷︷︸
9

45. (a) The first number in Pascal’s triangle greater than or equal to 16 is
20 =

(
6
3

)
. So each digit will use a total of 6 bars.

(b) 3 bars will be long.

47. (a) P (6, 4) = $360.
(b) P (20, 4) = $116280.
(c) When the horses favored to win do well, the superfecta payoff is less than
$116,280.
E.g., if the four most highly favored horses finish in the top four, then that pays
off much less than if the four least highly favored horses do so. That is, long
shots give a higher payoff.

Section 6.3

1.
(

10
5

)(
12
3

)
+
(

10
6

)(
12
2

)
= 69300.

3. 2
(

6
4

)
· 92 = 2430.

5. 1 +
(

10
1

)
+
(

10
2

)
+
(

10
3

)
= 176.

7.
(

6
4

)
+
(

6
5

)
+
(

6
6

)
= 22.

9.
(

35
12

)
− [
(

18
0

)(
17
12

)
+
(

18
1

)(
17
11

)
] = 834222844.
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11.
(

5
0

)
+
(

5
2

)
+
(

5
4

)
= 16.

13. (1000− 333)− (499− 166) = 334.

15. 166 + 71− 23 = 214.

17. (1000 + 400− 200)− (99 + 39− 19) = 1081.

19. (a) 68 = 1679616.
(b) 68 = 1679616.
(c) 68 + 68 − 28 = 3358976.

21. 2
(

8
3

)
· 35 −

(
8
3

)(
5
3

)
22 = 24976.

23. 2
(

13
2

)(
39
3

)
−
(

13
2

)2 · 26 = 1267500.

25.
(

39
5

)
+
(

13
1

)(
39
4

)
= 1645020.

27. 144− (72 + 48− 24) = 48.

29. [1000− (500 + 200− 100)]− [99− (49 + 19− 9)] = 360.

31. (a) “MEET ME.”
That is, we have the decodings: y = A 7→ x = M , y = W 7→ x = E,
y = B 7→ x = T , y = C 7→ x =‘ ’.
(b) y = 4x+ 3 and 4 is relatively prime to 27.
Note, e.g., that ‘ ’ = 0, 4 · 0 + 3 = 3, and C = 3.
(c) 486.
Observe that, if kx ≡ j (mod d) for all x, then k ≡ j ≡ 0 (mod d). This
follows by plugging in first x = 1 and then x = 0. Hence, if (a1x + b1) ≡
(a2x + b2) (mod d) for all x, then a1 ≡ a2 (mod d) and b1 ≡ b2 (mod d). This
holds since (a1−a2)x ≡ (b2−b1) ( mod d) for all x. Consequently, we need only
consider a and b values in {0, . . . , 26}. Since, there are 18 choices for a that are
relatively prime to 27, there are only 18 · 27 = 486 different linear ciphers.

33. [1771− (885 + 354− 177)]− [170− (85 + 34− 17)] = 641.

35. Theorem: If A1, A2, . . . , An are disjoint sets, then
|A1 ∪A2 ∪ · · · ∪An| = |A1|+ |A2|+ · · ·+ |An|.
Sketch. (By induction) The Addition Principle handles the case in which n = 2
(also check when n = 1). So suppose k ≥ 2 and A1, . . . , Ak+1 are disjoint sets.
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Observe that

|A1 ∪A2 ∪ · · · ∪Ak ∪Ak+1| = |(A1 ∪A2 ∪ · · · ∪Ak) ∪Ak+1|
= |A1 ∪A2 ∪ · · · ∪Ak|+ |Ak+1|
= |A1|+ |A2|+ · · ·+ |Ak|+ |Ak+1|.

The first equality follows from associativity of unions. The second follows from
the Addition Principle (Check that A1 ∪ A2 ∪ · · · ∪ Ak and Ak+1 are disjoint).
The inductive hypothesis gives the last. �

37. 5 +
(

5
2

)
= 15.

39. 1 + 5 + (5 +
(

5
2

)
) = 21.

41. 6
(

5
4

)
· 5 + 6 = 156.

43. P (6, 5) + 6
(

5
2

)
P (5, 3) = 4320.

45. 5 + 1 = 6.

47. 2(1 + 5) = 12.

49.
(

6
2

)
= 15.

51.
(

6
4

)
+ 6
(

5
2

)
= 75.

Section 6.4

1. (a) 250
1000 = .25. (b) 119+63

1000 = .182.

3. 6
36 = 1

6 .

5. 10
36 = 5

18 .

7. (a) {TTT, TTH, THT, THH,HTT,HTH,HHT,HHH}.
These are equivalent to binary sequences of length 3.
(b) 4

8 = 1
2 .

9. (a) {00, 01, 02, 03, 10, 11, 12, 13, 20, 21, 22, 23, 30, 31, 32, 33}.
This is equivalent to {0, 1, 2, 3} × {0, 1, 2, 3}.
(b) 6

16 = 3
8 .

11. 4·3!
63 = 1

9 .

13. 6·5·4
63 = 5

9 .
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15.
(20

5 )(30
7 )

(50
12)

= 24279264
93384347 ≈ .2600.

17. (a)
(20
12)+(30

12)
(50
12)

= 1332603
1867686940 ≈ .0007.

(b) No.

It is
(30
12)

(20
12)
≈ 687 times more likely.

(c) 1− 1332603
1867686940 = 1866354337

1867686940 ≈ .9993.

19. 8·7
18·17 = 28

153 .

21.
1+8+(8

2)
28 = 37

256 .

23. (a)
(10

5 )
210 = 63

256 ≈ .2461.
(b) Bet against it,
since it happens only about one fourth of the time.

25.
(26

6 )
P (26,6) = 1

720 .

27.
34+(4

2)34+34

64 = 1
2 .

29. Probability Complement Principle: If E is an event in a sample space S,
then P (E) = 1− P (Ec).
Assumption: The outcomes in S are equally likely.

Proof. P (E) = |E|
|S| = |S|−|Ec|

|S| = 1− |E
c|
|S| = 1− P (Ec). �

31. 3·8!
9! = 1

3 .

33. There are 365n possible birthday values for n people. The complementary
event is that no two people have the same birthday, and there are

365 · 364 · · · · · (365− n+ 1) = P (365, n)

possible outcomes of that type. If we let p(n) be the probability that at least

two of n people have the same birthday, then p(n) = 1− P (365,n)
365n .

(a) p(15) ≈ .253.
(b) p(30) ≈ .706.
(c) n = 23,
since p(22) ≈ .476 and p(23) ≈ .507.

35. 6
36 + 3

36 −
1
36 = 2

9 .

37. 1− 32

52 = 16
25 .

39. 1
2 + 1

3 −
1
6 = 2

3 .
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41. Proof. The assertion is certainly true for k = 1 die. So assume k ≥ 1 and the
assertion is true for k dice. Suppose we have k + 1 dice, and pretend that one
is red and the remaining k are green. The red die is equally likely to come up
even or odd. By our induction hypothesis, the sum of the green dice is equally
likely to be even or odd. The total sum is even if and only if either the red die
is even and the green sum is even or the red die is odd and the green sum is
odd. Hence, the probability that the total sum is even is 1

2 ·
1
2 + 1

2 ·
1
2 = 1

2 ·
1
2 . �

43. 1

(39
5 )

= 1
575757 .

45. 1− (36
5 )5+5(36

4 )5+(36
5 )

(41
5 )6

= 253937
1498796 ≈ .1694.

47. (a) 1− 14((70
5 )+5(70

4 )+(5
2)(

70
3 ))

15(75
5 )

= 2933734
43148475 ≈ .068.

(b)
(70

5 )
15(75

5 )
= 2017169

43148475 ≈ .0467.

49. 3·4!
64 = 1

18 .

51.
6(4

2)·5·4
64 = 5

9 .

53. 7
27 .

2(1− 54

64
− 4 · 53

64︸ ︷︷ ︸
at least 2 sixes

)−
(

4
2

)
64︸︷︷︸

2 of each

=
7

27
.

or

2(

(
4

3

)
· 5︸ ︷︷ ︸

3 sixes

+ 1︸︷︷︸
4 sixes

) + (2

(
4

2

)
· 52 −

(
4

2

)
︸ ︷︷ ︸

2 fives or 2 sixes

) =
7

27
.

55.
1
4
3
4

= 1
3 .

57.
4
16
10
16

= 2
5 .

59. (a) Yes. P (E ∩ F1) = 3
52 = P (E) · P (F1), since P (E) = 1

4 , P (F1) = 3
13 .

(b) No. P (E ∩ F2) = 1
4 6= P (E) · P (F2), since P (F2) = 1

2 .

61. Sketch. (→) Suppose E and F are independent. So P (E | F ) = P (E∩F )
P (F ) =

P (E)P (F )
P (F ) = P (E). Similarly, P (F | E) = P (F ). (←) Suppose P (E | F ) =

P (E). So P (E ∩ F ) = P (E | F )P (F ) = P (E)P (F ). �
Note Definitions 6.5 and 6.6.

63. (a) 26%, since p = (.1)(.5) + (.3)(.4) + (.9)(.1) = .26.

(b) (.3)(.4)
.26 = 6

13 ≈ .4615.
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65. (.95)(.8)
(.95)(.8)+(.1)(.2) = 38

39 ≈ .974.

67. (a) 4(.5) + 3(.3) + 2(.1) + 1(.05) + 0(.05) = 3.15 stars.
(b) .4(.5) + .2(.3) + .5(.1) + .8(.05) + .9(.05) = 0.395.
(c) We use Bayes’ Formula.

Number of Stars Probability of Ranking on Website

4 .4(.5)
.395 = 40

79

3 .2(.3)
.395 = 12

79

2 .5(.1)
.395 = 10

79

1 .8(.05)
.395 = 8

79

0 .9(.05)
.395 = 9

79

(d) 4( 40
79 ) + 3( 12

79 ) + 2( 10
79 ) + 1( 8

79 ) + 0( 9
79 ) = 224

79 ≈ 2.84 stars.

69. Bayes’ Formula: If S = F1 ∪ · · · ∪ Fn is a disjoint union, then

P (Fk | E) =
P (E | Fk)P (Fk)∑n
i=1 P (E | Fi)P (Fi)

.

Proof. P (Fk | E) = P (Fk∩E)
P (E) = P (E|Fk)P (Fk)

P (E) = P (E|Fk)P (Fk)∑n
i=1 P (E|Fi)P (Fi)

. �

Section 6.5

1.
(

4
2

)4
= 1296.

3.
(

10
6

)
= 210.

5.
(

7
4

)(
3
2

)
= 105.

7.
(

4
3

)(
3
1

)(
3
2

)
= 36.

9.
(

4
3

)(
6
3

)
+
(

7
4

)(
3
2

)
− 36 = 149.

11. (a) 1
16 , 1

4 , 3
8 , 1

4 , 1
16 .

(b) p = 1
8 .

13. 4 ·
(

13
5

)
− 40 = 5108.

15. 13 ·
(

4
3

)
· 12 ·

(
4
2

)
= 3744.

17. 10 · 25 − 10 · 2 = 300.

19. (

(
52

5

)
− 1302540)︸ ︷︷ ︸

something

− 9

(
4

2

)(
12

3

)
· 43︸ ︷︷ ︸

at best a pair of tens

= 536100.
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21. N = 10 · 4 · 25 = 1280 and p ≈ .00001392.

23. N = 4
(

26
5

)
− 1280︸︷︷︸

See Exercise 21

= 261840 and p ≈ .00284725.

25. N =
(

13
2

)(
8
2

)2 · 88−
(

13

2

)
· 4 · 11 · 2︸ ︷︷ ︸

Two Pair Flush

= 5374512 and p ≈ .05844242.

27. N = 13
(

8
3

)(
12
2

)
· 82 = 3075072 and p ≈ .03343832.

29.
(

10+3−1
10

)
=
(

12
10

)
= 66.

31.
(

12+4−1
12

)
=
(

15
12

)
= 455.

33.
(

8+3−1
8

)
=
(

10
8

)
= 45.

35.
(

4+6−1
4

)
=
(

9
4

)
= 126.

37. (a)
(

8+4−1
8

)
=
(

11
8

)
= 165.

(b) No. 1 penny, 3 nickels, and 4 dimes is worth the same as 6 pennies and 2
quarters.

39.
(3
2)(

2
1)(

4
1)+(3

1)(
2
2)(

4
1)+(3

1)(
2
1)(

4
2)

(9
4)

= 72
126 = 4

7 or 1− (5
4)+(7

4)+(6
4)−(4

4)
(9
4)

= 4
7 .

41.
(

5+6−1
5

)
= 252.

43. N = 13
(

48
3

)
= 224848 and p ≈ .00168067.

45. N = 9·︸︷︷︸
non-Ace high

4[
(

47
2

)
− 46︸︷︷︸

not new high

] + 4︸︷︷︸
Ace high

(
47
2

)
= 41584 and p ≈

.00031083.

47. N = 13
(

4
3

)(
12
4

)
·44−[10 · 5

(
4

3

)
· 44︸ ︷︷ ︸

straight

+ 4

(
13

5

)
· 5
(

3

2

)
︸ ︷︷ ︸

flush

− 10 · 4 · 5
(

3

2

)
︸ ︷︷ ︸

both

] = 6461620

and p ≈ .04829870.

49. N = (
(

8
2

)
+ 9
(

7
2

)
)(47 −

(
7
5

)
· 4 · 32 −

(
7
6

)
· 4 · 3− 4)+

6(8 + 7 · 9)(45
(

4
2

)
−
(

4
2

)
· 2 · 5 · 3−

(
4
2

)2 − (42)2) + 10
(

5
2

)
(43
(

4
2

)2 − 4 · 32)+

5 · 10(44
(

4
3

)
− 4
(

3
2

)
) = 6180020 and p ≈ .04619382.

51. N = (6
(

13
6

)
− 6(8 + 7 · 9))(45

(
4
2

)
−
(

4
2

)
· 2 · 5 · 3−

(
4
2

)2− (42)2) = 58627800 and
p ≈ .43822546.
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53. Consider each of the 44 remaining cards.
P (A wins) ≈ .3864 and P (B wins) ≈ .6136.

55. If at least one more 2 is drawn, then player B wins. If no more 2’s are
drawn, then Player 2 wins iff no more K’s or 7’s are drawn. P (A wins) ≈ .2828
and P (B wins) ≈ .7172.

57. An exhaustive analysis using software gives P (A wins) ≈ .4754, P (B wins) ≈
.5211, and P (tie) ≈ .0035.

Section 6.6

1. (a) 40!
40 = 39!

(b) 39!
2 .

3. 4!
4·2 = 3.

5. (a) 8!
8 = 5040.

(b) 2 · 6! = 1440.
(c) 6! = 720.

7. P (14,8)
8·2 = 7567560.

9. 5 · 4!
4 = 30 or 6!

24 = 30.

11. 20!
20·3 = 19!

3 .

13. 5!
2·3 = 20.

15. 6!
4 = 180.

17.
(6
3)
2 = 10.

19.

(
20
5

)(
15
5

)(
10
5

)(
5
5

)
4!︸ ︷︷ ︸

teams

· 3︸︷︷︸
games

= 1466593128.

21.
(21

6 )(15
5 )(10

5 )(5
5)

3! = 6844101264.

23.
(16

2 )(14
2 )(12

2 )···(2
2)

8! = 2027025.

25.

3-person scrambles︷ ︸︸ ︷(
50
3

)(
47
3

)
· · ·
(

23
3

)
10!

·

2-person scrambles︷ ︸︸ ︷(
20
2

)(
18
2

)
· · ·
(

2
2

)
10!

=
(50

3 )(47
3 )···(23

3 )(20
2 )(18

2 )···(2
2)

(10!)2 .

27.
(60

6 ) 5!
2 (54

6 ) 5!
2 ·····(

6
6)

5!
2

10! =
(60

6 )(54
6 )···(6

6)( 5!
2 )10

10! .
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29. 9!
4 = 90720.

31.
(24

2 )(22
2 )···(2

2)
12 = 12623055048283680000.

33. 60 + 40 + 50 + 40− 3(20) = 130.

35. 20 + 10 + 30 + 20− 6− 10 = 64.

37. 6!
6 = 120.

39.
(6
2)(

4
2)(

2
2)

3 = 30.

Review

1. 9! = 362880.

2. 3582 = 15552.

3. 26210 · 9 · 8 = 486720.

4. 13 hours. In general, n loads take 1
2 (n+ 1) hours.

5. b 1000
7 c = 994

7 = 142.

6. 3999
3 − 201

3 + 1 = 1267.

7. 26 · 25 · 24 · 23 · 22 = 7893600.

8. 4(365) + 1 + 8 + 31 + 31 + 29 + 31 + 30 + 31 + 5 = 1657.

9. 6! = 720.

10. (a) 100 · 99 · 98 = 970200. (b) 100 · 98 · 96 = 940800.

11.
(

6
1

)(
20
4

)(
22
5

)
= 765529380.

12. {a, b}, {a, c}, {a, d}, {a, e}, {a, f}, {b, c}, {b, d}, {b, e}, {b, f}, {c, d}, {c, e}, {c, f},
{d, e}, {d, f}, {e, f}.

13. P (14, 4) = 24024.

14.
(

6
3

)(
4
2

)
= 120.

15.
(

26
2

)
+
(

13
2

)
= 403.
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16. 28 − [1 + 8 +
(

8
2

)
] = 219.

17.
(

5
2

)(
7
3

)
+
(

3
2

)(
9
3

)
−
(

5
2

)(
3
2

)
· 4 = 482.

18. 38 + 38 − 28 = 12866.

19. 101 + 72− 14 = 159.

20. 10000− (5000 + 2000− 1000) = 4000.

21. 13
(

4
3

)
12 · 4 + 13 = 2509.

22. 2
36 = 1

18 .

23. p =
(50
12)

(70
12)

= 2900135
254154182 ≈ .0114. So, approximately yes.

24. 1− 1+6+(6
2)

26 = 21
32 .

25.
4(13

4 )
(52

4 )
= 44

4165 .

26.
(5
3)+(5

4)+(5
5)

25 = 1
2 .

27.
(10

3 )(6
3)(

8
3)

(24
9 )

= 8400
81719 ≈ .10.

28. 1

(53
6 )

= 1
22957480 .

29. 1− (38
5 )+5(38

4 )
(43

5 )
=

(5
2)·(

38
3 )+(5

3)(
38
2 )+5·38+1

(43
5 )

= 4361
45838 ≈ .0951.

30. (a)

3·(4
2)

(52
2 )

(12
2 )

(52
2 )

= 3
11 .

(b) No. P (E) · P (F ) =
13·(4

2)
(52

2 )
· (12

2 )
(52

2 )
6= 3·(4

2)
(52

2 )
= P (E ∩ F ).

31. (a) 83%, since p = (.7)(.2) + (.8)(.3) + (.9)(.5) = .83.

(b) (.9)(.5)
.83 = 45

83 ≈ .5422.

32. No.
There are

(
10
6

)
= 210 routes and 5 · 48 = 240 days.

33.
(

4
2

)(
6
4

)
= 90.

34.
(

4
3

)(
6
3

)
+
(

4
4

)(
6
2

)
= 95.
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35.
(

4
2

)(
6
4

)
= 90.

36.
(

13
2

)(
4
3

)(
4
2

)
= 1872.

37.
(

13
5

)
· 45 − 10 · 45 −

(
13
5

)
· 4 + 40 = 1302540.

38. 13
(

48
2

)
= 14664.

39. 13
(

4
3

)(
12
3

)
43 = 732160.

40.
(

13
3

)(
4
2

)3
+
(

13
2

)(
4
2

)2(11
2

)
· 42 = 2532816.

The first summand counts three pair.

41. 13
(

4
3

)
· 12
(

4
2

)
· 11 · 4 +

(
13
2

)(
4
3

)2
= 165984.

42. 9·︸︷︷︸
non-Ace high

4 · 46 + 1·︸︷︷︸
Ace high

4 · 47 = 1844 or 10 · 4 · 47− 9 · 4︸︷︷︸
6-card straight

= 1844.

43. 4
(

13
5

)
· 39 + 4

(
13
6

)
− 1844 = 205792.

44. 10 · 5
(

4

2

)
· 44︸ ︷︷ ︸

pair

+ 9 · 45 · 7 · 4 + 1 · 45 · 8 · 4︸ ︷︷ ︸
non-pair

−1844 = 365772.

45. 13
(

4
2

)(
12
4

)
· 44 − 10 · 5 · 44

(
4
2

)
− 4
(

13
5

)
· 5 · 3 + 40 · 5 · 3 = 9730740.

46. 6608748.
See Exercises 38 through 45 and Table 2.1.(

52
6

)
− [1844+14664+165984+205792+365772+732160+2532816+9730740] =

6608748.

Exercise Hand Number Possible Probability (to 8 places)
42 Straight-Flush 1844 .00009058
38 Four of a Kind 14664 .00071931
41 Full House 165984 .00815305
43 Flush 205792 .01010897
44 Straight 365772 .01796653
39 Three of a Kind 732160 .03596332
40 Two Pairs 2532816 .12441062
45 One Pair 9730740 .47796893
46 Nothing 6608748 .32461927

Total 20358520 1

Table 2.1: Likelihood of Poker Hands from 6 cards
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47. 236
495 ≈ .4768. Daniel wins under any of the following conditions on his down

cards: a King, a Queen, a Jack, a 10, two Aces, two 9’s, two 2’s, or a 2 and a 9.
So

P (Daniel wins) =
[
(

45
2

)
−
(

32
2

)
] + 3 + 1 + 3 + 3 · 2(

45
2

) =
169

330
≈ .5121.

48.
(

100+5−1
100

)
=
(

104
100

)
= 4598126.

49.
(26+5−1

5 )
265 = 5481

456976 ≈ .0120.

50. (a) 20!
20 = 19!. (b) 20. In each case, the first spin determines the way.

(c) P (40 or more) = 13
20 .

51. 8!
24 = 1680.

52.
(22
11)
2 = 352716.

53.
(24

8 )(16
8 )(8

4)(
4
4)

2·2 = 165646455975.

54. 30 + 40 + 25− 3(10) = 65.

55.
(8
2)(

6
2)(

4
2)(

2
2)

4 = 630.

56. (a) P (20, 4) = 116280. (b) P (20, 3) ·
(

17
3

)
= 4651200.

57. (a)
(

10
5

)
= 252. (b) 210−252

2 = 386.

58. 729− 729
3 = 486.

59. 28 + 8 · 27 +
(

8
2

)
· 26 = 3072.

60. 36!. What matters is a number’s position relative to 0 on the wheel.

61.
(

10
5

)
= 252.

62. (769 + 588− 45)− (76 + 58− 4) = 1182.

63.
(8
2)(

6
2)+8·6·(5

2)+5

(19
4 )

= 905
3876 .

64. 1
2 . Odd and even sums are equally likely. See Exercise 41 from Section 6.4.

65. (a)
2(26

3 )
(52

3 )
= 4

17 . (b)
13(4

3)
(52

3 )
= 1

425 .

66.
(11

3 )(39
2 )+(11

4 )39+(11
5 )+3(13

5 )
(50

5 )
= 69729

1059380 ≈ .0658.
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2.7 Chapter 7

Section 7.1

1. 3 · 25 − 3 = 93.

3. Let Abar contain those missing a specified type of candy bar.
|Asnickers

c ∩Amounds
c ∩Abutterfingers

c| =(
24
5

)
− [
(

18
5

)
+
(

14
5

)
+
(

16
5

)
] + [

(
6
5

)
+
(

10
5

)
+
(

8
5

)
] = 27880.

5. Let Afruit contain those missing a certain type of fruit.
|Abanana ∪Aapple ∪Aorange| = [

(
16
6

)
+
(

15
6

)
+
(

13
6

)
]− [

(
6
6

)
+
(

7
6

)
+
(

9
6

)
] = 14637.

7. (a)
4·36−(4

2)·2
6+(4

3)
46 = 2536

4096 = 317
512 ≈ .62.

(b)
1+6·2+(6

2)
46 = 7

1024 ≈ .0068.

9. Let Asuit contain those missing a specified suit.
|A♣c∩A♦c∩A♥c∩A♠c|

(52
7 )

=
(52

7 )−4(39
7 )+(4

2)(
26
7 )−(4

3)(
13
7 )

(52
7 )

= 63713
111860 ≈ .5696.

11. Let Acoin contain those missing a specified coin type.
|Aquarter∪Adime∪Anickel∪Apenny|

(27
5 )

=

[(19
5 )+(22

5 )+(23
5 )+(17

5 )]−[(14
5 )+(15

5 )+(9
5)+(18

5 )+(12
5 )+(13

5 )]+[(8
5)+(5

5)+(10
5 )]

(27
5 )

=

271
351 ≈ .7721.

13. 300−( 300
2 + 300

3 + 300
5 )+( 300

2·3 + 300
2·5 + 300

3·5 )− 300
2·3·5 = 300−310+100−10 = 80.

15. 1100− ( 1100
2 + 1100

5 + 1100
11 ) + ( 1100

2·5 + 1100
2·11 + 1100

5·11 )− 1100
2·5·11 = 1100− 870 +

180− 10 = 400.

17. 2100 − ( 2100
2 + 2100

3 + 2100
5 + 2100

7 ) + ( 2100
2·3 + 2100

2·5 + 2100
2·7 + 2100

3·5 + 2100
3·7 +

2100
5·7 )− ( 2100

2·3·5 + 2100
2·3·7 + 2100

2·5·7 + 2100
3·5·7 ) + 2100

2·3·5·7 = 480.

19. Proof. Write n as a product of powers of primes pk1
1 · · · pkmm . So

φ(n) = φ(pk1
1 )φ(pk2

2 ) · · ·φ(pkmm ) by (7.2)

= pk1
1 (1− 1

p1
)pk2

2 (1− 1

p2
) · · · pkmm (1− 1

pm
) by (7.1)

= pk1
1 p

k2
2 · · · pkmm (1− 1

p1
)(1− 1

p2
) · · · (1− 1

pm
) by commutativity

= n
∏
p|n

(1− 1
p ) by substitution

That is, (7.3) holds. �
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21. Proof. Let p and q be the only prime divisors of n.
So φ(n) = n−(np + n

q )+ n
pq = n− n

p−
n
q + n

pq = n(1− 1
p−

1
q + 1

pq ) = n(1− 1
p )(1− 1

q ).
�
That is, let Ap contain the numbers in {1, 2, . . . , n} that are divisible by p, and
define Aq similarly. So φ(n) = |Apc ∩Aqc|.

23. 10500− (5250 + 3500 + 2100) + (1750 + 1050 + 700)− 350 = 2800.

25. (b 10000
3 c+b 10000

13 c+b
10000

23 c+b
10000

43 c)−(b 10000
3·13 c+b

10000
3·23 c+b

10000
3·43 c+b

10000
13·23 c+

b 10000
13·43 c+b

10000
23·43 c)+(b 10000

3·13·23c+b
10000

3·13·43c+b
10000

3·23·43c+b
10000

13·23·43c) − b
10000

3·13·23·43c =
4768−537+19−0=4250.

27. 53
144 = .36805̄ agrees with 1

e to 2 decimal places.
1− 1 + 1

2 −
1
6 + 1

24 −
1

120 + 1
720 = 53

144 = .36805̄, which agrees with 1
e to 2 decimal

places.

29. (a) 1− 11
30 = 19

30 ≈ .633.
(b) 1

5! = 1
120 .

(c)
(5
3)+1

120 = 11
120 .

31. .36787944.
See the paragraph following Example 7.3.

33. Corollary: |A1
c ∩A2

c ∩ · · · ∩Anc| =
∑n
i=0(−1)iSi.

|A1
c ∩A2

c ∩ · · · ∩Anc| = |(A1 ∪A2 ∪ · · · ∪An)
c| = |U| − |A1 ∪A2 ∪ · · · ∪An| =

|U| −
∑n
i=1(−1)i−1Si = |S0|+

∑n
i=1(−1)iSi =

∑n
i=0(−1)iSi.

35. |A1∩A2∩A3|+|A1∩A2∩A4|+|A1∩A2∩A5|+|A1∩A3∩A4|+|A1∩A3∩A5|+
|A1∩A4∩A5|+ |A2∩A3∩A4|+ |A2∩A3∩A5|+ |A2∩A4∩A5|+ |A3∩A4∩A5|.

37. |A1 ∩A2 ∩A3| = |U| − (|A1
c|+ |A2

c|+ |A3
c|)+

(|A1
c ∩A2

c|+ |A1
c ∩A3

c|+ |A2
c ∩A3

c|)− |A1
c ∩A2

c ∩A3
c|.

That is, we use the fact that A1
cc = Ai.

39. 510 − 5 · 410 +
(

5
2

)
· 310 +

(
5
3

)
· 210 +

(
5
4

)
· 110 = 510 − 4662625 = 5103000.

41. Let p(n) =
6n−6·5n+(6

2)·4
n−(6

3)·3
n+(6

4)·2
n−(6

5)
6n .

(a) p(6) = 5
324 ≈ .0153.

(b) p(10) = 38045
139968 ≈ .2718.

(c) Use 13 dice.
Note that p(12) ≈ .4378 and p(13) ≈ .5139.

43. n4 − 4n3 + 6n2 − (3n+ n2) = n4 − 4n3 + 5n2 − 2n = n(n− 1)2(n− 2).
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45. n5 − 6n4 + 15n3 − (n3 + 19n2) + (4n2 + 11n)− 6n+ n =
n5 − 6n4 + 14n3 − 15n2 + 6n = n(n− 1)(n− 2)(n2 − 3n+ 3).

Section 7.2

1. 7!
3!2!2! = 210.

3. 15!
2!3!6!4! = 6306300.

5.
(

12
4,3,5

)
= 27720.

7. (a)
(

15
5,3,4,3

)
= 12612600. (b)

(
14

4,3,4,3

)
+
(

14
5,3,3,3

)
= 7567560.

(c)
(

14
4,3,4,3

)
= 4204200.

9.
( 12
4,4,4)
3! = 5775.

11.
( 22
5,5,6,6)

22 = 37642556952.

13. (a)
( 16
4,4,4,4)

4! · 34 = 212837625.

(b)
(

16
4,4,4,4

)
· 34 = 5108103000.

15. (a)
(

18
6,6,6

)
(5!)3 = 29640619008000.

(b)
( 18
6,6,6)
3! (5!)3 = 4940103168000.

(c)
( 18
6,6,6)
3! = 2858856.

17. (0, 0, 3), (0, 1, 2), (1, 0, 2), (0, 2, 1), (1, 1, 1), (2, 0, 1), (0, 3, 0), (1, 2, 0),
(2, 1, 0), (3, 0, 0). Note that there are

(
3+3−1

3

)
= 10 of them. See Remark 7.1.

19. x2 − 2xy + 2xz + y2 − 2yz + z2.
The sum in (x+ (−y) + z)2 =

∑
T

(
2

k1,k2,k3

)
xk1(−y)k2zk3 is indexed over

T = {(k1, k2, k3) : k1, k2, k3 ∈ N and k1 + k2 + k3 = 2} =
{(2, 0, 0), (1, 1, 0), (1, 0, 1), (0, 2, 0), (0, 1, 1), (0, 0, 2)}.
So (x+ (−y) + z)2 =(

2
2,0,0

)
x2(−y)0z0 +

(
2

1,1,0

)
x1(−y)1z0 +

(
2

1,0,1

)
x1(−y)0z1 +

(
2

0,2,0

)
x0(−y)2z0

+
(

2
0,1,1

)
x0(−y)1z1 +

(
2

0,0,2

)
x0(−y)0z2 = x2 − 2xy + 2xz + y2 − 2yz + z2.

21. x4 + 4x3y + 4x3 + 6x2y2 + 12x2y + 6x2 + 4xy3 + 12xy2 + 12xy + 4x+ y4 +
4y3 + 6y2 + 4y + 1.
The sum in (x+ y + 1)4 =

∑
T

(
n

k1,k2,k3

)
xk1yk21k3 =

∑
T

(
n

k1,k2,k3

)
xk1yk2

is indexed over T = {(k1, k2, k3) : k1, k2, k3 ∈ N and k1 + k2 + k3 = 4} =
{(4, 0, 0), (3, 1, 0), (0, 3, 1), (2, 2, 0), (2, 1, 1), (2, 0, 2), (1, 3, 0), (1, 2, 1),
(1, 1, 2), (1, 0, 3), (0, 4, 0), (0, 3, 1), (0, 2, 2), (0, 1, 3), (0, 0, 4)}.
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23. 4x2 + 4xy − 4xz + y2 − 2yz + z2.
The sum in ((2x) + y + (−z))2 =

∑
T

(
2

k1,k2,k3

)
(2x)k1yk2(−z)k3 is indexed over

T = {(k1, k2, k3) : k1, k2, k3 ∈ N and k1 + k2 + k3 = 2} =
{(2, 0, 0), (1, 1, 0), (1, 0, 1), (0, 2, 0), (0, 1, 1), (0, 0, 2)}.
So ((2x) + y + (−z))2 = 4x2 + 4xy − 4xz + y2 − 2yz + z2.

25. (2w)2+2(2w)x+2(2w)y+2(2w)(2z)+x2+2xy+2x(2z)+y2+2y(2z)+(2z)2 =
4w2 + 4wx+ 4wy + 8wz + x2 + 2xy + 4xz + y2 + 4yz + 4z2.

27.
(

300
100,50,40,60,20,30

)
.

29. 0, since 10 + 20 + 30 6= 80.

31. −
(

100
25,10,40,25

)
. The relevant term is

(
100

25,10,40,25

)
x25(−y)10z40(−w)25 =(

100
25,10,40,25

)
x25(−1)10y10z40(−1)25w25 =

(
100

25,10,40,25

)
x251y10z40(−1)w25 =

−
(

100
25,10,40,25

)
x25y10z40w25.

33. −25
(

14
4,2,5,3

)
= −80720640. The relevant term is(

14
4,2,5,3

)
x4y2(−2z)5w7 =

(
14

4,2,5,3

)
x4y2(−2)5z5w7 =

(−2)5
(

14
4,2,5,3

)
x4y2z5w7 = −80720640x4y2z5w7.

35.
(

14+4−1
14

)
=
(

17
14

)
= 680.

37. There are n! ways to order the n items. We shall understand that the
first k1 go into category 1, the next k2 go into category 2, and so forth. Since,
within each category, order is not important, we must divide n! by k1!k2! · · · km!,
the number of different orderings leaving items within their categories. We get

n!
k1!k2!···km! , which is

(
n

k1,k2,...,km

)
.

39. Consider 3n = (1 + 1 + 1)n.
We get ∑

0 ≤ k1, k2, k3 ≤ n
k1 + k2 + k3 = n

(
n

k1, k2, k3

)
· 1k1 · 1k2 · 1k3 .

Of course, 1k1 · 1k2 · 1k3 = 1, in each term.

41. Consider 6n = (3 + 2 + 1)n.
We get ∑
0 ≤ k1, k2, k3 ≤ n
k1 + k2 + k3 = n

(
n

k1, k2, k3

)
·3k1 ·2k2 ·1k3 =

∑
0 ≤ k1, k2 ≤ n
k1 + k2 ≤ n

(
n

k1

)(
n− k1

k2

)
·3k1 ·2k2 .
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Section 7.3

1. 1 + 2x+ 3x2 + 4x3 + · · · =
∑∞
i=0(i+ 1)xi.

Notice that xi occurs in the product (1+x+x2 +x3 + · · · )(1+x+x2 +x3 + · · · )
via products of the form xjxi−j , where j = 0, 1, . . . , i. Since there are i+ 1 such
products, the coefficient of xi is (i+ 1).

3. 1 + x2 + x4 + x6 + · · · =
∑∞
i=0 x

2i.
Notice that xk occurs in the product (1+x+x2+x3+· · · )(1−x+x2−x3+· · · ) =
(1 + x + x2 + x3 + · · · )(1 + (−x) + (−x)2 + (−x)3 + · · · ) via products of the
form xj(−x)k−j = xj(−1)k−jxk−j = (−1)k−jxjxk−j = (−1)k−jxk, where j =

0, 1, . . . , k. That is, the coefficient of xk is the alternating sum
∑k
j=0(−1)k−j . If

k is odd, then this alternating sum is 0. If k = 2i is even, then this alternating
sum is 1.

5. 1 · 1 + 1 · x2 + 1 · x4 + x · 1 + x · x2 + x · x4 + x2 · 1 + x2 · x2 + x2 · x4 =
1 + x2 + x4 + x+ x3 + x5 + x2 + x4 + x6 = 1 + x+ 2x2 + x3 + 2x4 + x5 + x6.

7. (1 · x+ 1 · x2 + x · x+ x · x2)(1 + x3) =
(x+x2+x2+x3)(1+x3) = x·1+x·x3+x2 ·1+x2 ·x3+x2 ·1+x2 ·x3+x3 ·1+x3 ·x3 =
x+ x4 + x2 + x5 + x2 + x5 + x3 + x6 = x+ 2x2 + x3 + x4 + 2x5 + x6.

9. c0 = 1, c5 = 1, c10 = 2, c15 = 2, c20 = 2, c25 = 1, c30 = 1, and, otherwise,
ci = 0.
Note that (1+x10)(1+x5+x10+x15+x20) = 1+x5+2x10+2x15+2x20+x25+x30.

11.
i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
ci 1 1 1 1 1 2 1 1 1 1 2 1 1 1 1 2

i 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
ci 1 1 1 1 2 1 1 1 1 2 1 1 1 1 1

That is, ci is the coefficient of xi in the expansion of
(1 + x10 + x20)(1 + x5)(1 + x+ x2 + x3 + x4 + x5).

13. i 0 5 10 15 20 25 30 35 40 45 50 55 60
ci 1 1 2 2 2 3 2 3 2 2 2 1 1

That is, ci is the coefficient of xi in the expansion of
(1 + x25)(1 + x10 + x20)(1 + x5 + x10 + x15).

15. 11.
(1 + x+ x2 + x3)(1 + x+ x2 + x3 + x4)(1 + x+ x2) = · · ·+ 11x5 + · · · .

17. 29.
(1+x+x2 + · · ·+x6)(1+x+x2 + · · ·+x6)(1+x+x2 +x3 +x4) = · · ·+29x8 + · · · .
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19. (a) 18.
(x+ x2 + · · ·+ x10)(x+ x2 + · · ·+ x8)(x+ x2 + x3 + x4) = · · ·+ 18x8 + · · · .
(b)

(22
8 )−(12

8 )−(14
8 )−(18

8 )+(10
8 )+(8

8)
(22

8 )
= 27256

31977 ≈ .8524.

(c)
(10

8 )+(8
8)

(22
8 )

= 23
159885 ≈ .00014.

21. ci =
(
n
i

)
ai, for i = 0, 1, . . . , n.

By the Binomial Theorem, (1+ax)n =
∑n
i=0

(
n
i

)
aixi. If a ∈ Z+, then ci =

(
n
i

)
ai

is the number of n-digit base (a+ 1) sequences with exactly i zeros.

23. ∀ i ≥ 0, ci =
(
i+3
i

)
. The generating function is (1 + x+ x2 + · · · )4. Thus, ci

counts the number of ways to i identical items in 4 distinct categories.

25. c100 =
(

100+50−1
100

)
=
(

149
100

)
.

27.
(

149
100

)
+
(

148
99

)
. It is the coefficient of x100 in 1

(1−x)50 plus the coefficient of x100

in x
(1−x)50 . Note that the latter is the same as the coefficient of x99 in 1

(1−x)50 .

29.
(

119
40

)
+ 2
(

118
39

)
+
(

117
38

)
.

31. 6175. Use g(x) = (1 + x+ x2 + x3 + x4)13 = · · ·+ 6175x5 + · · · .
What matters here is how many (anywhere from 0 to 4) cards of each denomi-
nation are in a hand.

33. 15805. Here, (1 + x+ x2 + x3 + x4)(1 + x+ x2 + · · · )3 = 1+x+x2+x3+x4

(1−x)3 .

The coefficient of x80 is
(

82
80

)
+
(

81
79

)
+
(

80
78

)
+
(

79
77

)
+
(

78
76

)
= 15805.

Or,
1+x+x2+x3+x4

(1−x)3 = 1−x5

1−x ·
1

(1−x)3 = 1−x5

(1−x)4 .

The coefficient of x80 is
(

83
80

)
−
(

78
75

)
= 15805.

35. (a) 351.

(1 + x+ x2 + x3 + x4 + x5)(1 + x+ x2 + · · · )2 = 1−x6

1−x ·
1

(1−x)2 = 1−x6

(1−x)3 .

The coefficient of x60 is
(

62
60

)
−
(

56
54

)
= 351.

(b) 56, since from 0 to 55 white might be purchased.
(c) 3, since 0, 2, or 4 bottles of champagne would be purchased.

37. 81.
( 1−x9

1−x )2 · 1
1−x = 1−2x9+x18

(1−x)3 . The coefficient of x40 is
(

42
40

)
− 2
(

33
31

)
+
(

24
22

)
= 81.

39. 1602.
Use g(x) = (1 + x+ x2 + · · · )3(1 + x)3 = 1

(1−x)3 (1 + x)3. The coefficient of x20

is
(

19
17

)(
3
3

)
+
(

20
18

)(
3
2

)
+
(

21
19

)(
3
1

)
+
(

22
20

)(
3
0

)
= 1602.
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41. When there are finitely many items, say n, in general, the number of ways
of selecting n− i is the same as the number of ways of de-selecting i.
Recall that

(
n
i

)
=
(
n
n−i
)
.

43. ∀ i ≥ 0, ci = (−1)i
(
i+n−1

i

)
, since 1

(1+x)n = 1
(1−(−x))n .

Section 7.4

1. c c c
cb̀ cb̀ cb̀
s s s
cb̀ c cb̀
s c s
c cb̀ c
c s c
s cb̀ s
cb̀ s cb̀
cb̀ c s

cb̀ cb̀ c
s s c
c c cb̀
c c s
s s cb̀
cb̀ cb̀ s
s cb̀ c

c cb̀ cb̀
c s s
cb̀ c c
s c c
cb̀ s s
s cb̀ cb̀
c s cb̀ s c cb̀ c cb̀ s cb̀ s c

3. ◦ r0 r1 r2 r3

r0 r0 r1 r2 r3

r1 r1 r2 r3 r0

r2 r2 r3 r0 r1

r3 r3 r0 r1 r2

5. (a) f1.
(b) r2f4 = f3.
(c) No. r1f2 = f4 6= f3 = f2r1.

◦ r0 r1 r2 r3 f1 f2 f3 f4

r0 r0 r1 r2 r3 f1 f2 f3 f4

r1 r1 r2 r3 r0 f4 f3 f1 f2

r2 r2 r3 r0 r1 f2 f1 f4 f3

r3 r3 r0 r1 r2 f3 f4 f2 f1

f1 f1 f3 f2 f4 r0 r2 r1 r3

f2 f2 f4 f1 f3 r2 r0 r3 r1

f3 f3 f2 f4 f1 r3 r1 r0 r2

f4 f4 f1 f3 f2 r1 r3 r2 r0
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7. 6. G = D4 and N = 1
8 [24 + 2 + 2 + 22 + 23 + 23 + 22 + 22] = 6.

9. 10. For each g ∈ D6, we need to count |Fix(g)|.
Case 1 : g = r0 the identity.
Since r0 moves nothing, each network is fixed. So |Fix(r0)| = 33 = 27.
Case 2 : g = ri for i = 1 or 2.
The only networks unchanged by such a rotation are those in which each com-
puter has the same type (from 3 choices). So |Fix(ri)| = 3.
Case 3 : g = fi for i = 1, 2, or 3.
Such a flip fixes one computer and switches the other two. The networks un-
changed by this can have any type of computer at the fixed computer, but the
two that are switched must have the same type. So |Fix(fi)| = 32 = 9.
Let N be the number of orbits of X. Invoking Theorem 7.8 we get

N =
1

|G|
∑
g∈G
|Fix(g)|

=
1

6
(|Fix(r0)|+|Fix(r1)|+|Fix(r2)|+|Fix(f1)|+|Fix(f2)|+|Fix(f3)|)

=
1

6
(27 + 3 + 3 + 9 + 9 + 9) =

60

6
= 10.

Thus, there are 10 different network types.

11. (a) G = Z2 and N = 1
2 [63 + 62] = 126.

(b) 126− 6− 6 · 5 = 90.
(c) 90− 6 · 5 = 60 or

(
6
3

)
· 3 = 60.

13. N = 1
24 [1(36) + 6(33) + 3(34) + 6(33) + 8(32)] = 57.

15. 280. Let M be the number of ways to color the non-base faces and G = Z4.
So M = 1

4 [44 + 4 + 4 + 42] = 70. Since there are then 4 ways to color the base,
N = 4(70) = 280.

17. N = 1
12 [44 + 8(42) + 3(42)] = 36.

19. 834.
G = Z8 and N = 1

8 [38 + 3 + 32 + 3 + 34 + 3 + 32 + 3] = 834.

21. 34.
G = Z4 and N = 1

4 [
(

9
5

)
+ 2 +

(
4
2

)
+ 2] = 34.

23. 8.
G = D8 and N = 1

16 [
(

8
4

)
+ 0 + 2 + 0 +

(
4
2

)
+ 0 + 2 + 0 + 4

(
4
2

)
+ 4
(

4
2

)
] = 8. They

are 11112222, 11121222, 11122122, 11211222, 11221122, 11212122, 11212212,
12121212.
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25. (a) G = D5 and N = 1
10 [35 + 3 + 3 + 3 + 3 + 5(33)] = 39.

(b) G = Z2 and N = 1
2 [35 + 33] = 135. (c) 3 + 3 · 1

2 [(25 − 2) + (23 − 2)] = 57.

27. 165. G = Z4 and N = 1
4 [54 + 5 + 52 + 5] = 165.

29. 5 · ( 1
3 [53 + 5 + 5])( 1

2 [52 + 5]) = 3375.

31. 1135. The number of ways to color each of the three outer pairs is 1
2 [52+5] =

15. So N = 1
3 [153 + 15 + 15] = 1135.

33. Proof. Let g ∈ G. (⊆) Suppose x ∈ Fix(g). So gx = x. Hence, g−1gx =
g−1x. So x = g−1x. Thus, x ∈ Fix(g−1). (⊇) Similar. �

35. N = 1
24 [
(

12
4,4,4

)
+ 8(0) + 2(3!) +

(
6

2,2,2

)
+ 6
(

6
2,2,2

)
+ 6
(

6
2,2,2

)
] = 1493.

37. 2420.
|Fix(r0)| =

(
12
6

)
+ 2 · 12

(
11
5

)
+
(

12
2

)
[2
(

10
4

)
+
(

10
5

)
] = 56364,

|Fix(r1)| = |Fix(r5)| = |Fix(r7)| = |Fix(r11)| = 0,
|Fix(r2)| = |Fix(r10)| = 2,
|Fix(r3)| = |Fix(r9)| = 0,
|Fix(r4)| = |Fix(r8)| =

(
4
2

)
= 6,

|Fix(r6)| =
(

6
3

)
+ 6[2

(
5
2

)
] = 140,

|Fix(f1)| = 2
(

5
2

)
+ 5[2

(
4
3

)
+ 2
(

4
2

)
+ 2 · 2

(
5
2

)
+
(

6
3

)
] = 180, and

|Fix(f5)| = 6
(

5
2

)
+
(

6
3

)
= 80.

So N = 1
24 [56364 + 4(0) + 2(2) + 2(0) + 2(6) + 140 + 6(180) + 6(80)] = 2420.

39. N = 1
24 [(

(
6
4

)
+
(

6
3

)
+
(

6
4

)
) + 6(2) + 3(2 + 23) + 6(2 · 3) + 8(2)] = 6.

Section 7.5

1. Each subset of {1, 2, . . . , n} of size k can be uniquely represented by a bi-
nary sequence of length n with k ones, as in Example 7.20(a). For example,
{1, 2, 6, 8, . . .} is represented by 11000101 . . .. For each i, group together those
that start with i ones followed by a zero

11 · · · 1︸ ︷︷ ︸
i times

0 . . . .

The size of this group is
(
n−(i+1)
k−i

)
=
(
n−i−1
k−i

)
. The sum of the sizes of the groups∑k

i=0

(
n−i−1
k−i

)
must be the total number

(
n
k

)
of relevant sequences.

3. The
(
n
k

)
subsets of {1, 2, . . . , n} of size k can be broken into three groups.

(i) The
(
n−2
k−2

)
that contain both 1 and 2.

(ii) The 2
(
n−2
k−1

)
that contain exactly one of 1 or 2.

(iii) The
(
n−2
k

)
that contain neither 1 nor 2.
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5. Of the
(

3n
n

)
paths from S = (0, 2n) to F = (n, 0) in the (2n + 1) by (n + 1)

rectangular grid of points ([0, n]× [0, 2n]) ∩ (Z× Z),s s s
s s s
s s s
s s s
s s s

S

F
d0

d1

dn

for each 0 ≤ i ≤ n, the number that pass through di = (i, i) is
(

2n
i

)(
n
n−i
)
. So,

we have
(

3n
n

)
=
∑n
i=0

(
2n
i

)(
n
n−i
)

=
∑n
i=0

(
2n
i

)(
n
i

)
.

7. A Canadian doubles tournament that starts with 3n players will ultimately
have 3n−1 losers (and one champion). For each 1 ≤ k ≤ n, round k has 3n−k+1

competitors and its completion leaves behind 2
33n−k+1 = 2 · 3n−k losers. Thus,

the total number of losers is
∑n
k=1 2 · 3n−k = 2

∑n−1
k=0 3k.

9. Let U be the set of base-3 sequences of length n, and let A be the subset of
those that contain at least one 2. For each 1 ≤ j ≤ n, let Aj be the subset of
those that have a 2 in position j. So A = ∪ni=1Ai. First, observe that |A| = |U|−
|Ac| = 3n−2n. For each 1 ≤ j1 < j2 < · · · < ji ≤ n, |Aj1∩Aj2∩· · ·∩Aji | = 3n−i.
So, for each 1 ≤ i ≤ n, Si =

(
n
i

)
3n−i. By the Principle of Inclusion-Exclusion,

|A| =
∑n
i=1(−1)i−1

(
n
i

)
3n−i.

11. Let n ≥ 1. For each 1 ≤ k ≤ n, there are
(
n
k

)
choices for a team of size

k and then k choices for its captain (one member of the team). In sum, there
are

∑n
k=1

(
n
k

)
k possible teams with a specified captain. All together, there are

n choices for a team captain and then 2n−1 choices for the remaining team
members. Hence, there are n2n−1 possible teams with a specified captain.

13. Assume that you are one of 2n people to be split into 2 teams of size n. The

number of ways to split 2n people into 2 teams of size n is
(2n

n )
2 . The division

by 2 strips away the implied ordering of the teams in the computation
(

2n
n

)
. On

the other hand, the number of ways for you to pick your n − 1 teammates is(
2n−1
n−1

)
.

15. The 3n base-3 sequences of length n can be partitioned according to triples
(k0, k1, k2), where k0 is the number of zeros, k1 is the number of ones, and k2

is the number of twos in the sequence. Of course, there are
(

n
k0,k1,k2

)
sequences

that correspond to (k0, k1, k2). Also note that it must be the case that 0 ≤
k0, k1, k2 ≤ n and k0 + k1 + k2 = n.
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17. (a)
(
a+b+c
a,b,c

)
, since we count the number of (a+ b+ c)-step paths containing

a right-, b downward-, and c frontward-steps.
(b) Consider an (i + 1) by (j + 1) by (k + 1) rectangular grid of points. In a
path from S to F , the final position before reaching F must be exactly one of
the 3 pictured points x, y, or z.

s ss s
s ss����

��
x

y z
F

By part (a), the number of paths to x is
(
n−1
i−1,j,k

)
, the number to y is

(
n−1

i,j−1,k

)
,

and the number to z is
(
n−1
i,j,k−1

)
. Hence, the sum of these three values must be

the total number of paths to F , namely
(
n
i,j,k

)
.

19. The identity permutation of {1, 2, . . . , n} moves none of its elements. The
size of the set P of nonidentity permutations of {1, 2, . . . , n} is n!− 1. For each
1 ≤ i ≤ n− 1, let Pi be the set of non-identity permutations for which i+ 1 is
the largest position moved. Since, under these conditions, there are i positions
to which i+1 may be moved, and then i! ways to place {1, 2, . . . , i}, we see that
|Pi| = i · i!. Since P = P1 ∪ P2 ∪ · · · ∪ Pn−1 is a disjoint union, its cardinality

must be
∑n−1
i=1 (i · i!).

21. If a fair coin is tossed n times, then the probability that at least one head
will occur is 1 − 1

2n . For each 1 ≤ k ≤ n, the probability that the first head
occurs on toss k is ( 1

2 )k−1( 1
2 ) = 1

2k . Hence, the total probability is
∑n
k=1

1
2k .

This must therefore equal 1− 1
2n .

23. Assume that you are one of the 6 people. Of the other 5 people, there must
be either 3 whom you have met before or 3 whom you have not met before.
(That follows from the Pigeon Hole Principle.) Assume that there are 3 whom
you have met before. If two of them have met each other before, then you and
those two are a set of 3 who have met each other before. Otherwise, those 3
are a set who have never met each other before. The case in which there are 3
whom you have not met before is handled similarly.

25. 2.

@
@ �

�

We see that there are 2 ways to triangulate a square.

27. (a) List the n − 1 terms on the non-base sides of the n-gon. Parentheses
go around any pair that sits on a common triangle. Collapse each such triangle
to its interior side, write the resulting product from the exterior sides on that
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interior side, and regard it as a single term. Now repeat this process on the
resulting smaller polygon. For example,p ppp pab c

d
@
@

a

(bc)

d @
@

a ((bc)d)

a((bc)d)

This establishes a one-to-one correspondence between triangulations of the n-
gon and parenthesizations of a product of n− 1 terms.
(b) According to Exercise 45 from Section 4.3, Cm = 1

m+1

(
2m
m

)
counts the

number of ways of parenthesizing a product consisting of m+1 factors. Here, we
use m+1 = n−1. So m = n−2, and Tn = Cn−2 = 1

n−2+1

(
2(n−2)
n−2

)
= 1

n−1

(
2n−4
n−2

)
.

29. The coins are on squares of the same color. That leaves 30 squares of
that color and 32 of the other color. Since each domino covers one square of
each color, they cannot be used to fill the rest of the board. That is, at best,
after placing 30 dominos, there will be 2 squares of the other color left. No one
domino can then cover those 2 (necessarily nonadjacent) squares of the same
color.

31. The first re-deal leaves the selected card within the first 3 rows. This holds,
since there are nine cards in the column containing the selected card, and these
cards will then fill up three rows. The second re-deal leaves the card in the
first row. This holds since, the card must be among the first three cards in
its column. Once we know the card is in the first row, the column specifies its
location.

Review

1. 92903176.
Let Ai contain those plates without i’s.
So |A0 ∪A3 ∪A6 ∪A9| = 4 · 98 − 6 · 88 + 4 · 78 − 68 = 92903176.

2. 9100− (4550+1820+1300+700) + (910+650+350+260+140+100)− (130+
70+50+20) + 10 = 2880.

3. (b 4000
7 c+ b 4000

11 c+ b 4000
13 c)− (b 4000

77 c+ b 4000
91 c+ b 4000

143 c) + b 4000
1001c =

1241− 121 + 3 = 1123.

4. p = 2197
8330 ≈ .2637.

Let Asuit contain those missing a specified suit. |A♣c ∩A♦c ∩A♥c ∩A♠c| =(
52
5

)
− 4
(

39
5

)
+ 6
(

26
5

)
− 4
(

13
5

)
= 685464. So p = 685464

(52
5 )

= 2197
8330 ≈ .2637.

5. p = 887
2907 ≈ .3051.

Let Acolor contain those missing a specified color. Containing at most two colors
is the same as excluding at least one color. |Ared ∪Awhite ∪Ablue| =
[
(

15
5

)
+
(

14
5

)
+
(

13
5

)
]− [

(
6
5

)
+
(

7
5

)
+
(

8
5

)
] = 6209. So p = 6209

(21
5 )

= 887
2907 ≈ .3051.
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6. 31150. Let Afruit contain those missing a specified type of fruit.
|Aapple

c ∩Abanana
c ∩Aorange

c| =(
20
6

)
− [
(

12
6

)
+
(

15
6

)
+
(

13
6

)
] + [

(
8
6

)
+
(

7
6

)
] = 38760− 7645 + 35 = 31150.

7.
∑4
i=0

(−1)i

i! = 3
8 .

8. 6!
2!1!3! = 60.

9.
(

10
1,2,5,2

)
= 7560.

10.
(

8
3,3,2

)
· 82 = 35840.

11. (a)
(

18
6,5,4,3

)
= 514594080. (b)

( 18
6,6,6)
3! = 2858856. (c)

( 18
4,4,5,5)

2·2 = 192972780.

12. x2 + 2xy + 2xz + 2xw + y2 + 2yz + 2yw + z2 + 2zw + w2.
The sum in (x+ y + z + w)2 =

∑
T

(
2

k1,k2,k3,k4

)
xk1yk2zk3wk4 is indexed over

T = {(k1, k2, k3, k4) : k1, k2, k3, k4 ∈ N and k1 + k2 + k3 + k4 = 2} =
{(2, 0, 0, 0), (1, 1, 0, 0), (1, 0, 1, 0), (1, 0, 0, 1), (0, 2, 0, 0), (0, 1, 1, 0), (0, 1, 0, 1),
(0, 0, 2, 0), (0, 0, 1, 1), (0, 0, 0, 2)}.
So (x+ y+ z+w)2 = x2 + 2xy+ 2xz+ 2xw+ y2 + 2yz+ 2yw+ z2 + 2zw+w2.

13. 8x3 − 12x2y + 12x2z + 6xy2 − 12xyz + 6xz2 − y3 + 3y2z − 3yz2 + z3.

14. 320250
(

80
20,50,10

)
.

The relevant term is
(

80
20,50,10

)
(3x)20(−2y)50z10 =

(
80

20,50,10

)
320(−2)50x20y50z10.

Note that (−2)50 = 250.

15.
(

20
5,4,5,6

)
= 9777287520.

16. 1− x+ 2x2 − 2x3 + 3x4 − 3x5 + · · · has ci = (−1)id i+1
2 e.

Notice that xk occurs in the product (1−x+x2−x3+· · · )(1+x2+x4+x6+· · · ) =
(1+(−x)+(−x)2 +(−x)3 + · · · )(1+x2 +x4 +x6 + · · · ) via products of the form
(−x)k−2jx2j , where j = 0, 1, . . . , bk2 c. Computing the first several coefficients
displays the resulting pattern in the product.

17. i 0 5 10 15 20 25 30 35 40 45 50
ci 1 1 2 1 2 2 3 3 3 3 3

i 55 60 65 70 75 80 85 90 95 100
ci 3 3 3 3 2 2 1 2 1 1

Use the generating function
(1 + x25 + x50)(1 + x10 + x20 + x30 + x40)(1 + x5 + x10). Expand it with a
calculator or mathematical software, and read off the coefficients.
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18. 17.
(1 + x+ x2 + x3 + x4 + x5)(1 + x+ x2 + x3)(1 + x+ x2 + x3 + x4) =
· · ·+ 17x5 + · · · . So 17.

19. 49.
(1+x+x2)(x+x2 +x3 +x4)(x2 +x3 +x4 +x5 +x6)(x3 +x4 +x5 +x6 +x7 +x8) =
· · ·+ 49x12 + · · · . So 49.

20. 44.
1−x8

1−x ( 1
1−x )2 = 1−x8

(1−x)3 . Now,
(

10
8

)
−
(

2
0

)
= 44.

21.
(

20+10−1
20

)
=
(

29
20

)
= 10015005.

See Theorem 7.6(b).

22. 1
(

7+5−1
7

)
+ 3
(

5+5−1
5

)
− 1
(

3+5−1
3

)
=
(

11
7

)
+ 3
(

9
5

)
−
(

7
3

)
= 673.

23. 7211.
(1+x+x2 +x3 +x4 +x5)(1+x+x2 + · · · )3 = (1+x+x2 +x3 +x4 +x5)( 1

1−x )3.

The coefficient of x50 is
(

52
50

)
+
(

51
49

)
+
(

50
48

)
+
(

49
47

)
+
(

48
46

)
+
(

47
45

)
= 7211.

24. ◦ r0 r1 r2

r0 r0 r1 r2

r1 r1 r2 r0

r2 r2 r0 r1

25. r4.

p6 p1p
5

p2
p
4

p3��
TT
TT
�� f

p5 p4p
6

p3
p
1

p2��
TT
TT
�� r2

p1 p6p
2

p5
p
3

p4��
TT
TT
�� f

p2 p3p
1

p4
p
6

p5��
TT
TT
��

26. 13.
G = D6 and
N = 1

12 [26+2(2)+2(22)+23+3(24)+3(23)] = 13.

27. 217045.
G = Z9 and N = 1

9 [59 + 6(5) + 2(53)] = 217045.

28. 1
24 [46+6(43)+3(44)+6(43)+8(42)] = 240.

29. 4995.
G = Z4 and N = 1

4 [39 + 33 + 35 + 33] = 4995.

30. Proof. Let g1, g2 ∈ G. Suppose Fix(g2) = X. (⊆) Suppose x ∈ Fix(g2g1).
So x = g2g1x = g1x. Hence x ∈ Fix(g1). (⊇) Suppose x ∈ Fix(g1). So
g2g1x = g2x = x. Hence x ∈ Fix(g2g1). �
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31. 4624.
The number of ways to color each of the outer triples is 1

3 [43 + 4 + 4] = 24. So
N = 1

3 [243 + 24 + 24] = 4624.

32. 94.
G = D9 and N = 1

18 [
(

9
3,3,3

)
+ 6(0) + 2(3!)] = 94.

33. Paths from c0,0 to cn+1,k must pass through exactly one of cn,k−1 or cn,k.
These are the two points above cn+1,k in the preceding row. The number of
paths to cn,k−1 is

(
n
k−1

)
. The number of paths to cn,k is

(
n
k

)
. Hence,

(
n+1
k

)
, the

number of paths to cn+1,k, must be
(
n
k−1

)
+
(
n
k

)
.

34. There are
(
n
k

)
subsets of size k from {1, 2, . . . , n}. For each k−1 ≤ i ≤ n−1,

there are
(
i

k−1

)
for which i+1 is the largest element. The point is that, if i+1 is

the largest element selected, then the remaining k− 1 elements must be chosen
from the set {1, 2, . . . , i}, and there are

(
i

k−1

)
ways to make such a choice.

35. We consider paths through Pascal’s triangular grid from S = c0,0 to F =
c3n,k. Note that such a path must go through exactly one point c2n,i in the
2nth row. For i = 0, 1, . . . , k, the number of paths from S = c0,0 to F = c3n,k
through c2n,i is

(
2n
i

)(
n
k−i
)
. That is, the number of ways from c0,0 to c2n,i is

(
2n
i

)
,

and the number of ways from c2n,i to c3n,k is
(

3n−2n
k−i

)
=
(
n
k−i
)
.

36. Here R = “(” and D = “)”. Our binary sequences never have more D’s than
R’s at any point. That is, since we want balanced parentheses, as we read from
left to right, we can never have more occurrences of “)” than “(”. Of course, in
the end we must have the same number of each.

37. Note that |A M {n}| = |A| ± 1. So |A| is even iff |A M {n}| is odd.
The same formula A 7→ A M {n} defines both a function and its inverse, since
(A M {n}) M {n} = A. This bijection therefore establishes the asserted equality.

38. 4371.
( 1−x100

1−x )3 =

( 1
1−x )3(1− 3x100 + 3x200 − x300).

The coefficient of x205 is(
207
205

)
− 3
(

107
105

)
+ 3
(

7
5

)
= 4371.

39.
(

205
202,3,0

)
= 1414910.

40.
(

52
13,13,13,13

)
.

The players are ordered North, East, South, West. We are placing 13 items into
each of 4 distinct categories. So we employ the multinomial coefficient.
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41. N = 1
16 [
(

8
2,2,4

)
+ 6(0) +

(
4

1,1,2

)
+ 4
(

4
1,1,2

)
+ 4
(

4
1,1,2

)
] = 33.

42. (a) (1 + x+ x2 + · · ·+ x10)(1 + x+ x2 + · · ·+ x8)(1 + x+ x2 + · · ·+ x12) =
· · ·+ 54x9 + · · · . So N = 54.

(b)
(10

3 )(8
3)(

12
3 )

(30
9 )

= 896
8671 ≈ .1033.

(c) The outcomes based on numbers of colors are not equally likely.

43. Let ck be the coefficient of xk in (1 + x + x2)4 = (1 − x3)4 1
(1−x)4 , and

suppose k ≥ 12. From the left-hand side, it is obvious that ck = 0. Since
the right-hand side equals (1 − 4x3 + 6x6 − 4x9 + x12) 1

(1−x)4 , we see also that

ck =
(
k+3
k

)
− 4
(
k
k−3

)
+ 6
(
k−3
k−6

)
− 4
(
k−6
k−9

)
+
(
k−9
k−12

)
.

44. (a)
(

16
4,4,4,4

)
= 63063000.

(b) G = Z4 and N = 1
4 [
(

16
4,4,4,4

)
+ 2(4!) +

(
8

2,2,2,2

)
] = 15766392.

45. 17.
(x+x2+x3+x4+x5+x6)(x+x2+x3+x4)(x+x2+x3+x4+x5) = · · ·+17x8+· · · .

46. 10.
(x2 + x4+ · · ·+ x24)(x3+ x6+ · · ·+ x24)(x4+ x8+ · · ·+ x24) = · · ·+ 10x25+ · · · .
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2.8 Chapter 8

Section 8.1

1.

sC sL
s

S

sN
@
@
@

@
@
@

3. qCqBqAqF qE qDA
A

�
�

A
A �

�

5.

rRockport

rSalmon

rBerwick

rLyme

rMilton

rKenmore

rFairmont

@
@@
�
�
�
�
�rColby

rRidgeway

rRosewoodrBrocktonrConnorrBlake

��@
@
@
@
@
@

rClay

@
@@��

7. The graph is simple. q3 q2q4
q

1 q5 �
@

@
�

It has no loops and no multiple edges.

9. The graph is not simple, because it has multiple edges.

q3 q2q4q1 e
�
b

@c
a

b

Edges a and b are multiple edges, since they both join 1 with 3.

11. Yes.
The endpoints of {2, 4} and {4, 6} are in W .

q4 q6q2

13. No. Edge e needs vertex 4, and 4 6∈W .
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15. E = {{1, 2}, {2, 3}, {2, 5}}.

q2q1q5 q3A
A

�
�

17. E = {{1, 3}, {3, 5}, {1, 5}}.

q3q1 q5@�
19. qBqAqF qD�

�

21. No. An endpoint is missing.
Alternatively, the flat line might be a loop that is squashed flat and thus inter-
sects itself illegally.

23. Yes.
The drawing has an allowed crossing of two edges.

25. No. Two edges intersect in infinitely many points.
Alternatively, there may be vertices missing from the two places where three
curves meet.

27. Yes.
1, 3, 4.

29. Let e 7→ {u, v} be an edge. The walk u, e, v, e, u is not a path.
It repeats the vertex u.

31. Yes.
1, 3, 5, 1.

33. 2.
The path 1, 3, 4 has length 2, and there is no shorter path from 1 to 4. That is,
1 and 4 are not directly joined by an edge.

35. 2.
The path 1, a, 3, e, 4 has length 2, and there is no shorter path from 1 to 4. That
is, 1 and 4 are not directly joined by an edge.
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37. 5.
The path

Berwick, Lyme, Clay, Rosewoood, Brockton, Conner

has length 5, and there is no shorter path from Berwick to Conner.

39. Yes.
There are no vertex repetitions, and {5, 1}, {1, 2}, {2, 3} are all edges in the
graph.

41. No.
It is a circuit, but vertex 1 is repeated.

43. (a) Colby, Lyme, Clay, Rosewood.
(b) Yes.
It has 7 vertices.

45. Proof. Suppose d = dist(u,w) ≥ 1. Let P be a path of length d from u to w.
Let v be the last vertex on P before w. Let Q be the path from u to v obtained
by truncating P . Since Q has length d−1, it follows that dist(u, v) ≤ d−1. We
claim that dist(u, v) = d−1. So suppose to the contrary that dist(u, v) < d−1.
Hence, there is a path Q′ of length l < d− 1 from u to v. Form P ′ from Q′ by
adding the edge from v to w. So P ′ is a path of length l + 1 < d from u to w.
However, there should be no path of length less than d from u to w. From this
contradiction it follows that dist(u, v) = d− 1. �

47. Proof. Let P and Q be distinct paths from u to v. We can find a portion of
P followed by a portion of Q that forms a cycle.

tu t
x t

y

t tz
tv

Q

����

@@@@ P

Since P and Q must be different at some point after u, let y be the first vertex
in P that is not in Q. So the vertex x in P immediately preceding y must also
be in Q. Since P and Q become different after vertex x but both end up at
vertex v, let z be the first vertex in P that is after x (and y) and is common
to P and Q. Notice that the portion of P strictly between x and z has nothing
in common with Q. Therefore, the walk which follows P from x to z and then
follows Q backwards from z to x forms a cycle in G. �

49. Sketch. By symmetry, we must start along edge 3 or edge 4.
Case 1 : If we take edge 3, then without loss of generality, we take edge 1. We
must then, without loss of generality, take edge 5. We then finish with 7, 4, 2 or
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7, 4, 6 or 6, 2 or 6, 4, 7 and get stuck without hitting every edge.
Case 2 : If we take edge 4, then without loss of generality, we take edge 1.
Subcase 2a: Take edge 3 next, then 7, and, without loss of generality, 5. After
taking 2 or 6 we get stuck. Subcase 2b: Take edge 2 next, and then, without
loss of generality, 5. If we take 6, then we get stuck. Otherwise, we take edge
7, then take 3, and get stuck. �

t t
t

t
@
@
@
@

�
�
�
�

A

B C

D

1
2 3

4

5
6 7

51. (a) n = 2, 3, 4, 5, or 6.
(b) 2.

s
Honolulu

s
L.A.

sChicago

s
Houston

s New York

sLondon

sRome

n = 2: Honolulu, Chicago, London.
n = 3: Honolulu, L.A., New York, London.
n = 4: Honolulu, L.A., Houston, New York, London.
n = 5: Honolulu, L.A., Houston, New York, Rome, London.
n = 6: Honolulu, L.A., Chicago, Houston, New York, Rome, London.
Of course, 2 is the length of the shortest path.

53. Calculus and Discrete Math.

sAstr sBio

s
Eng
s
Disc

sFr sCalc�
�
� A

A
A

A
A
A �

�
�

�
�
�
�
�
�

�
�
�
��

Calculus and Discrete Math are the only classes that are not joined to Astron-
omy by an edge.
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Section 8.2

1. q1 q2 q3 q4
3. q3q2q1q6 q5 q4A

A��

AA ��

5. q3q2q1q6 q5 q4A
A��

AA ��





J
J
JJ

7.
r(1, 1) r(1, 2) r(1, 3)

r(2, 1)r(2, 2)
HHH��
�

�
�
�

�
��

9. q0 q1
There are two binary sequences of length one.

11. (a) P7.
Colby, Ridgeway, Milton, Rosewood, Brockton, Connor, Blake.
(b) Yes.
The blue line is P7, the black line is P7, and the gray line in P4.
(c) Colby, Lyme, Milton.
Parts of both the gray line and the blue line are used.

13. (a) No. Nord is not adjacent to Sud.
(b) Just exclude Sud.
That is, consider the subgraph induced by the other three vertices.

15. (a) No.
C4 is a subgraph of K4 that is not complete.
(b) Yes.
Suppose u and v are vertices in the induced subgraph. Since there is an edge
joining u and v in the complete graph, that edge must be present in the induced
subgraph.

17. rCalculus rDiff Eq rDiscrete Math rLinear Algebra rGroup Theory

rC.S.rMathrPhysicsrChemistry

HHH@
@
@

J
J
J
JJ

HHH�
�
�

�
��











�
�
�

�
��











�
��
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19. Yes. Let V1 contain the odd-numbered vertices, and V2 the even.
In Pn, each vertex k can only be adjacent to k − 1 and k + 1. Since k − 1 and
k + 1 do not have the same parity as k, every edge must join an odd-numbered
vertex to an even-numbered vertex.

21. Proof. Let H be a subgraph of a bipartite graph G. Let V1, V2 bipartition
G, and let W be the vertex set of H. We claim that W ∩V1,W ∩V2 bipartition
H. Suppose e is an edge of H. Since e is an edge of G, e must have one end
v1 in V1 and the other end v2 in V2. Since v1 and v2 must be vertices of H, we
have v1 ∈W ∩ V1 and v2 ∈W ∩ V2. This establishes our claim. �

23. It is not bipartite, because it contains a 3-cycle.

rrrr r
25. |V | = n and |E| = n− 1.
Note V = {1, 2, . . . , n} and E = {{1, 2}, {2, 3}, . . . , {n− 1, n}}.

27. |V | = n and |E| =
(
n
2

)
.

Note V = {1, 2, . . . , n} and E = P2(V ).

29. |V | = 8 and |E| = 12.

r r
r r r
rr

r

31. |V | = 20 and |E| = 30. t r
r
r
rt

r
r
r
r

r
rrr

r
r
rrr

r



2.8. CHAPTER 8 229

33. |V | = 16 and |E| = 32.

r r

r r
r

rr

r
r r
r r
r
rr
r

35. No. They differ by more than one digit.
They differ in the fourth and fifth digits.

37. (a) 1101.
The nearest code word is 1101010 and corresponds to the message 1101.
(b) Male, A+.
See message 1101 in Table 8.2.

39. n− 1.
No two vertices are farther apart than 1 and n.

41. 1, for n ≥ 2.
No two vertices are farther apart than 1 and 2.

43. 3.
No two vertices are farther apart than 000 and 111.

45. 5.
No two vertices are farther apart than the two displayed large in the above
answer to Exercise 31.

47. 4.
No two vertices are farther apart than 0000 and 1111.

Section 8.3

1. A B C D E F
A
B
C
D
E
F


0 1 1 0 1 1
1 0 1 1 0 1
1 1 0 1 1 0
0 1 1 0 1 1
1 0 1 1 0 1
1 1 0 1 1 0


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3. 1 2 3 4 5 6
1
2
3
4
5
6


0 0 0 1 0 0
0 0 0 1 0 0
0 0 0 1 0 0
1 1 1 0 1 1
0 0 0 1 0 1
0 0 0 1 1 0


= A

5. 1 2 3 4 5 6
1
2
3
4
5
6


0 1 0 0 0 1
1 0 1 0 1 0
0 1 0 1 0 0
0 0 1 0 1 0
0 1 0 1 0 1
1 0 0 0 1 0


= A

7. 2 5 1 4 6 3
2
5
1
4
6
3


0 0 0 1 0 0
0 0 0 1 1 0
0 0 0 1 0 0
1 1 1 0 1 1
0 1 0 1 0 0
0 0 0 1 0 0


= B

9. 1 2 3 4 5
1
2
3
4
5


0 1 1 1 1
1 0 1 1 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0


11. (1, 1) (1, 2) (2, 1) (2, 2) (2, 3) (2, 4)

(1, 1)
(1, 2)
(2, 1)
(2, 2)
(2, 3)
(2, 4)


0 0 1 1 1 1
0 0 1 1 1 1
1 1 0 0 0 0
1 1 0 0 0 0
1 1 0 0 0 0
1 1 0 0 0 0


13. r

4

r1
r
5

r2 r3
h

15.

[
16 13
18 9

]
3(4) + 2(2) = 16, 3(1) + 2(5) = 13,
4(4) + 1(2) = 18, 4(1) + 1(3) = 9.
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17.

[
7 5
6 8

]

19.

 0 2 7
1 0 4
8 3 0


21.

 0 24 9
8 4 10
30 5 35


23.

(a) P =


0 1 0 0 0 0
0 0 0 0 1 0
1 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1
0 0 1 0 0 0

 (b) PA =


0 0 0 1 0 0
0 0 0 1 0 1
0 0 0 1 0 0
1 1 1 0 1 1
0 0 0 1 1 0
0 0 0 1 0 0



(c) PAPT =


0 0 0 1 0 0
0 0 0 1 1 0
0 0 0 1 0 0
1 1 1 0 1 1
0 1 0 1 0 0
0 0 0 1 0 0


(a) Note that the rows of the identity matrix I6 have been permuted according to
the permutation 2, 5, 1, 4, 6, 3. (b) Note that the rows of A have been permuted
according to the permutation 2, 5, 1, 4, 6, 3. (c) This is the same as the answer
from Exercise 7.

25.

A2 =


1 1 1 0 1 1
1 1 1 0 1 1
1 1 1 0 1 1
0 0 0 5 1 1
1 1 1 1 2 1
1 1 1 1 1 2

 .

For example, for each 1 ≤ i ≤ 6, the entry of A2 in position (i, i) is the number
of edges incident with vertex i.

27.

A2 =


2 0 1 0 2 0
0 3 0 2 0 2
1 0 2 0 2 0
0 2 0 2 0 1
2 0 2 0 3 0
0 2 0 1 0 2

 .

For example, the two of length 2 from vertex 1 to vertex 5 are 1, 2, 5 and 1, 6, 5.
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29. 0, 6, and 0, respectively.
E.g. The number of walks from 1 back to 1 of length 4 is 2 + 2 + 2 = 6.

31. 2, 0, and 5, respectively.
E.g. The number of walks from 1 back to 1 of length 6 is 1 + 1 + 3 = 5.

33. Proof. Let i, j be vertices. (→) Suppose there is a path from i to j. So, for
some 0 ≤ k ≤ n−1, there is a path of length k from i to j. So Ak has a positive
value in entry i, j. So I+A+ · · ·+Ak + · · ·+An−1 has a positive value in entry
i, j. (←) The previous argument is reversible. �

35.
1 : 4
2 : 4
3 : 4
4 : 1, 2, 3, 5, 6
5 : 4, 6
6 : 4, 5.

37.
1 : 2, 6
2 : 1, 3, 5
3 : 2, 4
4 : 3, 5
5 : 2, 4, 6
6 : 1, 5.

39.
000 : 001, 010, 100
001 : 000, 011, 101
010 : 000, 011, 110
011 : 001, 010, 111
100 : 000, 101, 110
101 : 001, 100, 111
110 : 010, 100, 111
111 : 011, 101, 110.

41. r1
r

7

r2 r3r
6

r4
r
5

@@��
@@

�
��
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Section 8.4

1. Define f(1) = 3, f(2) = 4. q1 q2 q3 q4
3. Define f(1) = (2, 1), f(2) = (1, 1), f(3) = (2, 2).q1 q2 q3 q

(1,1)
q
(2,1)q (2,2)

H
H q(2,1) q(1,1) q(2,2)

5. Define f(1) = 7, f(2) = 8, f(3) = 9, f(4) = 6, f(5) = 10. Also match up the
parallel edges connecting 1 and 4 with those connecting 6 and 7.q1q

4

q2q
5

q3 q7q
6

q8q
10

q9
7. Define f(1) = 9, f(2) = 6, f(3) = 10, f(4) = 7, f(5) = 8.�� ��

1

�� ��
2�� ��

3

�� ��
4

�� ��
5

�� ��
9

�� ��
6�� ��

10

�� ��
7

�� ��
8

9. Define f(1) = 8, f(2) = 9, f(3) = 6, f(4) = 7, f(5) = 10.e1
e

4

e2
e

3

e
5

�
�
�

e8
e

7

e9
e

6

e
10

�
�
�

11. (a) We can define f(A) = G, f(B) = J , f(C) = H, f(D) = K, f(E) = I,
and f(F ) = L.

qCqBqAqF qE qDA
A��

AA ��
qHqJqGqL qI qKA
A��

AA ��

(b)

Time Period Study Group Meeting
1 German, Kuwait
2 Indochina, Japanese
3 History, Latin

We simply use the isomorphism to make substitutions in the given schedule.

13. Define f(1, 1) = 1, f(1, 2) = 3, f(1, 3) = 5, f(2, 1) = 2, f(2, 2) = 4,
f(2, 3) = 6.

q(2,1)

q(1,1)q(2,3)q(1,3) q(2,2) q (1,2)

AA��

AA ��





J
J
JJ

q2q1q6q5 q4 q3A
A��

AA ��





J
J
JJ
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15. Define f(0) = 15, f(1) = 12, f(2) = 14, f(3) = 13, f(4) = 11, f(5) = 8,
f(6) = 10, f(7) = 9.

q
5
q
7q

4
q
6

q2q3q1 q0 q
8
q
9q

11
q
10

q14

q13q12 q15

17. From the first graph to the second graph, define ∀ i, f(i) = i + 10. The
same formula works from the second to the third.s1
s5
s

4

s2
s
3

s6s
10 s9
s
7s8

�
�

��
L
L
L
LL

Z
Z
ZZ
�
�
�
��

�
�
��

l
ll

C
C
CC

,
,,

XX

�
�

��

A
A

s11

s15

s
14

s12

s
13

s16s
20 s19

s
17s18

�
�

��
L
L
L
LL

Z
Z
ZZ
�
�
�
��

�
�
��

l
ll

C
C
CC

,
,,

XX

�
�

��

A
A

s21

s25

s
24

s22

s
23

s26s
30 s29

s
27s28

�
�

��
L
L
L
LL

Z
Z
ZZ
�
�
�
��

�
�
��

l
ll

C
C
CC

,
,,

XX

�
�

��

A
A

19. 3! · 2 = 12. The vertices {1, 2, 3} can be permuted in any of 3! ways. Vertex
4 must stay put. Vertices {5, 6} can be permuted in either of 2 ways.

21. 2 · 2 = 4. There is a vertical line of symmetry and a horizontal line of
symmetry. For each line of symmetry, we have the 2 choices: reflect or not.

23. |Dn| = 2n. We have the n rotations, and the n reflections. See Definition
7.3 for the description of the dihedral group Dn.

25. 2(n!)2. Let V1 = {(1, 1), . . . , (1, n)} and V2 = {(2, 1), . . . , (2, n)}. The set
V1 can be permuted in any of n! ways, the set V2 can be permuted in any of n!
ways, and we can either switch V1 with V2 or not (2 choices).

27. Proof. Suppose that v0, e1, v1, . . . , vn is a path in a graph G and that
f : G −→ H is an isomorphism. Since v0, e1, v1, . . . , vn is a walk in G, it fol-
lows that f(v0), f(e1), f(v1), . . . , f(vn) is a walk in H. Since there are no vertex
repetitions in the list v0, v1, . . . , vn and fV is a bijection, there cannot be any rep-
etitions in the list f(v0), f(v1), . . . , f(vn). Hence, f(v0), f(e1), f(v1), . . . , f(vn)
is a path in H. �

29. s1
s5
s

4

s2
s
3

s6s
10 s9
s
7s8

�
�
��
L
L
L
LL

Z
Z
ZZ
�
�
�
��

�
�
��

l
ll

C
C
CC

,
,,

XX

�
�

��

A
A

s{1, 2}

s{3, 4}

s
{2, 5}

s{4, 5}

s
{1, 3}

s{3, 5}s
{1, 5} s{1, 4}

s
{2, 3}s{2, 4}

�
�
��
L
L
L
LL

Z
Z
ZZ
�
�
�
��

�
�
��

l
ll

C
C
CC

,
,,

XX

�
�

��

A
A
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31. Sketch. It suffices to show that the cycles 6, 8, 10, 7, 9, 6 and 1, 2, 7, 10, 5, 1
and 6, 8, 3, 4, 9, 6 all work. Rotations handle the rest. �

s1
s5
s

4

s2
s
3

s6s
10 s9
s
7s8

�
�

��
L
L
L
LL

Z
Z
ZZ
�
�
�
��

�
�
��

l
ll

C
C
CC

,
,,

XX

�
�

��

A
A

To send 1, 2, 3, 4, 5, 1 to 6, 8, 10, 7, 9, 6, define f(1) = 6, f(2) = 8, f(3) = 10,
f(4) = 7, f(5) = 9, f(6) = 1, f(7) = 3, f(8) = 5, f(9) = 2, f(10) = 4.
To send 1, 2, 3, 4, 5, 1 to 1, 2, 7, 10, 5, 1, define g(1) = 1, g(2) = 2, g(3) = 7,
g(4) = 10, g(5) = 5, g(6) = 6, g(7) = 3, g(8) = 9, g(9) = 8, g(10) = 4. To
send 1, 2, 3, 4, 5, 1 to 6, 8, 3, 4, 9, 6, define h(1) = 6, h(2) = 8, h(3) = 3, h(4) = 4,
h(5) = 9, h(6) = 1, h(7) = 10, h(8) = 2, h(9) = 5, h(10) = 7.

33. Proof. Note that the vertex set of Cn is {1, 2, . . . , n}. Among the automor-
phisms of Cn are the rotations rk for k ∈ Z. Let i and j be arbitrary vertices
in Cn. The rotation rj−i moves i to j. That is, rj−i(i) = i+ (j − i) = j. �

35. Proof. Let G = (V,E) and H = (W,F ) be graphs. Suppose G ∼= H.
So we have an isomorphism f : G −→ H. Define f−1 : H −→ G by taking
f−1
V : VH −→ VG to be the inverse of fV : VG −→ VH and f−1

E : EH −→ EG to
be the inverse of fE : EG −→ EH . The point is that fV and fE are bijections.
So the inverses f−1

V and f−1
E exist and satisfy f−1

V ◦fV = idV and f−1
E ◦fE = idE .

(See Theorem 5.10.)
To see that f−1 is a graph isomorphism, it suffices to check that f−1 is a

graph map. So suppose w1, w2 ∈ W and e is an edge joining w1 and w2. Since
fV is a bijection, we have v1, v2 ∈ V such that f(v1) = w1 and f(v2) = w2.
Since f(v1) and f(v2) are joined by the edge e, vertices v1 and v2 must be joined
by an edge d such that fE(d) = e. Thus, f−1

E (e) = d joins f−1
V (w1) to f−1

V (w2).
We conclude that H ∼= G. �

37. Proof. (→) Suppose G is vertex transitive. Let u be a vertex of G. For
every vertex v in G, there is an automorphism f of G such that f(u) = v (by
the definition of vertex transitive). (←) Suppose there is a vertex u such that,
for all vertices v, there is an automorphism f of G such that f(u) = v. Suppose
v1, v2 ∈ V . So there exist automorphisms f1 and f2 such that f1(u) = v1

and f2(u) = v2. Let f = f2 ◦ f−1
1 . Observe that f is an automorphism and

f(v1) = v2. Since v1 and v2 are arbitrary, G is vertex transitive. �

39. Sketch. (→) Suppose f : G −→ H is an isomorphism, and let D : H −→ R2

be any drawing of H. Then D ◦ f : G −→ R2 is a drawing of G with the same
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image. � The point is that a drawing provides a map from the vertex set
of a graph to a set of points in the plane R2. Also, each edge is assigned to a
curve in R2. Using fV and fE , we can therefore construct a drawing for G from
a drawing for H.

41. Define f(1) = f(2) = f(3) = f(5) = 5, f(4) = 4, f(6) = 6.

q4 q5q6q
1q2q3 q4 q5q6q3q

1

q2
43. Sketch. Suppose there is one. Without loss of generality, say f(1) = 1 and
f(2) = 2. If f(3) = 3, then {1, 3} needs to be an edge of C4. If f(3) = 4, then
{2, 4} needs to be an edge of C4. Thus f cannot exist. �

q2q1q3 q1q4 q
2

q3
45. No. Triangle 1, 2, 3 has no place to go. There is no triangle in graph (c).

47. ∀ i, define f(1, i) = 1 and f(2, i) = 2.
Recall that Km,n has bipartition V1, V2, where V1 = {(1, i) : 1 ≤ i ≤ n} and
V2 = {(2, i) : 1 ≤ i ≤ n}. Also, P2 has vertex set {1, 2}. We map V1 to 1 and
V2 to 2. Since all edges of Km,n join V1 to V2, this is a graph map.

49. m ≤ n. When m ≤ n, we can map Km into Kn as a subgraph. If m > n,
then we are forced to map two vertices ofKm to the same vertex ofKn. However,
there is no place to put the edge joining those two vertices in Km. That is, there
are no loops.

Section 8.5

1. (a) has 6 vertices, whereas (d) has only 5.
So apply the contrapositive of Theorem 8.8(i).

3. (a) has 6 edges, whereas (c) has 7.
So apply the contrapositive of Theorem 8.8(ii).

5. 5, 2, 2, 1, 1, 1.
That is, deg(4) = 5, deg(5) = 2, deg(6) = 2, deg(1) = 1, deg(2) = 1, and
deg(3) = 1. We happened to use the ordering 4, 5, 6, 1, 2, 3 for the vertices
(which gave us a nonincreasing degree sequence), but any ordering suffices.

7. 3, 3, 2, 2, 2, 2.
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That is, deg(2) = 3, deg(5) = 3, deg(1) = 2, deg(3) = 2, deg(4) = 2, and
deg(6) = 2. We happened to use the ordering 2, 5, 1, 3, 4, 6 for the vertices
(which gave us a nonincreasing degree sequence), but any ordering suffices.

9. δ((b)) = 2 and δ((g)) = 1.
So (b) 6∼= (g) by Theorem 8.11(iii) (its contrapositive).

11. They do not have a common degree sequence.
So Theorem 8.11(i) tells us that they are not isomorphic.

13. The subgraph induced by the degree 3 vertices is P2 on the left graph and
Φ2 on the right graph. See Exercise 28 in Section 8.4.
A graph isomorphism would have to map the degree 3 vertices from the left
graph to the degree 3 vertices on the right graph. However, the right graph is
then missing a needed edge.

15. The computers of degree 3 are adjacent in the left configurations, but not
in the right.
See Exercise 28 in Section 8.4. A graph isomorphism would have to map the
degree 3 vertices from the left graph to the degree 3 vertices on the right graph.
However, the right graph is then missing a needed edge.

17. The grid on the left has a power station of degree 4, and that on the right
does not.
The graphs therefore have different degree sequences. In particular, they have
different maximum degrees. So Theorem 8.11 tells us that they are not isomor-
phic.

19. All vertices in the first graph have degree 4, while vertex “German” in the
second graph has degree 3.
The graphs therefore have different degree sequences. In particular, they have
different maximum degrees. So Theorem 8.11 tells us that they are not isomor-
phic.

21. Group them according to the numbers of vertices n and edges m.

n = 1
q ,

n = 2 qq , qq ,
n = 3 q qq , q qq , q qq�A , q qq�A ,

n = 4,m ≤ 2 q qq q , q qq q , q qq q , q qq q ,
n = 4,m = 3 q qq q@ , q qq q� , q qq q ,
n = 4,m ≥ 4 q qq q@ , q qq q , q qq q� , q qq q�@ .
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23. q q qq q q@ , q q qq q q , q q qq q q� , q q qq q q , q q qq q q .
We have grouped them according to how many vertices are isolated. Within
that, we see that there are two possibilities with two vertices isolated. Those
are distinguished by their maximum degrees.

25.

qq q q qq�@�AA�
There are 6 vertices. So the degree 5 vertex must be adjacent to each of the
other vertices. When the vertex of degree 5 is removed, it leaves a graph with
degree sequence 2, 1, 1, 1, 1. There is only one possibility for this, as shown in
Exercise 26. So we have only one possible graph here.

27. None.
An odd number of odd-degree vertices is not possible. See Corollary 8.14.

29.

qq q q qq�@�AA , qq q q qq�@�AA�
There are 6 vertices. First form the vertex of degree 4. Note that exactly one
vertex v is not a neighbor of the degree 4 vertex. Now, there are two edges left
to place, and there are only two different ways to place them. Either one or
both will be adjacent to v.

31. Proof. Suppose not. So there is an odd number of odd-degree vertices.
Hence,

∑
v∈V deg(v) is odd. However,

∑
v∈V deg(v) = 2|E|, and 2|E| is even.

This is a contradiction. �

33. |V | = 2n and |E| = n2n−1.
Recall that V is the set of binary sequences of length n. Observe that each
vertex has degree n. So 2|E| =

∑
v∈V deg(v) = n2n.

35. q4q5q6q
1 q2 q3@@����HH

The edges appear here exactly where they do not appear in graph (a).

37. q2q1q6q5 q4 q3





J
J
JJ

The edges appear here exactly where they do not appear in graph (c).
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39. Define f : C5
c −→ C5 by f(1) = 1, f(2) = 3, f(3) = 5, f(4) = 2, f(5) = 4.s1 s2

s
3

s5
s

4

Z
ZZ

�
�
�

�
��

B
B
B

s1 s2
s
3

s5
s

4

B
B
B
B
B

�
�
�
�
��
�
�
�

Z
Z
Z
Z

41. C6.

q3q5q1q6 q2 q4A
A

�
�

A
A �

�

The vertices are in a different order, but the graph is isomorphic to C6.

43. The complements C6 and C3 +C3, respectively, are not isomorphic. One is
connected, and the other is not.
Exercise 27 from Section 8.4 can also be used to see C6 6∼= C3+C3, since the path
1, 2, 3, 4 in C6 cannot be mapped to a path in C3 +C3, under any isomorphism.

45. Proof. Suppose G ∼= H. So we have an isomorphism f : G −→ H. Thus,
fV : VG −→ VH and fE : EG −→ EH are bijections. Note that the bijection fV
determines a bijection between P2(VG) and P2(VH). Hence, we have a bijection
fEc : P2(VG) \EG −→ P2(VH) \EH . The bijections fV and fEc thus determine
an isomorphism f : Gc −→ Hc. Hence Gc ∼= Hc. �

47. The idea is in the proof for Exercise 45.
Let G = (V,E) be a simple graph. The point is that a bijection f : V −→ V
determines a bijection f : E −→ E mapping edges to edges iff it determines a
bijection f : Ec −→ Ec mapping non-edges to non-edges.

49. True.
Proof. Let G be vertex transitive and v, w ∈ V . So we have an automorphism
f with f(v) = w. By Lemma 8.10, deg(w) = deg(v). Since v, w are arbitrary,
G must be regular. �

51. q qqqqq qqqq q
This is one graph with two components.

53. q2q1q6q5 q4 q3�
�

A
A
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Note that both (a) and (c) have vertex set {1, 2, 3, 4, 5, 6}. The edges they have
in common are {3, 4}, {4, 5}, and {5, 6}.

55. q2q1q6q5 q4 q3A
A

�
�

AA ��

Note that edges {1, 3} and {4, 6} are the only edges in (b) that are not already
in (c).

57.

t(1,1)

t(1,2)

t(1,3)

t(2,1)

t(2,2)

t(2,3)

t(3,1)

t(3,2)

t(3,3)

We have three copies of P3 that are connected in a path (like P3).

59. t t
t
t
t
t
t
t

B
B
BB

B
B
BB

Note that the dotted line is not part of the graph. On each side of the dotted line
is a copy of K1,3. Corresponding vertices in the two copies are then connected
by an edge (like the vertices in P2 are connected by an edge).

61. (a) The graph G ∩ (H ∪ K) has vertex set VG ∩ (VH ∪ VK) and edge set
EG∩(EH∪EK). The graph (G∩H)∪(G∩K) has vertex set (VG∩VH)∪(VG∩VK)
and edge set (EG ∩ EH) ∪ (EG ∩ EK). By the distributive laws for sets,
VG ∩ (VH ∪ VK) = (VG ∩ VH) ∪ (VG ∩ VK) and
EG ∩ (EH ∪ EK) = (EG ∩ EH) ∪ (EG ∩ EK).
So the graphs G ∩ (H ∪K) and (G ∩H) ∪ (G ∩K) must be the same graph.
(b) Similar.

63. Define f(1) = (1, 1), f(2) = (1, 2), f(3) = (1, 3), f(4) = (2, 1), f(5) =
(2, 2), f(6) = (2, 3).

q1q
3
q
2

q4
q6 q5 q(1,1)

q(1,3)q(1,2)

�
A q(2,1)

q(2,3)q(2,2)

�
A

65. Proof. Since VG 6= ∅ and VH 6= ∅, we have vertices v ∈ VG and w ∈ VH .
Let G′ be the subgraph of G induced by {v}, and let H ′ be the subgraph of H
induced by {w}. Observe that G′ × H ∼= H and G × H ′ ∼= G, via the maps
(v, h) 7→ h and (g, w) 7→ w, respectively. �
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Section 8.6

1.

s

s

s

ss
s s s s
s
s
s6?
6
?

-�

6
-�

6

-�

?

-� -

6
?

6
?

6
?

-� -

�

Each two-way street is represented by two edges in opposite directions to each
other. Each one-way street is represented by an edge with no corresponding
opposite.

3. q1 q2 q3
q
4
q
5

�-
�

�� @
@@

6

-
��	
-

?

@@I

Each computer is represented by a vertex. The two-way communication line is
represented by two edges, one in each of the two possible directions of commu-
nication.

5. A simple directed graph. q
1 q5
q
2q4q3��

��HH
HH

HHj
? HHj 6

���
���

7. Not a simple directed graph, q
1 q4
q2q3@
@

k
6�

�
?@@R 6

since there is a loop edge incident with vertex 2.

9. Yes.
2, 1, 3, 4.

11. 1, 2, 3, 5 and 1, 2, 4, 5.
Those are the shortest such paths, and the only ones that do not repeat a vertex.

13. We simply remove the directions from each edge in (a).q
1 q5
q
2q4q3��

��HH
HH
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15. We simply remove the directions from each edge in (c).

q
1 q4
q2q3@

@

k

17. Three strong components. q
1 q5
q
2q4q3��HHHHj 6

���

Notice that 1 forms an isolated strong component since there are no edges into
1, and 5 forms an isolated strong component since there are no edges out of
5. Vertices that sit in a circuit, like 2, 3, 4 here, always sit in the same strong
component.

19. Two strong components. q
1 q4
q2q3@

@

k
6�
@@R 6

Notice that 2 forms an isolated strong component since there are no edges from
other vertices into 2. Vertices that sit in a circuit, like 1, 3, 4 here, always sit in
the same strong component.

21. Yes.
The point is that this graph has just one strong component. That is, the graph
is strongly connected.

23. Define f(1) = 6, f(2) = 5, f(3) = 4.r1 r2 r3- - r6 r5 r4- -

25. Define f(1) = 7, f(2) = 5, f(3) = 8, f(4) = 6.

r
1

r2
r
3

r4










� J
J
JJ

JJ]-

-

r
7

r5
r
8

r6










� J
J
JJ

JJ]-

-
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27.
vertex indeg outdeg

1 0 2
2 1 1
3 2 2
4 1 1
5 2 0

29.
vertex indeg outdeg

1 2 1
2 1 3
3 2 1
4 1 1

31.
vertex indeg outdeg

1 0 2
2 2 1
3 1 1
4 1 0

33. In the left graph, vertex 2 has in-degree 3, and no vertex in the right graph
has that.
We appeal to the directed version of Lemma 8.10. That is, in-degrees and
out-degrees must be preserved by isomorphisms.

35. In the right graph, vertex 5 has in-degree 3, and no vertex in the left graph
has that.
We appeal to the directed version of Lemma 8.10. That is, in-degrees and
out-degrees must be preserved by isomorphisms.

37. The left graph has one vertex (namely, 1) with in-degree 1, and the right
graph has more (namely, 6, 7, 8). Hence, they are not isomorphic. We appeal
to the directed version of Theorem 8.11. That is, in-degree sequences and out-
degree sequences must be preserved by isomorphisms.

39. Define f(1) = 4, f(2) = 3.

r1 r2-
-

�
r4 r3-
-

�

41. q , qq , qq6, q qq , q qq- , q qq�A� K , q qq�A�U , q qq�A�U , q qq�A�K- , q qq�A� K�,qq6?, q qq-�, q qq�-�� , q qq�-�� , q qq�A-�� K , q qqA�-��U , q qq�A-��U , q qqA��U� I, q qqA��U� I- , q qqA��U� I-�,
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Group them according to the numbers of vertices n and edges m.

n = 1
q ,

n = 2 qq , qq6, qq6?,
n = 3,m ≤ 1 q qq , q qq- ,

n = 3,m = 2 q qq�A� K , q qq�A�U , q qq�A�U , q qq-�,

n = 3,m = 3 q qq�A�K- , q qq�A� K�, q qq�-�� , q qq�-�� ,

n = 3,m = 4 q qq�A-�� K , q qqA�-��U , q qq�A-��U , q qqA��U� I,

n = 3,m ≥ 5 q qqA��U� I- , q qqA��U� I-�,

43. These graphs are distinguished by their in-degree and out-degree sequences.

q qqq�� AA�@?�����IAAU , q qqq�� AA�@?����-IAAU , q qqq�� AA�@6���	�RAAU , q qqq�� AA�@?���	�RAAU .

indeg outdeg
3 0
1 2
1 2
1 2

indeg outdeg
3 0
2 1
1 2
0 3

indeg outdeg
2 1
2 1
2 1
0 3

indeg outdeg
2 1
2 1
1 2
1 2

45. Proof. Suppose G is strongly connected. Let u, v be vertices in G. We have
a path P from u to v in G. The underlying path P is a path from u to v in G.
So G is connected. �

47. Proof. Suppose G ∼= H. So we have an isomorphism f : G −→ H. In
particular, fV and fE are bijections. Define f : G −→ H by f

V
(v) = fV (v) and

f
E

(e) = fE(e) for all vertices v and edges e in G. Since G and G have the same
vertex set, we see that f

V
is a bijection. Since the map e 7→ e gives a one-to-one

correspondence between the edges of G and the edges of G, we see that f
E

is a bijection. Since f is a graph map, so is f . Hence, f is an isomorphism.
Therefore G ∼= H. �
The converse does not hold. In Exercise 43 for example, we see four different
directed graphs with underlying graph K4.

49. 1 2 3
1
2
3

 0 0 1
1 0 0
0 1 0

 = A,

1 2 3
1
2
3

 0 1 0
0 0 1
1 0 0

 = A2.

0(0) + 0(1) + 1(0) = 0, 0(0) + 0(0) + 1(1) = 1, 0(1) + 0(0) + 1(0) = 0,
1(0) + 0(1) + 0(0) = 0, 1(0) + 0(0) + 0(1) = 0, 1(1) + 0(0) + 0(0) = 1,
0(0) + 1(1) + 0(0) = 1, 0(0) + 1(0) + 0(1) = 0, 0(1) + 1(0) + 0(0) = 0.

51. A+AT .
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Let B be the adjacency matrix for G. Let u and v be any vertices in the common
vertex set for G and G. The number of edges from u to v in G plus the number
of edges from v to u in G equals the number of edges joining u to v in G. That
is, the (u, v) entry of A plus the (v, u) entry of A equals the (u, v) entry of B
(which is the same as the (v, u) entry of B). Of course, the (v, u) entry of A
equals the (u, v) entry of AT .

53. Let A = [ai,j ] be an adjacency matrix for a loopless directed graph G. Then,
for each 1 ≤ k ≤ n, we have

∑n
j=1 ak,j = outdeg(vk) and

∑n
i=1 ai,k = indeg(vk).

Moreover,
∑n
i=1

∑n
j=1 ai,j = |E|. The point is that, for each 1 ≤ k ≤ n, the

sum of the entries in row k is outdeg(vk) and the sum of the entries in column
k is indeg(vk).

55. No. p(1, 3) + p(1, 2) = .5 6= 1.
That is, the sum of the values assigned to the edges with tail 1 is not 1, as
required.

57.
1 2 3 4

1
2
3
4


0 .4 .6 0
0 0 1 0
0 0 1 0
0 .2 .8 0

 = M,

1 2 3 4
1
2
3
4


0 0 1 0
0 0 1 0
0 0 1 0
0 0 1 0

 = M2.

59. (a)

sAR

s
D

s
AS

sWR

s
WS

-

-

�
��6

�
��6

6
?

6
?

s(15,40)

s
(40,15)

s
(0,40)

s
(15,30)

s(30,15)

s(40,0)

s
(0,30)

s(15,15)

s(30,0)

s
(0,15)

s(15,0)

s(0,0)

- - -

- - -

��
��

�
��

��
�*

��
��

��*

H
HHH

HHH

H
HHj

H
HHH

HHj
��

��
��
�

��
��*

HHH
HHHH

HHHHj

@
@
@@

@
@@R

�
�
��

�
���

�
�
��

�
���

@
@
@@

@
@@R

HHHH
HHHj

�
��
�

�
��*

�
�
��

�
���

@
@
@@

@
@@R

j

-

*

-

(b) There are 17 states. The three states AS, D, and AR form one class. Each
of the other states forms a class by itself. Hence there are 14 single state classes
and 1 three state class, for a total of 15.
(c) The 2 states/classes WS and WR are absorbing. The other 13 are transient.

61. For a fixed i, the sum of the weights of the edges of the form (i, j) must be
1, by the definition of a Markov chain graph. The column sums need not be 1.
See Exercise 57, for example.
The point is that, for each state i, the sum of the values assigned to the edges
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with tail i must be 1. In fact, none of the columns in the matrix in Exercise 57
add up to 1.

63. (a) 0.173 after two at bats, and 0.266 after three at bats.

0
1
2
3
4
5

0
0
0
0
0
0
0

1
.110
.303

0
0
0
0

2
.058
.150
.423

0
0
0

3
.045
.163
.068
.490

0
0

4
.056
.173
.343
.425

1
0

5
.731
.213
.168
.085

0
1

 ≈M
2

0
1
2
3
4
5

0
0
0
0
0
0
0

1
.061
.166

0
0
0
0

2
.051
.135
.275

0
0
0

3
.048
.159
.068
.343

0
0

4
.087
.266
.444
.548

1
0

5
.753
.273
.213
.110

0
1

 ≈M
3

(b) 0.590. Start matters, since the values in column 4 of M∞ vary.

0
1
2
3
4
5

0
0
0
0
0
0
0

1
0
0
0
0
0
0

2
0
0
0
0
0
0

3
0
0
0
0
0
0

4
.198
.590
.690
.833

1
0

5
.802
.410
.310
.167

0
1

 ≈M
30

65. (a)

rWD rCalc

rAlg

rTrig

r
Pass

-�.1 .6@
@

@
@

@
@@I
.3

�
�
�
�

�
���.5

?.8

?.2

6.5

����61����61

(b) Calc, Trig, and Algebra have period 3. WD and Pass have period 1.
Note that WD and Pass are absorbing states, while Alg, Trig, Calc forms a cycle
of length 3. (c) 68.2% go from Calc to Pass. 72.7% go from Alg to WD.

M20 ≈


0 0 0 .318 .682
0 0 0 .659 .341
0 0 0 .727 .273
0 0 0 1 0
0 0 0 0 1


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67. (a)

r.4Bet r.2Check

r1 Win

r
1

Fold

�
��

���
.3

@
@@

@@R
.1

@
@@

@@I
.2

�
��

��	
.3

-.2

�
.3

i
6
i
6

i-

i-
(b) Bet Check Fold Win

Bet
Check

Fold
Win


0 0 .333 .667
0 0 .5 .5
0 0 1 0
0 0 0 1

 ≈M∞

(c) If the computer bets on the first turn, then the computer probably wins. If
the computer checks on the first turn, then there is an even chance of winning
and losing.
(d) No.
Unless, the computer folds on the first turn, the odds are not in Keith’s favor.

Review

1.

s s
s

s

�
�
�@

@
@

Nord

West Ost

Süd

2. qBuff qRoch qSyrq
Ith

q
Bing

A
A

HH
HH�
�

3. (a) q
1 q4 q3q2�

(b) ∅.
There are no edges among 1, 2, 3.
(c) 2.
2, 4, 3 is a shortest path.
(d) Yes.
V1 = {4}, V2 = {1, 2, 3}. That is, G ∼= K1,3.
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4. (a) r1r
4
r

3
r
5

r
2

e
AA
a db

c

(b) 1, a, 3, e, 4, b, 1.
The only repetition is that the start equals the end.
(c) No.
There is no path from 1 to 2, for example.
(d) The subgraph induced by {1, 3, 4} and the subgraph induced by {2, 5}.
The two components are shown separated in the picture for part (a).

5. (a) Yes.
There are two parallel edges between two vertices.
(b) Yes.
Again, there are two parallel edges between two vertices.

6. (a) Yes.
The are no loops and no multiple edges.
(b) Yes.
The only repetition is that the start equals the end, and there are indeed edges
{3, 4}, {4, 5}, {5, 6}, {6, 3} that join consecutive vertices in the given list.
(c) Yes.
There are no vertex repetitions, and there are indeed edges {4, 5}, {5, 2}, {2, 3}
that join consecutive vertices in the given list.

7. q(1,3)

q(1,2)

q(1,1) q (2,1)

�
���

8. q1 q2 q3 q4 q5 q6
9. s1s

4s
3
s
2

�
�
�

,
,

T
T
T

l
l

(a) (b) 1,2,3,1,4.

It is a trail, since no edges are repeated. It is not a path, since the vertex 1 is
repeated. It is not a cycle, since it does not start and end at the same vertex.

10. (a) See Figure 8.19.
(b) 2,
since they differ in two places.
(c) Yes, 0101, a left-handed male.
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(d) 0001 is equidistant from 0000 and 0101.

r r

r r
r

rr

r
r r
r r
r
rr
r

11. Proof. Suppose G is complete. Let u, v be vertices in W . Since G is
complete, there is an edge e 7→ {u, v} in G. Since u and v are vertices in W , it
follows that e is an edge of H. Hence, H is complete. �

12. (a) No.
A loop edge cannot possibly connect vertices from two disjoint sets V1 and V2.
(b) Yes.

q1 q2
This graph has bipartition {1}, {2}.
(c) Yes.
In fact, Cn is bipartite whenever n is even.

13. Let V1 = {111, 100, 001, 010} and V2 = {000, 011, 110, 101}.

r
101
r
111

r100 r
110

r010

r011r001

r
000

r111 r100 r001 r010

r000r011r110r101

H
HHH
@
@
@@

J
J
J
J
JJ

�
��
�

HH
HH

@
@
@@

�
�
��

��
��

HHHH











��
��

�
�
��

14. No. It contains 5-cycles. r r
r
r
rr

r
r
r
r

r
rrr

r
r
rrr

r
Recall that a graph is bipartite iff it contains no cycles of odd length.
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15. No. It could contain 3-cycles.
For example, if the class contains a group of three mutual friends.

16. (a) 1 2 3 4
1
2
3
4


0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 1


(b)

1 : 2, 3
2 : 1, 4
3 : 1, 4
4 : 2, 3, 4

17.

[
3 7
6 0

]
.

18. (a)


0 1 0 0
0 0 0 1
0 0 1 0
1 0 0 0

 = P .

The rows of I4 are permuted according to the permutation 2, 4, 3, 1.

(b)


1 0 0 1
0 1 1 1
1 0 0 1
0 1 1 0

 = PA

E.g., the entry in the second row and third column of PA is
0(1) + 0(0) + 0(0) + 1(1) = 1.
(c) It is the adjacency matrix relative to the vertex ordering 2, 4, 3, 1.

2 4 3 1
2
4
3
1


0 1 0 1
1 1 1 0
0 1 0 1
1 0 1 0

 = PAPT

19. 3. There are 3 walks of length 4 from 1 to 3.

20. qEqNEqNWqW qSW q SE

AA��

AA ��J
J
JJ

21. Define f(1) = 5, f(2) = 6, f(3) = 8, f(4) = 7.q
1 q
2

q4 q
3

QQ
��

q
5 q
6

q7 q
8

QQ
��
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22. Define f(1) = 2, f(a) = c, f(b) = d.r
1����a ����b r

2����c ����d
23. Define f(1) = 3, f(2) = 6, f(3) = 5, f(4) = 4, f(5) = 1, f(6) = 2.

c2c1c6c5 c4 c3A
A��

AA ��





J
J
JJ

c6c3c2c1 c4 c5A
A��

AA ��





J
J
JJ

24. Proof. For each vertex b1b2 · · · bn in Qn, we define an automorphism fb1b2···bn
ofQn such that fb1b2···bn(00 · · · 0) = b1b2 · · · bn. That is, for each vertex a1a2 · · · an
in Qn define fb1b2···bn(a1a2 · · · an) = c1c2 · · · cn, where ci = ai + bi mod 2, for
each 1 ≤ i ≤ n. Now given any two vertices u1u2 · · ·un and v1v2 · · · vn in
Qn, observe that the automorphism fv1v2···vn ◦ f−1

u1u2···un
sends u1u2 · · ·un to

v1v2 · · · vn. �

25. No.
They are not regular. Vertex transitive graphs must be regular.

26. No.
The Petersen graph has 10 vertices, not 12.

27. Define f(1) = f(4) = a, f(2) = b, f(3) = c.q1 q4 q2q3 qa qbq c�
��
28. 2.
The identity and the automorphism switching b and c are the only automor-
phisms.

29. 8 · 6 = 48.
There are only 24 automorphism of a die, since we cannot take the mirror image
of the die as an automorphism. Note that 48 = 24 · 2.

30. No. There is no K4 in the octahedron.
Note that the Tetrahedron is isomorphic to K4. That whole graph must map
into a subgraph H of the Octahedron with H ∼= K4. However, no such H exists.

31. It follows from Corollary 8.14.
We have 2|E| =

∑
v∈V deg(v) =

∑
v∈V r = r|V |. Since 2 divides r|V | and

gcd(2, r) = 1, it follows that 2 divides |V |. That is, |V | is even.

32. The graph on the left has maximum degree 4, while that on the right has
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maximum degree 5.
Isomorphic graphs must have the same maximum degree, and these two do not.

33. The degree sequences are different.
A degree sequence for the graph on the left is 5, 3, 3, 3, 3, 3, 2, and a degree
sequence for the graph on the right is 5, 5, 3, 3, 2, 2, 2. Isomorphic graphs must
have a common degree sequence, and these two do not.

34. Let U be the set of vertices in the left graph of degree 2 or 3, and similarly
define W for the right graph. The subgraphs induced by U and W are not
isomorphic, so the graphs cannot be isomorphic.
The subgraph induced by U is P1 + P3, and the subgraph induced by W is
P2 + P2.

35. No.
The left graph has a vertex of degree 4 and the right graph does not.

36. qq q q@� q , qq q q@�q�@
Let v be the vertex of degree 3. The vertex not adjacent to v is adjacent to
either 1 or 2 neighbors of v.

37.

qq qqq
q
�@
@�

,

q qqqq
q

�@
@A
A
��
�

The two degree 4 vertices are either adjacent or not.

38. This is the complement of the left graph.

q2 q6q4q5q
1

q3
Define f(1) = 1, f(2) = 4, f(3) = 2, f(4) = 6, f(5) = 3, f(6) = 5.

39. Proof. Observe that (Gc)
c

and G have the same vertex sets and the same
edge sets. Namely, V(Gc)c = VGc = VG and E(Gc)c = (EGc)

c
= (EG

c)
c

= EG.
Since the edge sets are subsets of P2(V ), the graphs (Gc)

c
and G are the same.

�

40. qq q
qq q(a) qq qqq qq q

q(b)



2.8. CHAPTER 8 253

Part (a) is a disjoint union of the path P3 and the cycle C3. Part (b) is the
product of the path P3 with the cycle C3. That is, we have 3 copies of C3, with
corresponding vertices connected in a path (namely, P3).

41. (a) The subgraph induced by {000, 010}.
(b) The subgraph induced by {000, 001, 010, 011, 100, 110}.
That is, G ∩H is isomorphic to P2, and G ∪H is the following graph.

r100 r
110

r010

r011r001

r
000

42. Sketch. For all u ∈ VG, v ∈ VH , d ∈ EG, and e ∈ EH , define f(u, v) = (v, u),
f(d, v) = (v, d), and f(u, e) = (e, u). This gives an isomorphism
f : G×H −→ H ×G. �
Recall that G×H has vertex set VG×VH and edge set (EG×VH)∪ (VG×EH).
We have defined f on each of the sets VG × VH , EG × VH , and VG × EH . It is
easy to see that fV and fE are bijections. Also, f is a graph map.

43. qBuff qRoch qSyrq
Ith

q
Bing

A
AAK

HH
HHHHY�
��
��

?

-
�

44.

(a) q1 q4
q
2q3?

-

6�

(b) q1 q4
q
2q3 (c) All of

G is
one.

(d) q1 q4
q
2q3 (e)

vert. in. out.
1 0 2
2 2 0
3 0 2
4 2 0

45. Yes.
The two edges that are parallel in the underlying graph have distinct directions
in the directed graph. So there are no loops and no multiple edges.

46. Define f(1) = 7, f(2) = 11, f(3) = 9, f(4) = 10, f(5) = 8, f(6) = 12.s1s
4

s2s
5

s3s
6

@
@
�

�

-
? ?	

I� �6

- s7s
10

s11

s
8

s9s
12

@
@
�

�

-
? ?	

I� �6

-

47. The left graph has a vertex with out-degree 3, and the right graph does not.
The out-degree of a vertex must be preserved by an isomorphism. So no iso-
morphism is possible.
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48. They are not. The left graph has a vertex with out-degree 0, and the right
graph does not.
The out-degree of a vertex must be preserved by an isomorphism. So no iso-
morphism is possible.

49. qq , qq6, qq6?.
They are distinguished by the number of edges.

50. qq qq@R?�- , qq qq@I?�- , qq qq@R?-- , qq qq@I?-- , qq qq@R?��, qq qq@I?��, qq qq@R?-�, qq qq@I?-�.

The edge incident with the pendant vertex in G can be assigned two possible
directions. For each such choice, there are four ways that the remaining triangle
in G can be directed.

51.
1 2 3 4 5 6

1
2
3
4
5
6


0 1 0 1 0 0
0 0 1 1 1 0
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 1 0 0
0 0 1 0 1 0


52. No, its strong components are two isolated vertices and the subgraph in-
duced by the other three.

r
r
r
r
r@

@@6�

@@RI

53. No. The only edge out of vertex 3 has value .2 and not 1 as required.

54.
1 2 3 4

1
2
3
4


0 1 0 0
0 0 0 1
0 .2 .8 0
.3 0 .7 0


55. (a) rA rB .6

r
C.2
r
D

�
���

�
���

-.2

6
.3 ?.4

@
@
@
@

@
@R .8

-.5
�

1
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(b) 0.08 is the relevant value in M2.
(c) Irreducible, since M3 has all nonzero entries. Regular, since all states are
aperiodic.
(d) 4

9 ≈ 0.4444.
0 .12 .8 .08
0 .36 .4 .24
.06 .06 .54 .34
.3 0 .2 .5

 = M2


.24 .072 .24 .448
.12 .216 .32 .344
.162 .048 .448 .342
.06 .06 .54 .34

 = M3


.1333 .0666 .4444 .3555
.1333 .0666 .4444 .3555
.1333 .0666 .4444 .3555
.1333 .0666 .4444 .3555

 = M30 to 4 decimal places.
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2.9 Chapter 9

Section 9.1

1. r1
r
5

r3
Since each edge is incident with vertex 2 or vertex 4, all edges get removed.

3.

r
5

r2 r3
f

Note that edge c is removed since it is in F and not due to any of the vertex
removals from W .

5. κ = 1.
Proof. Since (a) is connected, κ ≥ 1. Since {4} is a disconnecting set of size 1,
κ ≤ 1. Therefore, κ = 1. �

7. κ = 2.
Proof. Observe that (c) is connected and that the removal of any one vertex
leaves a connected graph (check all 6 cases). Hence, κ ≥ 2. Since {1, 5} is a
disconnecting set of size 2, κ ≤ 2. Therefore, κ = 2. �

9. κ = 1.
Proof. Since (e) is connected, κ ≥ 1. Since {4} is a disconnecting set of size 1,
κ ≤ 1. Therefore, κ = 1. �

11. κ = 3. r r
r
r
rr

r
r
r
r

r
rrr

r
r
rrr

r
Proof. The graph resulting from the removal of the topmost pictured vertex
cannot be disconnected by the removal of only one more vertex.q q

qqq

qq
q q
q
qqq
q
q
qqq
q
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Since the dodecahedron is vertex transitive, this shows that no two vertices can
form a disconnecting set. Hence, κ ≥ 3. Since κ ≤ δ = 3, it follows that κ = 3.
�

13. (a) K3,3. See Exercise 13 from Section 8.4.
(b) κ = 3, by Theorem 9.4. That is, κ(K3,3) = min{3, 3} = 3.
(c) No. That makes κ = δ = 2 < 3. No matter what cable is removed, the
resulting graph will have minimum degree 2.

15. Proof. Suppose G is connected and δ(G) = 1. So 1 ≤ κ(G) ≤ δ(G) = 1.
Hence, κ(G) = 1. �
Since G is connected, 1 ≤ κ(G). Whenever we have an inequality x ≤ y ≤ z ≤ x
with the same number on both ends, all of the inequalities are forced to be
equalities.

17. (a) Proof. Suppose G has n vertices and n edges. Then,

nδ(G) ≤
∑
v∈V

deg(v) = 2|E| = 2n.

Thus, κ(G) ≤ δ(G) ≤ 2. Since κ(Cn) = 2, the cycle Cn has the highest possible
connectivity. �
(b) See Theorem 9.3.
(c) q qqq q ����

BB

q qqq q ����

BB�
�

q qqq q ����

BB Z
Z

q qqq q��BB ZZ
(d) Probably the last, since the greatest number of components can be left by
removing a single vertex.

19. Proof. Suppose a graph G = (V,E) has |V | = n and |E| < d 3n
2 e. Hence,

nδ(G) ≤
∑
v∈V deg(v) = 2|E| < 2d 3n

2 e. That is, δ(G) < 2
nd

3n
2 e. In both the

case that n is even and the case that n is odd, we see that δ(G) < 3. Since δ(G)
is an integer, it follows that κ(G) ≤ δ(G) ≤ 2. �

21. Proof. Suppose G is a 2-regular graph. By Theorem 9.3, each component of
G must be a cycle. Of course, G is the disjoint union of its components. So G
is a disjoint union of cycles. �

23. Sketch. Let D be a κ-set for G, and let v ∈ D. Suppose v is not adjacent
to some component of G \ D. Then, D′ = D \ {v} disconnects G. Thus,
κ(G) ≤ |D′| < |D|, a contradiction. �
Let C1 be a component of G \ D to which v is not adjacent, and let C2 be a
different component. The point is that C1 and C2 ∪ {v} cannot be joined by a
path in G \D′. Hence, G \D′ will have at least two components.

25. Let H and J be two disjoint copies of Kd+1. Let u be a vertex from H,
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and let v be a vertex from J . Make a new graph G from the disjoint union
of H \ {u} and J \ {v} by adding a new single vertex w. Connect w to all of
the neighbors of u from H and all of the neighbors of v from J , so w will have
degree 2d. Note that δ(G) = d, and {w} is a κ-set. Hence, κ(G) = 1.

27. Note that G×P2 contains subgraphs G×{1} and G×{2} that are isomorphic
copies of G. Let D be a κ-set for G×P2. At least one of the copies of G must be
disconnected in (G× P2) \D. Moreover, D must contain at least one vertex in
each copy of G. So at least one of the vertices of D was not needed to disconnect
the copy of G that got disconnected. Hence, κ(G) ≤ κ(G× P2)− 1.
Say G× {1} is a copy of G that gets disconnected by the removal of D. There
must be at least one vertex v in both G × {2} and D. So in fact, G × {1} is
disconnected by D \ {v}, a set of size κ(G× P2)− 1.

29. λ = 1.
Proof. Observe that (a) is connected. Hence, λ ≥ 1. Since {{1, 4}} is a discon-
necting set of edges of size 1, λ ≤ 1. Therefore, λ = 1. �

31. λ = 2.
Proof. By the result in Exercise 7, 2 = κ ≤ λ. Since {{6, 1}, {1, 2}} is a discon-
necting set of edges of size 2, λ ≤ 2. Therefore, λ = 2. �

33. λ = 2.
Proof. Observe that (e) is connected and the removal of a single edge will not
disconnect the graph. Hence, λ ≥ 2. Since {{4, 5}, {5, 6}} is a disconnecting set
of edges of size 2, λ ≤ 2. Therefore, λ = 2. �

35. λ = 3.
The graph is 3-regular. It follows from Theorem 9.6 and Exercise 11 that 3 =
κ = λ.

37. λ = 3. There are multiple λ-sets.
The graph is 3-regular. It follows from Theorem 9.6 and Exercise 13(b) that
3 = κ = λ. For each vertex, the set of edges incident with it forms a λ-set.

39. Proof. Suppose λ(G) ≤ 1. If G is connected, then 1 ≤ κ ≤ λ ≤ 1. So
κ = λ = 1. If G is not connected, then κ = λ = 0. �

41. n− 1 = κ(Kn) ≤ λ(Kn) ≤ δ(Kn) = n− 1.
See Remark 9.1 and Theorem 9.5. Note that the inequalities force λ(Kn) = n−1.

43. q
1 q5
q
2q4q3��

�
�H

HHH

κ = 1 and λ = δ = 2 for the pictured graph.
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45. (a) κ = 1. (b) λ = 1.
The graph is strongly connected, {3} is a κ-set, and {(1, 3)} is a λ-set.q

1 q5
q
2q4q3�

��
�HHH
H6 6���

HHj ���
HHj

Note that the resulting graph (after removal of {3} or {(1, 3)}) is not strongly
connected.

47. (a) κ = 1. (b) λ = 1.
The graph is strongly connected, {1} is a κ-set, and {(2, 1)} is a λ-set.

q
1 q4
q2q3@
@

k
6�6

�
@@R

?

Note that the resulting graph (after removal of {1} or {(2, 1)}) is not strongly
connected.

49. κ = λ = 1. G is strongly connected, so something must be removed to
disconnect it. The unique east-west one-way street is the key. Removing it or
one of its ends causes the graph to no longer be strongly connected.

51. If S disconnects G, then S disconnects G.
This works for both a disconnecting set S and a disconnecting set of edges S.

Section 9.2

1. Neither. There are four vertices of odd degree. Namely, 1, 2, 4, 5. We must
have none for an Euler circuit, and two for an Euler trail.

3. An Euler trail. 1, c, 3, f, 4, d, 2, a, 1, b, 2, e, 5, h, 5, g, 4.
Since vertices 1 and 4 have odd degree, there is no Euler circuit.

5. An Euler trail. 5, 6, 1, 2, 3, 4, 5, 2.
Since vertices 2 and 5 have odd degree, there is no Euler circuit.

7. An Euler circuit. 6, n, 8, l, 7, j, 6, k, 7, o, 10, q, 9, p, 9,m, 6.
Note that each vertex has even degree.

9. An Euler circuit. The graph is 4-regular.

q
3

q
4 q

2

q
5

q1
q6

1, 2, 3, 6, 5, 4, 1.
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11. A (romantic) Euler trail.
The graph is connected and has exactly 2 vertices of odd degree (Nord and
Sud). Starting at Nord the following sequence of bridge crossings ends at Sud:
9, 10, 11, 8, 7, 12, 13, 6, 5, 15, 14, 1, 4, 3, 2.

13.

s

s

s

ss
s s s s
s
s
s

1

29

31

23

7

22

17

16

8

11

19

14

2

5

25

26

32 28 30 6 3 4

12 21 9 10

13 20 18 15

27 24

An Euler circuit is specified that starts and ends at the upper-left vertex in this
graph. It corresponds to a route that covers each side of each street exactly
once.

15. Yes. Connect the two odd-degree vertices with an edge.
The degrees of these two vertices now become even, and the remaining vertices
retain their even degrees. Thus, Euler’s Theorem applies to this new graph.

17. No. c.
Since a component is a graph, it cannot have an odd number of odd degree
vertices. Pick one vertex in each component and form a cycle with those vertices.

19. The layout of the hallways determines a graph in which vertices represent
intersections (cross ways) or corners and edges represent hallways. Since each
hallway must be both mopped and waxed, each edge is doubled. Thus, every
vertex has even degree and Euler’s Theorem applies.
Note that, since we are in a single building, we assume that this graph is con-
nected.

21. Vertex repetitions in an Euler circuit determine where to begin and end the
cycles. Each cycle will use two edges at each of its vertices.
See the proof of Euler’s Theorem and its preceding example. An Euler circuit
is built by pasting together cycles.

23. Even n.
In Qn, the degree of each vertex is n, and we need these degrees to be even.

25. Both m and n even.
In Km,n, some vertices have degree n and some have degree m. We need all
degrees to be even.
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27. 2.
There is an Euler trail between the two vertices of degree 3. Then two more
edges are required to return to the start.

29. (a) 2. (b) 2.

Seine

�� �
�� �
Ile de la Cité

Nord

Sud

Ile St-Louis

9 8 7 6

10 11 12 13 14

5 4 3

1 2

15

In (a), you can double bridges 9 and 10. In (b), you can double bridges 9 and
1.

31. Neither.
outdeg(1) = 2 + indeg(1). See Theorem 9.8.

33. An Euler circuit.
Observe that the graph is strongly connected and each vertex v has outdeg(v) =
indeg(v).

rr rr rr���
� ��

� �

- -
? ?

6

�

35. Neither.
outdeg(a) = 3 + indeg(a). See Theorem 9.8.

37. For each edge e, the addition of the edge e′ forces a balance between in-
and out-degrees in G′. Let u and v be two vertices in G. Since G is weakly
connected, there is a path from u to v, say. Using the the new edges in G′,
we can ‘reverse’ that path to form a path from v to u. Hence G′ is strongly
connected.

39. Mimic the proof of Theorem 9.7(a).
We must travel along edges in their correct direction, but that does not restrict
us in our argument.

41. Use a directed graph.
That is, make each side of the street a directed edge that points in the legal
direction of travel. Theorem 9.8 now does the work for us and guarantees an
Euler circuit.
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Section 9.3

1. r rrrrr
3. r rrr���� AAAA��@@
5. rrrrr r rrr r r r

rr r r
rrr
r

7.

s

s

s

ss
s s s s
s s s
s
s

9. The edges incident with degree-2 vertices must be included. However, pre-
mature 3-cycles are then formed.

r rrrrr
11. Since, the edges incident with degree-2 vertices must be included, all edges
get included. However, a Hamiltonian cycle is not formed.r(1, 1) r(1, 2) r(1, 3)

r(2, 1)r(2, 2)
H
HH��
�

�
�
�

��
�

13. After all of the edges incident with degree-2 vertices get included, the bottom
middle vertex is then incident with 3 edges of the cycle, which is impossible.

rrrr rrr
r r
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15. It is not Hamiltonian. After all of the edges incident with degree-2 vertices
get included, the result is a Hamiltonian path that cannot be completed to a
Hamiltonian cycle. s1

s
7

s2 s3s
6

s4
s
5

@
@

�
�

@
@

�
�
��

17. It is not Hamiltonian. Since vertex 1 has degree 2, the two parallel edges
must be included, and form a premature 2-cycle.

s
4

s1
s
5

s2 s3
�
�
��

�
�
��

19. Yes. Syracuse, Rochester, Ithaca, Buffalo, Binghamton, Syracuse.

qBuff qRoch qSyrq
Ith

q
Bing

A
A

HH
HH�
�

21. Km,n is Hamiltonian iff m = n.
Notice that a Hamiltonian cycle must alternate between the sets V1 and V2 of
a bipartition. If m 6= n, so |V1| 6= |V2|, then it will be impossible to end in the
same set from which you started, while covering every vertex.

23. There are 3. Namely, 1, 2, 3, 4, 5, 6, 7, 1 and 1, 2, 7, 6, 5, 4, 3, 1 and
1, 3, 4, 5, 6, 2, 7, 1. r1

r
7

r2 r3r
6

r4
r
5

@
@

�
�

�
�

@
@

�
�
��

Notice that the different Hamiltonian cycles are distinguished by the choice of
edges that pass through vertex 2.

25. ∀ n ≥ 3, (n−1)!
2 . Fix a vertex to be considered the starting vertex for the

Hamiltonian cycles. There are n− 1 choices for the second vertex, n− 2 choices
for the third vertex, and so on. Multiplication gives (n − 1)!. However, we
must divide this count by 2, since each sequence counted above gives the same
Hamiltonian cycle as its reverse.
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27. Note that κ(Kk+1,k) = k but Kk+1,k is not Hamiltonian, by Exercise 21.

29. Suppose n
2 ≤ κ(G). By Theorem 9.2, n

2 ≤ κ(G) ≤ δ(G). Hence, Theo-
rem 9.11 says that G must be Hamiltonian.

31. See Example 8.23, and take advantage of the symmetries. We may assume
that 1, 2, 3 is part of a Hamiltonian cycle. If the cycle further contains 1, 2, 3, 4,
then it suffices to assume that it contains 1, 2, 3, 4, 5, and we see that this cannot
be extended to a Hamiltonian cycle. If the cycle instead contains 1, 2, 3, 8, then
it suffices to assume that it contains 6, 1, 2, 3, 8, and we see that this cannot be
extended to a Hamiltonian cycle.

t1
t5

t
4

t2

t
3

t6t
10 t9
t
7t8

�
�

�
�
L
L
L
L
LL

Z
Z
Z
Z
�
�
�
�
��

�
�
�
�

l
l
l

C
C
C
C

,
,

,

XX

�
�

��

A
A

33. (1, 1), (1, 2), . . . , (1, n), (2, n), (2, n − 1), . . . , (2, 1), (1, 1) is a Hamiltonian
cycle. For a concrete example, consider the case in which n = 3.

q(1,1)

q(1,3)q(1,2)

��
AA q(2,1)

q(2,3)q(2,2)

��
AA

35. (1, 1), (1, 2), . . . , (1, n), (2, n), (2, n− 1), . . . , (2, 2), (3, 2), (3, 3), . . . , (3, n),
(3, 1), (2, 1), (1, 1) is a Hamiltonian cycle. For a concrete example, consider the
case in which n = 4. q(1,1) q (2,1)q

(4,1)
q

(3,1)

q(1,2) q (2,2)

q
(4,2)
q
(3,2)

q(1,3) q(2,3)

q
(4,3)
q
(3,3)

37. 1, 2, 5, 6, 3, 4, 1. r1r
4

r2r
5

r3r
6

�
��

� ��

- �

- -6
?

6

�

Notice that each edge is traversed in its correct direction.
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39. 1, 4, 3, 2.

r
4

r2
r

3

r1
@
@
@�
�
�

-

?
6

�

@@R

���

Notice that each edge is traversed in its correct direction.

41. The lower-right vertex has out-degree zero.

r rrrrr --R	6 R
	?�

That vertex can be entered but not exited.

43. (a) No. Ann defeated everyone else.
(b) Yes. Ed, Ann, Bob, Cari, Dan.
(c) Yes. There is a Hamiltonian cycle, whose start can be freely chosen.

45. Sketch. Let v be a vertex with the maximum possible out-degree. Let Aout

be the set of heads of edges with tail v. Let Ain be the set of tails of edges
with head v. Let u be any vertex in Ain. If there is no edge with tail in Aout

and head u, then u has higher out-degree than v, a contradiction. Hence, u is
distance 2 from v. �

Section 9.4

1. �� ��
1

�� ��
2�� ��

3

�� ��
4

�� ��
5

3.

Tower

Speakers
Keyboard Mouse

Printer

Monitor

Power Strip

5. q qqq q�@@�
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7. r rr
r rr rrr r

@
@
@
@ A
A
AA

@
@

b bb
b

9. t
t t t
t

t
t
t
t
t

@
@
@
@�
��

td
d d d
d

11.

rr r rr r

q qq q
q q
q qbb
b bb b

13. |R| = 8.
|V | − |E|+ |R| = 2 gives 10− 16 + |R| = 2.

15. q q qq q�
�
@
@

�� PP versus q
q qq q�
�
@

@
�� ��

These two graphs are clearly isomorphic. The dual of the embedding on the left
has a vertex with two loops, while the dual of the embedding on the right does
not. So the duals are not isomorphic.

17. |V | − |E|+ |R| = c+ 1.
For 1 ≤ i ≤ c, the ith component by itself satisfies |Ri| = |Ei| − |Vi|+ 2. Since
they all share the same outer region, adding these equations gives |R|+(c−1) =
|E| − |V |+ 2c.
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19. Proof. Suppose G contains a subdivision H of K5 or K3,3. Suppose to the
contrary that G is planar. Then H is planar, and hence K5 or K3,3 is planar.
This is a contradiction. �

21. ∀ n ≥ 5, Kn contains K5 as a subgraph.
By Kuratowski’s Theorem, Kn is therefore not planar.

23. It is not planar, since it contains a K3,3 subdivision.

+ -
t t t

t
t t

t
a

aa
aa

aa
aa

aa
a

25. It is planar, as shown.

q qq
qqq

27. This is K3,3, which is not planar.

q(2,1)

q(1,1)q(2,3)q(1,3) q(2,2) q (1,2)

A
A

�
�

A
A �

�






J
J
JJ

29. It is planar, as shown. q
q
q
q
q
q
q
q�

��

�
��

�
��

31. It is not planar. Deleting the bottom right vertex leaves a K5-subdivision.q
q
q
q
q
q
qH

HHHH��
��
�

��
��

��
�

�
��

33. K5 is the only one. It is the only one that contains a subdivision of K5, and
a subdivision of K3,3 is not possible on 5 vertices.
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35. Proof. Let G be a planar graph. Suppose to the contrary that δ(G) ≥ 6.
Then 3|V | = 1

2 (6|V |) ≤ 1
2

∑
v∈V deg(v) = |E| ≤ 3|V | − 6, a contradiction. �

Note that ∀ v ∈ V,deg(v) ≥ 6. Hence,
∑
v∈V deg(v) ≥ 6|V |.

37. Let V = {0, 1, . . . , n−1}, E0 = {{0, 1}, {0, 2}, . . . , {0, n−2}}, E1 = {{1, 2},
{2, 3}, . . . , {n − 3, n − 2}, {n − 2, 1}}, E2 = {{n − 1, 1}, {n − 1, 2}, . . . , {n −
1, n − 2}}, E = E0 ∪ E1 ∪ E2, and G = (V,E). Draw the cycle induced by
{1, 2, . . . , n − 2} in the unit circle, put 0 at the origin, and put n + 1 outside
of the unit circle. So G can be seen to be planar. Note that |V | = n and
|E| = 3(n− 2) = 3n− 6.
Note that, when n = 6, the graph G is the Octahedron.

39. A planar embedding is pictured.

qqqq q qAA��

AA ��

A single edge added must be a diameter across the picture. The resulting graph
then contains K3,3 as a subgraph. So it is not planar.

cccc c cAA��

AA ��

41. ν = 0 by Exercise 25.
The graph is planar.

43. ν = 1 by Exercise 27 and Example 9.19.
The graph is not planar, and there exists a drawing with one crossing.

45. ν = 0 by Exercise 29.
The graph is planar.

47. ν = 1, qq qq qq qqH
HHH��
�
�

�
�

by Exercise 31 and the pictured drawing.



2.9. CHAPTER 9 269

49. This drawing has two crossings.

t
26

t21t25

t24

t
29 t

27

t22

t23

t
28t

30

!!!
�
��
D
D
D
@
@

aaa
T
TT
�
�
�

�
�

"
"
""

b
b
bb

See Example 8.23.

51. q q
q

S
S
S
S

�
�
�
�

q qq
53. q qq q

q q
q q
q qq q
q q
q q

55. One crossing is possible as shown.

qqqq q qAA��

AA ��

Now apply the result in Exercise 39. An edge has been added to the graph from
Exercise 39. So, at least one crossing is necessary.

57. True. The properties of being connected and having only even degrees are
preserved in subdivisions. Subdividing edges simply introduces new vertices of
degree 2.

Section 9.5

1. No. Two adjacent vertices are both colored with color 2.

3. χ = 2.

q
1

q2q
2

q1 q1q
2

We see that a 2-coloring exists. The presence of an edge makes 2 colors necessary.
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5. Since ω = 3 and a 3-coloring is pictured, χ = 3.

q1 q2q3q
2q3q2

That is, 3 = ω ≤ χ ≤ 3. So, equalities must hold throughout.

7. χ = 2. This graph is K3,3.

q(2,1)

q(1,1)q(2,3)q(1,3) q(2,2) q (1,2)

A
A

�
�

A
A �

�






J
J
JJ

See Theorem 9.19.

9. Let (V1, V2) be a bipartition. Use color 1 on the vertices in V1 and color 2 on
V2. Since edges only join V1 to V2, no edge will join vertices of the same color.

11. 2.

13. 6

15. 2

17. 1

19. Sketch. The outer 5-cycle is “uniquely” 3-colorable. This then forces all
three colors to be used on the 5 neighbors of the center vertex. Now, the center
vertex requires a fourth color. � q1

q2
q

1

q2
q
3

q1q2 q1
q2q3q

4

�
�
�
L
L
L
L

Z
Z
Z
�
�
�
�

21. By symmetry, it suffices to consider three cases.q1
q2
q

3

q2
q
1

q 1q
2 q3 q2q 1
�
�
�
L
L
L
L

Z
Z
Z
�
�
�
�

q1
q2
q

3

q2
q
1

q 1q
2
q
2q 1q3

�
�
�
L
L
L
L

Z
Z
Z
�
�
�
�

q2
q

1

q1
q
2

q 3q
3 q3 q3q 3q1L
L
L
L

�
�
�
�

None is bipartite, and each has a 3-coloring.
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23. Time Period Committee Meeting
1 German, Japanese
2 History, Kuwait
3 Indochina, Latin

Note that German, History, and Indochina form a clique requiring three colors.

qIqHqGqL qK qJA
A��

AA ��

25. Since C5 is not bipartite, 3 colors are needed. One color class must be of
size 1. The other color classes are then forced.
Let G and H be graphs isomorphic to C5 that have been colored. Let v in G
and w in H be the vertices comprising the color classes of size one. Note that
the neighbors of v must receive different colors (think about this). Similarly,
the neighbors of w receive different colors. Map v to w and map the neighbors
of v to the neighbors of w (in either of two possible ways). This determines the
rest of an isomorphism from G to H as well.

27. The sizes of the color classes do not match up in the pictured colorings.q
1 q1
q
2q 3 q1@�

q
1 q2
q
2q 3 q1@�

The left coloring has a color class of size 3, and the right coloring does not.
Hence, no isomorphism from the left graph to the right can send the color class
of size 3 to another color class of size 3.

29. χ = 3. The 5-cycles need 3 colors, and a 3-coloring is easily found.q1q2
q

3

q2
q
1

q3q
1 q1 q3q2
�
��
L
L
L

Z
ZZ
�
�
�

�
��
l
l

C
CC
,
,

XX

��

��

AA

31. χ = 4. A 4-coloring is easily found. A 3-coloring is seen to be impossible,
by trying to construct one. q2

q
1

q3 q4
q
2
q
2q

4

q3q1 q
1 q3q 4

Color the vertices of a triangle with three colors. This forces the colors on
adjacent triangles. Further extending this process leads to a conflict.
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33. χ = 4. Try starting a 3-coloring from the middle vertex, and observe that
it fails.

r1rr
rb r rcr
r

r r rd rr
Observe that vertices b, c, and d must also receive color 1. It is now impossible
to color the outer triangle.

35. For any subset W of V , the set W is independent in Gc iff W induces a
clique in G.
Hence, an independent set W in Gc of largest possible size will also be a clique
in G of largest possible size. That is, α(Gc) = ω(G). Since Gcc ∼= G, we also
have α(G) = α(Gcc) = ω(Gc).

37. The graph with vertices {acid, bleach, sulfides, ammonia, hydrogen peroxide},
whose edges reflect potential dangerous chemical reactions, has chromatic num-
ber 2. Putting acids and ammonia in cabinet 1 and bleach, sulfides and hydrogen
peroxide in cabinet 2 is safe. tacid tammonia

t sulfidest hydrogen peroxidet bleach

H
HHHH

@
@
@
@
@

HHH
HH

39.

��

q1 q2 q3 q1
q2 q1
q2@@

41. q1
q

2

q3
q

1

q1
q
3

�
�
�

43. Proof. (→) Suppose G and H are bipartite. So χ(G), χ(H) ≤ 2, by The-
orem 9.19. Thus, χ(G × H) ≤ 2, by Theorem 9.28. Hence, G × H is bipar-
tite, by Theorem 9.19. (←) Suppose G × H is bipartite. So χ(G), χ(H) ≤
max{χ(G), χ(H)} = χ(G×H) ≤ 2. Hence, G and H are bipartite. �
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45. (a)

r
r
r
r
@
@
@�
�
�r

(b) Use the result from Exercise 22, together with the observation that vertex
n must receive a color different from those of 1, 2, . . . , n− 1.
That is, χ(Wn) = 1 + χ(Cn−1).

47. Use the Greedy Coloring Algorithm, and color the highest-degree vertex
first. At most d2 + 1 colors will be used.
That is, when coloring a particular vertex, no more than d2 colors can ever be
adjacent to it. So some color in {1, 2, . . . , d2 + 1} must suffice.

49. (a) Say v1 and v2 are combined to form v. A χ(G′)-coloring of G′ gives a
χ(G′)-coloring of G with v1 and v2 the same color.
(b) Let G be C6 and identify two opposite vertices (such as 1 and 4).

51. Sketch. Let v be a vertex such that G \ {v} is disconnected, and let
H1, . . . ,Hc be the components of G \ {v}. Argue that, for each 1 ≤ i ≤ c,
the subgraph induced by Hi ∪ {v} can be colored with at most ∆(G) colors.
Further, all of these colorings can be arranged to give v the same color. �

53. 3.

�
�
@
@
@
�
�
�

@
@

@
@
@

1

2

3

1 2 1

3 2

55. Refer to an atlas.
(a) By the Four Color Theorem, the map can be colored using only four colors.
(b) 4.
(c) The states PA, MD, VA, KY, and OH form a 5-cycle that requires 3 colors
by Exercise 22. Since WV is adjacent to each of these, a fourth color is required.
See Exercise 45 as well.

Review

1. (a) G is connected, and the removal of the central vertex disconnects it.
(b) No single edge disconnects G, but two do. Note that δ = 2 and λ ≤ δ.

2. 5 = min{5, 7}. See Theorem 9.4.

3. 4, since 4 = κ ≤ λ ≤ δ = 4. See Remark 9.1 and Theorem 9.5. Note that the
inequalities are forced to be equalities.
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4. κ = 1 for all paths on 2 or more vertices.
See Theorem 9.1.

5. 2, since 2 = κ ≤ λ ≤ δ = 2.
See Theorems 9.1 and 9.5. Note that the inequalities are forced to be equalities.

6. κ(G) = 2, since the top-middle and bottom-middle vertices form a discon-
necting set, and no single vertex does.ccc

t
t
ccc�

�

�
�

7. False. κ(G) ≤ λ(G).
See Theorem 9.5.

8. True. r rr r rr r rAA���A��QQ �
�A
A A
�
QQ
��

The pictured graph G has κ(G) = 2 and λ(G) = 4. The top-middle and bottom-
middle vertices form a κ-set. The edges incident with the left-most vertex form
a λ-set.

9. Proof. Let u and v be the unique pair of vertices not joined by an edge.
Then V \ {u, v} is the only disconnecting set for G, and its size is n− 2. Thus
κ(G) = n− 2. �

10. Since κ(G) ≤ λ(G) ≤ δ(G) = 3, it suffices to observe that no two vertices
disconnect G.
Observe that the graph is vertex transitive. The graph obtained by removing
any one vertex cannot be disconnected by the removal of just one more vertex.
Hence, disconnecting sets for the original graph have size at least 3.

11. λ = min{m,n}, since min{m,n} = κ ≤ λ ≤ δ = min{m,n}.
The inequalities are forced to be equalities. See Theorems 9.4 and 9.5.

12. rrr
rrr
rrr�

�

�
�

Start 1 2

13 7

9 5

14 12 3

10 6 4

11

8

13. There are four vertices of odd degree.
There need to be exactly two vertices of odd degree for an Euler trail to exist.
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14. An Euler circuit exists, since each vertex has even degree and the graph is
connected.

s s
s

s

�
�
�@

@
@

Nord

West Ost

Süd

15. There is no Euler circuit, since two vertices have odd degree. There is an
Euler trail (1, 1), (2, 1), (1, 2), (2, 2), (1, 1), (2, 3), (1, 2).r(1, 1) r(1, 2)

r(2, 1)r(2, 2)r(2, 3)

HHH@
@
@

�
��

HHH

16. Neither. There are eight vertices of degree 3.

q qq q q
qqq

17. 1, 2, 3, 4, 1, 3, 5, 2, 4, 1 is an Euler circuit.s1 s2
s
3

s5
s

4

Z
ZZ

�
��

�
��

B
BB

B
B
B
B

�
�
�
��
�
��

Z
Z

ZZ

18. There is no Euler circuit, since two vertices have odd degree. There is an
Euler trail 1, 2, 3, 4, 5, 6.s1 s2 s3 s4 s5 s6
19. An Euler circuit is shown. r

r rr
rrr
r@
�
�
�
�

Start
1

2

3

4

5

67

8 9
10

11

12

Since there are no vertices of odd degree, there is no Euler trail.
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20. An Euler circuit is shown. rrr
rrr
rrr�

�

�
�

6

6

6

?

?

?
- -

� �

�-��
�	

Start 1 2

13 7

9 5

14 12 3

10 6 4

11

8

Since each vertex has outdeg = indeg, there is no Euler trail.

21. An Euler trail is shown. rrr
rrr
rrr6

6

6

?

?
6

- �

� �

�
-

-
-
1

2

3 4 5

67

8

9

10

11
12

13

14

S

F

Since vertex S has outdeg = indeg + 1, there is no Euler circuit.

22. Odd n ≥ 5,
since Cn

c is (n− 3)-regular and n− 3 is even iff n is odd.

23. rrr
rrr
rrr

Start
1

6

2

5

8

19

11

12

21

22

14

17

24 7 9 10 4 3

23 20 18 13 15 16

24. s
s
s
s

s
s
s
s

s
s
s
s

�
-

�
-

�
-

�
-

�
-

�
-

�
-

�
-

6?

6?

6?

6?

6?

6?

6?

6?

6 11

1 2

13 4

8 9

30 25

29 24

27 22

16 17

7 32 12 5 3 10

14 31 20 19

15 28 26 23 21 18

25. (1,1), (2,1), (1,2), (2,2), (1,3), (2,3), (1,4), (2,4), (1,1).r(1, 1) r(1, 2) r(1, 3) r(1, 4)

r(2, 1)r(2, 2)r(2, 3)r(2, 4)
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HH@
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HHH�
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26. 8·3·2·2
8·2 = 6.

There are 8 choices for the first vertex, 3 for the second, 2 for the third, 2 for the
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fourth, and then a Hamiltonian cycle is uniquely completed. However, we must
then divide out for the choice of the first vertex and the choice of the direction
in which to traverse the cycle.

27. The edges incident with the degree-2 vertices form a cycle prematurely.rrr
rrr
rrr

28. No. Edges incident with the degree 2 vertices form a cycle prematurely.r
r rr
rrr
r@

�
�
�
�

29. Proof. Suppose G is Hamiltonian with Hamiltonian cycle C. Since C is a
subgraph of G, we have 2 = δ(C) ≤ δ(G). �

30. No. The corresponding graph does not have a Hamiltonian cycle.
In fact, the graph is that in Exercise 27.

31. A Hamiltonian cycle is shown. rrr
r
r
rrr�

�
�
�

- �

�

- -

6

6

?
6

6

�	
Start 1

2

3

4

5

67

8

32. (a) Zed.
(b) Zed, Xia, Quo, Jack.
(c) Yes, the Hamiltonian path is unique.

33. From any one vertex, you can follow the Hamiltonian cycle to any other.
Let G be a directed graph with a Hamiltonian cycle C. Let u and v be any two
vertices in G. Starting at u, follow C until v is reached. This gives a path from
u to v.

34. |V | = 15.
|V | − |E|+ |R| = 2 gives |V | − 23 + 10 = 2.
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35. The subgraph obtained by deleting the center vertex is a subdivision of K5.rr
r
r
r
rr r rr

�
��
L
L
L

Z
ZZ
�
�
�

36. Proof. Suppose G = (V,E) is a planar graph all of whose cycles have length
at least 5. It suffices to assume that G is connected, because a disconnected
graph has fewer edges than the connected graph obtained by joining its compo-
nents with additional edges. Since the dual graph D(G) has vertex set R and

edge set E, Theorem 8.12 tells us that
∑
r∈R

deg(r) = 2|E|. Since each region of

G must have at least 5 edges, for each r ∈ R, deg(r) ≥ 5. Hence, 5|R| ≤ 2|E|.
Theorem 9.13 then gives that

2 = |V | − |E|+ |R| ≤ |V | − |E|+ 2

5
|E| = |V | − 3

5
|E|.

Thus, 3
5 |E| ≤ |V | − 2, and the result follows. �

37. The values |V | = 10 and |E| = 15 do not satisfy the inequality in Exercise 36.
That is, all cycles in the Petersen graph have length at least 5. However, 15 6≤
5
3 (10− 2).

38. K4 is planar, and all others are subgraphs of K4.
That is, subgraphs of a planar graph are planar. Each graph on 4 or fewer
vertices is a subgraph of the planar graph K4.

39. r
r r
r
r
r rr r@

�

�

@

The middle vertex shown here corresponds to the outer region in the embedding
from Exercise 13.

40. The face labels on the left correspond to the vertex labels on the right.

s
1ss sT
T
T

l
l �
�
�

,
,
1

23
4

s1s
4s

3
s
2

�
�
�

,
,

T
T
T

l
l

41. No. Subdivide an edge of K5. The result contains neither K5 nor K3,3.
The correct statement (Kuratowski’s Theorem) is that every nonplanar graph
contains a subdivision of K5 or K3,3.
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42. A planar embedding is pictured.rrr
r
r
rrr�

�

�
�
�
�

�
�

43. The following graph is isomorphic to K3,3,r
r r
r
r
r@
@

�
�
�
�

and the circuit board contains a subgraph that is a subdivision of it.

44. It is not planar. It is a subdivision of K3,3.
The pictured graph is isomorphic to K3,3,

rr
r
r
rr

�
�
�
�

and the power grid is a subdivision of it.

45. ν = 1. By Exercise 43, it is not planar. A drawing with 1 crossing is
pictured. r

r rr
rrr
r@
@

�
�
�
�

46. ν = 1. By Exercise 44, it is not planar. A drawing with 1 crossing is
pictured. rrr

r
r
rrr

47. χ = 4. Try starting a 3-coloring from the middle vertex, and observe that
it fails.

r1r r
rbr

r r rd rrrrcr
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Observe that vertices b, c, and d must also receive color 1. It is now impossible
to color the outer triangle.

48. r r rrrr r�
�
��

@
@

H
H

@
@
HH

�
�

�
�

�
�
�
A
A
@

49. ω = 3, α = 3, χ = 3. r1r
3 r
2

r2
r
1

r1r
3r
2

�
�

�
�
�
�

�
�@

@

@
@
@
@

@
@

The upper-left triangle colored 1, 2, 3 forms a clique of maximum size. The three
vertices colored 1 form an independent set of maximum size. The displayed 3-
coloring uses the fewest colors possible.

50. ω = 3, α = 3, χ = 3. r1
r

3

r
1r
2

r2r
1r
3

r2@
@

�
�
�
�

�
�

The lower-right triangle colored 1, 2, 3 forms a clique of maximum size. The
three vertices colored 1 form an independent set of maximum size. The displayed
3-coloring uses the fewest colors possible.

51. 3 sessions are needed since Chess, Math, and NHS form a 3-clique. It is
possible by the schedule:
(1) Archery, NHS
(2) Chess, Student Council
(3) Math. sChess

s
NHS

sMath

s
StCo

s
Arch

�
�
�

52. The Greedy Coloring Algorithm gives the 4-coloring on the left, whereas
the 3-coloring on the right is optimal.

r1r
2

r3r
3

r4r
4

r1r
2

@
@�
�@
@�
�@
@�
�
r1r
2

r3r
3

r2r
2

r1r
3

@
@�
�@
@�
�@
@�
�

Note that ω = 3.
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53. ∆(G) + δ(Gc) = n− 1.
For every vertex v, degG(v) + degGc(v) = n− 1. A vertex in G incident to the
largest number of edges will be a vertex in Gc incident to the smallest number
of edges.

54.

@
@
�
�
�@@

@@
�
��

1

2 3

3 2

1

3

55. Refer to an atlas.
(a) It is easy to do in three colors.
(b) Three.
(c) The regions Alberta, Northwest Territories, and Saskatchewan form a 3-
clique that requires three colors.
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2.10 Chapter 10

Section 10.1

1. No.
It contains a cycle of length 3.

3. min{m,n} = 1.
If m,n ≥ 2, then Km,n contains a cycle of length 4.

5. No.
It has multiple edges.

7. No.
A loop forms a cycle of length 1.

9. Yes.
It is a forest but not a tree (unless n = 1). It consists of n disjoint copies of T .

11. 5.

rrr
rrr rrr
rr r
rrr
rr r rrr
r rr rrr
rr r

These are the possible carbon trees.

13. (a) Yes. There are other walks but only one path.
(b) No. Hawk, Center, Park and Hawk, Center, Anselm, Main, Park are two
different paths.
(c) No. Center, Park, Main and Center, Anselm, Main are distinct shortest
paths from Center to Main.

15. Converse: Let G be a graph. If there is a unique path between any pair of
vertices in G, then G is a tree.
Proof. Suppose that between any pair of vertices in G there is a unique path.
The existence of paths shows that G is connected. So suppose G contains a
cycle C. Let u and v be distinct vertices of C. Then C provides two distinct
paths from u to v. This contradiction shows that G contains no cycles. Hence,
G must be a tree. �

17. Proof. (→) Suppose G has a unique spanning tree T . So VT = VG. Suppose
that outside of T there is some edge e 7→ {u, v}. Hence, in T there is a path P
from u to v. If we let d be the first edge on P , then (T \{d})∪{e} is a spanning
tree, different from T . So it must be that ET = EG, and hence T = G. (←) If
G is a tree, then only G itself can be its own spanning tree. �
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19. Proof. Suppose G is connected and |E| = |V | − 1. Let T be a spanning tree
for G. So VT = V and ET ⊆ E. By Theorem 10.3, |ET | = |VT | − 1. Since
|ET | = |VT | − 1 = |V | − 1 = |E|, it follows that ET = E and thus G = T is a
tree. �

21. Proof. (→) Suppose T is a tree with exactly 2 leaves, and let P be a longest
path in T . Note that the two ends of P must be leaves. Suppose that there
are vertices outside of P , and let v be one of greatest possible distance from P .
Then, v must be a third leaf. Since there can be no vertices outside of P , it
follows that T = P . (←) Obvious. �

23. n− c.
For each 1 ≤ i ≤ c, let ni be the number of vertices in component i. The number
of edges in component i is thus ni − 1. Now,

|E| =
c∑
i=1

(ni − 1) = (
c∑
i=1

ni)− c = n− c.

25. Just K1,n. All n− 1 leaves must be joined to the only other vertex.

27. Theorem: If G = (V,E) is a tree, then |E| = |V | − 1.
We prove by induction that: If G = (V,E) is a tree, then G is planar.
Proof. Base case: |V | = 1. So |E| = 0 and G is planar. Inductive step: Suppose
k ≥ 1 and any tree on k vertices is planar. Let T be a tree on k + 1 vertices,
and let v be a leaf of T . Since T \ {v} is a tree on k vertices, it must be planar.
The leaf v can now be added to give a planar embedding of T . �
By Euler’s Formula, |V | − |E|+ 1 = 2. So the theorem follows.

29.
(
n
2

)
+ n.

There are n subgraphs isomorphic to P1. Every other path subgraph corre-
sponds to the pair of vertices it joins. There are

(
n
2

)
pairs of vertices.

31. ET = {{1, 2}, {2, 3}, . . . , {n− 1, n}}. That is, Pn is a spanning tree for Cn.

33. Remove an edge from the Hamiltonian cycle guaranteed in Example 9.13.

s(u, 2) s(v, 2)

s(w, 2) s(x, 2)�
6

?
s(x, 1)

s(v, 1)s(u, 1)

s(w, 1)
6

?

-

��	�
�
�

�
�
�
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35. Converse: If a graph G has a spanning tree, then G is connected.
Proof. Suppose G has a spanning tree T . Let u and v be vertices in G. The
path from u to v in T is also a path in G. So G is connected. �

37. (a) 3, 5. (b) 2. (c) 2. (d) 3. (e) Yes. (f) Yes.

39. (a) 4. (b) 2. (c) 2. (d) 3. (e) No. Note that 2 has three children.
(f) No. Note that 2 and 4 have different numbers of children.

41. (a) No, grandchild. (b) Parent. (c) Leaves. (d) 3. (e) Yes.

43. No. The tree in Figure 10.9 is balanced with v2 as the root, but not with
v1 as the root. tv1

tv2 tv4

tv3 tv5

tv6

45. False. The pictured graph is a counterexample.r r r rr r r r
No matter which vertex is chosen to be the root, the resulting rooted tree will
not be balanced.

47. Theorem: If T is a full m-ary tree with n vertices, l leaves, and i internal
vertices, then n = i+ l = mi+ 1.
Proof. Suppose T is a full m-ary tree with n vertices, l leaves, and i internal
vertices. Since each vertex is either internal or a leaf, n = i + l. Make T a
directed graph by directing each edge from parent to child. There are n − 1
vertices other than the root (and there are n− 1 edges). Each non-root vertex
is the head (child) of a unique edge with internal tail (parent). Each internal
vertex is the tail of m edges, and there are i internal vertices. So mi = n−1. �

49. n = ml−1
m−1 and i = l−1

m−1 .
Note that l− 1 = n− i− 1 = mi+ 1− i− 1 = (m− 1)i. Note that n(m− 1) =
nm− n = nm−mi− 1 = m(n− i)− 1 = ml − 1.

51. 31.
A full 3-ary tree with i = 10 internal vertices has n = 3(10) + 1 = 31 vertices.

53. Proof. Our proof is by induction on h. If h = 0, then l = 1 and we have
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equalities in our desired results, for any choice of m. So suppose that h ≥ 1,
that T is a full m-ary tree of height h with l leaves all at level h, and suppose
that our desired results hold for all trees with smaller height. Let v0 be the root
of T , and let v1, . . . , vm be its children. If we remove v0, then there remain m
rooted trees. For each 1 ≤ j ≤ m, let Tj be the tree with root vj , height hj ,
and lj leaves. So hj = h− 1, and the inductive hypothesis applies to Tj . Hence,

l = l1 + · · ·+ lm = mh−1 + · · ·+mh−1 = m ·mh−1 = mh.

�

55. tall

tcalculus

tstudents

ttake

57. teat

tdrink tmerry

tand

tbe

59. tt t t t
B
t

B B
t

B B B
t

B B W B
t

W B

WWW B WW B W B WW B W B B W

61. tt t t t
B B
t

W B B W
t t

W W
t

W
t t

W

W B B W B WW B B WW B B WW B W B B WW B B W

63. L.
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65. V.

Section 10.2

1. [1, 2, 4, 3, 5, 6, 7].
The following picture better reflects the order in which the vertices are encoun-
tered. s1s2 s4s3 s5s7 s6

3. [1, 2, 4, 6, 5, 3, 7].

�
�

�
�

�
�

�
�

�
�

r1 r4 r6 r
5

r2 r3
r7@

@
@
@

5. [1, 3, 4, 5, 2, 6].

q4 q2q6q
1q3q5

7. [1, 2, 3, 5, 4, 6].

q4q3q1q2 q5 q6A
A����

AA ��

9. [5, 4, 3, 7, 6, 2, 1].
The following picture better reflects the order in which the vertices are encoun-
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tered. s1s2s6s3 s7s4 s5
�
�
@
@

11. [7, 6, 3, 5, 4, 2, 1].

�
�

r3 r4 r5 r
2

r6 r7
r1@

@
@
@

13. [4, 6, 5, 3, 2, 1].

q
5

q2q
4

q1 q3q
6

15. [6, 5, 3, 4, 2, 1].

q4q3q1q2 q5 q6A
AAA����

AA ��















17. Yes. K3 with labels 1, 2, 3 is the smallest example.

BFSs1s2 s3
DFSs1s2s3

19. Yes. For C4, input orderings 1, 2, 3, 4 and 1, 4, 2, 3 give different trees (from
root 1).

q3
q2q1
q4 q3

q2q1
q4

21. No. K1,3 with the degree-3 vertex labeled 1 and the others 2, 3, 4 yields the
same list L as does P4 with consecutive labels 2, 3, 1, 4.
They both yield the list [2, 3, 4, 1].
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23. 1, 2, 4. No; 1, 3, 4 is another.

q4q3q1q2 q5 q6A
A����

AA ��

25. True. From each vertex, the path in the breadth-first search tree to the root
is a shortest such path.
That is, its level in the tree is its distance in the graph from the root. For the
vertices at the highest level, there can be no shorter path to the root as would
need to exist in a tree of smaller height.

27. Yes. (V, F ) is connected at each stage, and has no cycles at the end.

29. Let v be a vertex of G = (V,E).
Perform Depth-First Search for G starting at v to obtain edge set F .
If |F | = |V | − 1, then G is connected.
Otherwise G is not.

31. Yes. The first m vertices in L are the children of the (m+ 1)st, the next m
are the children of the 2(m+ 1)st, and so on. The truth of this fact in the case
m = 2 makes postfix notation work.

33. ∗
�� @@

P +
�� @@

1 ∗
�� @@

n i

35. (a) S L − n 1 − ÷ .
(b) ÷ − S L − n 1 .
(c) S − L ÷ n − 1 .

÷(((((((
hhhhhhh− −���

PPP
���
PPPS L n 1

37. 4.

6 5 3 − ÷ 1 +
6 2 ÷ 1 +
3 1 +
4
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39. 7.

41. 3.

− 5 ÷ + 8 6 7
− 5 ÷ 14 7
− 5 2
3

43. −6.

45. Boston, New York, Toronto, Baltimore, Tampa Bay.

47. Hamiltonian cycle adcbe is found.
a, ad, adb, adbc, adbe, adc, adcb, adcbe.

49. Depth-First Search completes finding no Hamiltonian cycle.
a, ab, abc, abcd, abcde, abced, acb, acd, acde, aced, failure.

51. Colorings 1 1 2 ? and 1 2 1 ? are attempted, before
realizing none can be found.

53. Coloring 1 2 ? is attempted, before realizing none can be found.

55. Consider a graph H in which the vertices are paths of length at most k in
Kn. Also add a trivial vertex to H that connects to each path of length 0. The
graph H will be a tree with leaves corresponding to permutations of size k. So
Depth-First Search will find each of these leaves.
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Section 10.3
1.(a) q q q
q q q

q
q

3 2 1

1 3 1 2
4 2 3

(b) $120,000.

9.(a) q q q
q q q
q q

q
q

2 1 2

3 1 2 3
1 1 2

1 3
4

v1 v2 v3 v4

v5 v6 v7 v8

v9 v10

Order:
1,1,1,1,1,2,2,2,3

(b) $140,000.

3.(a) qv q q
q q q
q q q

5 3

2 1 2
3 2

4 1 3
1 1

(b) $130,000.

11.(a) qv q q
q q q
q q q

1 1

4 4 2
2 3

4 4 2
1 1

Order:
1,1,2,2,1,1,3,2
Assuming the top left
edge of weight 1 is
added first.

(b) $130,000.

5.(a) q q q
q q q
q q@

@
@

@
@
@

3 3

2 2 2
4 4 3

1 11
4

v1 v2 v3

v4 v5 v6

v7 v8

(b) $120,000.

13.(a) q q q
q q q
q q q

q
q
q

1 2 1

5 4 5 5
3 1 2

2 1 1 3
2 3 5

v1 v2 v3 v4

v5 v6 v7 v8

v9 v10 v11 v12

Order:
1,2,1,4,1,1,1,2,2,2,3
Assuming the top left
edge of weight 1 is
added first.

(b) $200,000.

7.(a)
v

q

q

q

qq
q q q q
q q q
q
q

3 5

3

3

3

35

3

1 1

2

11

2 2

2 1

3

3

The answer depends
on an edge ordering.

(b) $270,000.

15.(a)
v

q

q

q

qq
q q q q
q q q
q
q

2 4

1

2

1

24

1

2 2

1

22

5 6

1 3

6

6

The answer depends
on an edge ordering.

Order:
1,1,2,2,1,2,4,2,1,2,1,4,2
Assuming the bottom
left edge of weight 1
is added first.

(b) $250,000.

17. Certainly not if it is a loop, but yes otherwise.
If the minimum weight edge is not in the tree, then that edge forms a cycle with
the tree. So use that edge in place of the one of higher weight in the tree.
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19. True.
Sketch. Let T be the tree produced by Kruskal’s algorithm, and suppose T is
not the unique minimum spanning tree. Let T ′ be a minimum spanning tree
with the maximum possible number of edges in common with T . Now follow
the proof of Theorem 10.8 to obtain a contradiction. �

21. $18,500. tB tE tM
tG t

P

tW
tT

�
�

�
�

�
�

�
�

5 2 3.5

3 5 2 4.5

2 6

9

23. Sketch. With the ordering of the edges, we may as well regard the weights
as distinct. Hence, this result follows from Exercise 19. �

25.(a) vq q q
q q q

q
q

3 2 1

1 3 1 2
4 2 3

(b) 8 PSI.

27.(a) qv q q
q q q
q q q

5 3

2 1 2
3 2

4 1 3
1 1

(b) 8 PSI.

29.(a) q q q
q q q
q q@

@
@

@
@
@

3 3

2 2 2
4 4 3

1 11
4

v1 v2 v3

v4 v5 v6

v7 v8

The answer is not unique
since any of the three edges
incident with the right middle
vertex may be chosen.

(b) 8 PSI.

31.(a)
v

q

q

q

qq
q q q q
q q q
q
q

3 5

3

3

3

35

3

1 1

2

11

2 2

2 1

3

3

(b) 11 PSI.

33. False.
Let G = C4 with each edge of weight 1, and v any vertex.

35. Take C4 with three edges of weight 1 and one of weight 2, and let v be an
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endpoint of the weight-2 edge. The shortest path tree is on the left,r r
r r

v
2

1 1

1

r r
r r

v
2

1 1

1

and the minimum spanning tree is on the right.

37. No. Label the edges of C3 with 1,2,3, and put v incident to 2 and 3.

39. True. The distance function has merely been multiplied by a constant.

41. Adams 12, Johnson 7, Kennedy 5, Lincoln 7, Nixon 6, Polk 18.

tN vS tJ
tP t

K

tA
t

L

@
@
@
@

@
@
@
@

@
@
@
@

�
�
�

�

�
�

�
�

6 8 6

12 6 2 757

10

43. Let G = C4 with three edges of weight 1 and one of weight 2. Suppose v1

is an endpoint of the weight-2 edge, and v2 is not.r r
r r

v1

v2

2

1 1

1

r r
r r

v1

v2

2

1 1

1

The shortest path tree from v1 is on the left, and the shortest path tree from
v2 is on the right.

45. Yes. It can be proven by induction on the number of cycles.

47. A shortest path tree, since the commander wants the shortest message path
to each unit.

Section 10.4

1. 3.

3. location = 0.
low = 1,high = 6,mid = 3.
low = 4,high = 6,mid = 5.
low = 4,high = 5,mid = 4.
low = 4,high = 4.
location = 4.
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5. location = 0.
low = 1,high = 7,mid = 4.
low = 1,high = 4,mid = 2.
low = 3,high = 4,mid = 3.
low = 4,high = 4.
location = 0. Value not found.

7. The first. Sequential Search moves through the array in order. As soon as
the desired value is found, that location is returned.

9. (a) For an array of length n = 106, at most 1 + dlog2 ne = 21 comparisons
are done. That would take 21

2×109 = 0.0000000105 seconds.

(b) For an array of length n = 106, at most n2 = 1012 comparisons are done.

That would take 1012

2×109 = 500 seconds.

11. n.

13. Proof. Certainly, dlog2(k+ 2)e ≥ dlog2(k+ 1)e. So suppose, to the contrary,
that dlog2(k + 1)e = n < dlog2(k + 2)e. Hence, log2(k + 1) ≤ n < log2(k + 2).
That is, k + 1 ≤ 2n < k + 2. Since 1 ≤ 2n − k < 2, it follows that 2n − k = 1.
However, k = 2n − 1 is now odd, a contradiction. �

15. Maximum.
Let max = 1.
For i = 2 to n,

If A[i] > A[max], then
Let max = i.

Return max.

17. n− 1.
A comparison is done for each value of i from 2 to n. There are n − 1 such
values.

19. ∀ x > 0, |g(x)| ≤ |g(x)|.
That is, C = 1 and d = 0 works in Definition 10.8. Here f = g.

21. ∀ x > 0, |cg(x)| ≤ |c||g(x)| and |g(x)| ≤ |1c ||cg(x)|.
Here we show that cg(x) ∈ O(g(x)) and g(x) ∈ O(cg(x)) to conclude that
O(cg(x)) = O(g(x)). In this case, both required inequalities are actually equal-
ities given by properties of absolute value.

23. False.
By Exercise 21, O( 3

2x) = O(x).

By Lemma 10.15, since 1 < 3
2 , we have x

3
2 6∈ O(x).
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25. True.
Apply Theorem 10.12 with m = 4 together with Lemma 10.10.

27. Sketch. Say, for i = 1, 2, that ∀ x > di, |fi(x)| ≥ Ci|g(x)|. Let C = C1 +C2

and d = max{d1, d2}. So ∀ x > d, |f1(x) + f2(x)| ≤ |f1(x)| + |f2(x)| ≤
C1|g(x)|+ C2|g(x)| = C|g(x)|. �
The Triangle Inequality gives |f1(x)+f2(x)| ≤ |f1(x)|+|f2(x)|. When x > d, we
have both x > d1 and x > d2. Thus, |f1(x)| ≤ C1|g(x)| and |f2(x)| ≤ C2|g(x)|.
Of course, C1|g(x)|+ C2|g(x)| = (C1 + C2)|g(x)| = C|g(x)|.

29. Sketch. Suppose f(x) ∈ O(g(x)). By Exercise 19, g(x) ∈ O(g(x)). So
Exercise 27 finishes the job. �
That is, we have f(x), g(x) ∈ O(g(x)). So f(x) + g(x) ∈ O(g(x)).

31. Sketch. c = c · 1 ∈ O(g(x)) by Exercise 21. So Exercise 27 finishes the job.
�
That is, since c, g(x) ∈ O(g(x)), we have c+ g(x) ∈ O(g(x)).

33. (a) Asimple = P (1 + .04(60)) = 3.4P . Acompound = P (1.02)60 ≈ 3.28P . So
simple interest is better.
(b) Asimple = P (1 + .04(72)) = 3.88P . Acompound = P (1.02)72 ≈ 4.16P . So
compound interest is better.
(c) Acompound = Asimple iff P (1.02)n = P (1 + .04n) iff n = 0 or n ≈ 64.2787.
Use n ≥ 65.

35. Sketch. (⊆) ∀ n > 0, log2 n ≤ 1 + dlog2 ne. (⊇) ∀ n > 0, 1 + dlog2 ne ≤
2dlog2 ne ≤ 4 log2 n. �
Note that ∀ n ≥ 2, 1 ≤ log2 n ≤ dlog2 ne ≤ log2 n+ 1 ≤ 2 log2 n.
Since log2 n ∈ O(1 + dlog2 ne), we have O(log2 n) ⊆ O(1 + dlog2 ne).
Since 1 + dlog2 ne ∈ O(log2 n), we have O(1 + dlog2 ne) ⊆ O(log2 n).
Hence, O(log2 n) = O(1 + dlog2 ne).

37. Sketch. (⊆) ∀ n > 0, n
2 log2

n
2 ≤ n log2 n. (⊇) ∀ n > 3, n log2 n ≤

n log2 n+ n(log2 n− 2) = 2n(log2 n− 1) = 4(n2 log2
n
2 ). �

The first inequality holds since n
2 ≤ n, and the second inequality holds since

∀ n ≥ 4, log2 n− 2 ≥ 0.

39. Proof. (→) Suppose f(x) ∈ O(g(x)) and g(x) ∈ O(f(x)). So we have
C ′1, d1, C

′
2, d2 > 0 such that ∀ x > d1, |f(x)| ≤ C ′1|g(x)| and ∀ x > d2, |g(x)| ≤

C ′2|f(x)|2. Let d = max{d1, d2}, C1 = 1
C′2

, and C2 = C ′1. So ∀ x > d, C1|g(x)| =
1
C′2
|g(x)| ≤ |f(x)| ≤ C ′1|g(x)| = C2|g(x)| (←) Suppose there exist positive con-

stants C1, C2, and d for which ∀ x > d, C1|g(x)| ≤ |f(x)| ≤ C2|g(x)|. Let
d1 = d2 = d, C ′1 = C2, and C ′2 = 1

C1
. Observe that ∀ x > d1, |f(x)| ≤ C ′1|g(x)|

and ∀ x > d2, |g(x)| ≤ C ′2|f(x)|. So f(x) ∈ O(g(x)) and g(x) ∈ O(f(x)). �
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41. Apply Exercise 39.
Lemma: f(x) ∈ Θ(g(x)) iff Θ(f(x)) = Θ(g(x)) iff O(f(x)) = O(g(x)).
The symmetry in Definition 10.9 gives that f(x) ∈ Θ(g(x)) iff g(x) ∈ Θ(f(x)).
Observe that C1|g(x)| ≤ |f(x)| ≤ C2|g(x)| iff 1

C2
|f(x)| ≤ |g(x)| ≤ 1

C1
|g(x)|.

43. False.
By Theorem 10.16, O(n) ⊂ O(n logb n).

45. True.
log2(n2) = 2 log2 n. Now apply Exercise 21.

47. (a) The second.
(b) The first.
(c) The first.
Let f(x) = 64blog2 xc + 108x + 18 and g(x) = 2x2 + 4x + 8. Observe that
f(55) = 6278 = g(55). Graph f(x) and g(x) on the same set of axes (for x ≥ 1).
Observe that f(x) > g(x) for x < 55 and f(x) < g(x) for x > 55. Note that
Θ(f(n)) = Θ(n) and Θ(g(n)) = Θ(n2). Also, n is a smaller order of growth
than n2.

49. Apply Exercise 21.
The equation logb n = 1

log2 b
log2 n shows that logb n is a constant multiple of

log2 n. Here, c = 1
log2 b

6= 0.

51. Sketch. (i) For 2 ≤ n, we have 1 = log2 2 ≤ log2 n. (ii) Let C be given. For
any choice of n > 2C , we have log2 n > C. �
By Lemma 10.14, it suffices to show that 1 ∈ O(log2 n) and log2 n 6∈ O(1). In
(i), we see that 1 ∈ O(log2 n) by using C = 1 and d = 1. In (ii), we see that
there is no value of C such that log2 n ≤ C(1) eventually. Hence, log2 n 6∈ O(1).

53. Sketch. This follows from Exercise 51 by multiplying by n. �
(i) For 2 ≤ n, we have n = n log2 2 ≤ n log2 n. (ii) Let C be given. For any
choice of n > 2C , we have n log2 n > Cn.

55. Sketch. (i) By induction, we see that ∀ n ≥ 4, n2 ≤ 2n. (ii) Let C be
given. It suffices to consider C ∈ Z with C ≥ 10. By induction, we see that
∀ C ≥ 10, 2C > C3. That is, for n = C, 2n > Cn2. �
By Lemma 10.14, it suffices to show that n2 ∈ O(2n) and 2n 6∈ O(n2). In (i),
we see that n2 ∈ O(2n) by using C = 1 and d = 3. In (ii), we see that there is
no value of C such that eventually 2n < Cn2. Hence, 2n 6∈ O(n2).
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Section 10.5

1.
l=1,m=2, h=4

a1 a2 a3 a4

a2 < x ?

��
�

T HH
H
F

l=m=3, h=4

a3 a4

a3 < x ?

�� @@

l=m=1, h=2

a1 a2

a1 < x ?

�� @@

l=h=2

a2

a2 = x ?

�� @@
Return

2
Return

0

l=h=1

a1

a1 = x ?

�� @@
Return

1
Return

0

l=h=4

a4

a4 = x ?

�� @@
Return

4
Return

0

l=h=3

a3

a3 = x ?

�� @@
Return

3
Return

0

3.
A[2] > A[1]?
��

�
T

HH
H
F

A[3] > A[2]?

�� @@

A[3] > A[1]?

�� @@

A[4] > A[3]?

�� @@
Return

4
Return

3

A[4] > A[1]?

�� @@
Return

4
Return

1

A[4] > A[3]?

�� @@
Return

4
Return

3

A[4] > A[2]?

�� @@
Return

4
Return

2

5. i=2: 7 5 3 1
i=3: 5 7 3 1
i=4: 3 5 7 1
end: 1 3 5 7

7. i=2: 4 2 6 1 5 3
i=3: 2 4 6 1 5 3
i=4: 2 4 6 1 5 3
i=5: 1 2 4 6 5 3
i=6: 1 2 4 5 6 3
end: 1 2 3 4 5 6

9.
a b
a < b ?

��
�

T HH
H
F

Return
a b

Return
b a
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11.

7 5 3 1

��
�

HH
H

7 5

�� @@

7 5

3 1

�� @@

3 1

1 3 5 7

H
HH

�
��

5 7

@@ ��

7 5

1 3

@@ ��

3 1

13.

4 2 6 1 5 3

��
�

HH
H

4 2 6

�� @@

4 2 6

1 5 3

�� @@

1

�� @@

2 6

5 3

�� @@

5 3

1 2 3 4 5 6

H
HH

�
��

2 4 6

@
@

�
�

4 2 6

1 3 5

@
@

�
�

1

@@ ��

2 6

3 5

@@ ��

5 3



298 CHAPTER 2. ANSWERS TO SELECTED EXERCISES

15. i=6,j=1: 4 2 6 1 5 3
j=2: 2 4 6 1 5 3
j=3: 2 4 6 1 5 3
j=4: 2 4 1 6 5 3
j=5: 2 4 1 5 6 3

i=5,j=1: 2 4 1 5 3 6
j=2: 2 4 1 5 3 6
j=3: 2 1 4 5 3 6
j=4: 2 1 4 5 3 6

i=4,j=1: 2 1 4 3 5 6
j=2: 1 2 4 3 5 6
j=3: 1 2 4 3 5 6

i=3,j=1: 1 2 3 4 5 6
j=2: 1 2 3 4 5 6

i=2,j=1: 1 2 3 4 5 6
end: 1 2 3 4 5 6

17. i=5,j=1: 7 5 4 2 1
j=2: 5 7 4 2 1
j=3: 5 4 7 2 1
j=4: 5 4 2 7 1

i=4,j=1: 5 4 2 1 7
j=2: 4 5 2 1 7
j=3: 4 2 5 1 7

i=3,j=1: 4 2 1 5 7
j=2: 2 4 1 5 7

i=2,j=1: 2 1 4 5 7
end: 1 2 4 5 7

19. i=1: 3 8 6 1 4
i=2: 1 8 6 3 4
i=3: 1 3 6 8 4
i=4: 1 3 4 8 6
end: 1 3 4 6 8

21. i=1: 6 5 4 3 2 1
i=2: 1 5 4 3 2 6
i=3: 1 2 4 3 5 6
i=4: 1 2 3 4 5 6
i=5: 1 2 3 4 5 6
end: 1 2 3 4 5 6

23. n(n−1)
2 . For each n ≥ i ≥ 2, there are i− 1 comparisons. The total number

of comparisons is
∑n
i=2

∑i−1
j=1 1 =

∑n
i=2(i− 1) =

∑n−1
k=1 k = (n−1)n

2 .

25. a b c
a > b ?

��
�

T HH
H

F

b a c
a > c ?

�� @@

a b c
b > c ?

�� @@

a c b
a > c ?

�� @@
Return

cab
Return

acb

a b c
a > b ?

�� @@

Impossible
Return

abc

b c a
b > c ?

�� @@
Return

cba
Return

bca

b a c
b > a ?

�� @@

Impossible
Return

bac
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27. a b
b < a ?
��

�
T HH

H
F

Return
b a

Return
a b

29. No.
By Exercise 23, Bubble Sort is Θ(n(n−1)

2 ) = Θ(n2). However, Θ(n log2 n) is
maximally efficient.

31. Bubble Sort.
Trace Algorithm 10.11.

33. Order can be changed.
Consider Algorithm 10.8 in the case that n = 2 and A[1] = A[2]. The entries
get switched.

35. Same order.
See Algorithm 10.11. A switch only occurs if A[j] > A[j + 1], never when
A[j] = A[j + 1].

37. Proof. Base case: (n = 1). Note that c1 = 0 and 20 ≤ 12. Inductive
step: Suppose k ≥ 1 and that, for each 0 ≤ i ≤ k, 2ci ≤ i2i. (Goal: 2ck+1 ≤
(k + 1)2(k+1).) Observe that 2ck+1 = 2

c
b k+1

2
c
+c
d k+1

2
e
+k

= 2
c
b k+1

2
c2
c
d k+1

2
e2k

≤ 2kbk+1
2 c

2b k+1
2 cdk+1

2 e
2d k+1

2 e = 1
2k+2 ·

{
(k + 1)2(k+1) if k is odd

kk(k + 2)k+2 if k is even

≤ (k + 1)2(k+1). �
Since 2cn ≤ 22n log2 n = n2n, we have cn = log2 2cn ≤ log2 n

2n = 2n log2 n.

39. The worst-case complexity is n − 1. Moreover, every input of size n uses
n− 1 comparisons.
Notice that, no matter what the input, a comparison is done for each 2 ≤ i ≤ n.
Also note that Θ(n− 1) = Θ(n).
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41. 3 5 6 1 4

?

1 3 6 5 4 , mid = 2

��	 ? @@R

1 3 6 5 4

?

4 5 6 , mid = 3

��	 ?

4 5 6

?

4 5 , mid = 1

? @@R

4 5

A left-to-right reading of the leaves shows the correct order for A.
1 3 4 5 6 .

43. 1 2 3 4

?

1 2 3 4 , mid = 1

? @@R

1 2 3 4

?

2 3 4 , mid = 1

? @@R

2 3 4

?

3 4 , mid = 1

? @@R

3 4

A left-to-right reading of the leaves shows the correct order for A.
1 2 3 4 .

45.
∑n−1
j=1 (n− j) = n(n−1)

2 .

Review

1. We prove the contrapositive.
Proof. Suppose G = (V,E) is connected. So G has a spanning tree T = (V, F ).
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Thus, |E| ≥ |F | = |V | − 1. �

2. 4, 2, . . . , 2, 1, 1, 1, 1 or 3, 3, 2, . . . , 2, 1, 1, 1, 1.
The sum of the degrees must be 2n− 2, while exactly 4 vertices have degree 1.
In particular, this forces ∆ ≥ 3. Since the number of leaves must be at least
as big as the maximum degree, ∆ ≤ 4. Finally, observe that there is only one
possibility with ∆ = 4 and one with ∆ = 3.

3. 18.
We count the number of trees on 8 vertices with ∆ ≤ 4. There is 1 with degree
sequence 2, 2, 2, 2, 2, 2, 1, 1. There are 4 with degree sequence 3, 2, 2, 2, 2, 1, 1, 1.
There are 5 with degree sequence 3, 3, 2, 2, 1, 1, 1, 1. There is 1 with degree
sequence 3, 3, 3, 1, 1, 1, 1, 1. There is 1 with degree sequence 4, 4, 1, 1, 1, 1, 1, 1.
There are 3 with degree sequence 4, 3, 2, 1, 1, 1, 1. There are 3 with degree se-
quence 4, 2, 2, 2, 1, 1, 1, 1. Thus, a total of 18.

4. 30. In general, a forest on n vertices with c components has n − c edges.
Hence n− c = 30− 4 = 26.

5. 3n+ 1. The bonds correspond to the edges in the tree whose vertices corre-
spond to the carbon and the hydrogen atoms. There are n+ (2n+ 2) = 3n+ 2
vertices and hence 3n+ 1 edges.

6. Proof. Let P be a path from u to v. Let w be any vertex in P besides u and
v. Since w has degree 2 in P , its degree must be at least 2 in the graph. Hence,
w cannot be a leaf. �

7. (a) 4, 6, 7. (b) 2. (c) 1. (d) 2. (e) No. (f) Yes. (g) Yes. The following picture
reflects the levels of the vertices trailing away from root 2.

�
�

r1 r4 r
5

r2 r3r6 r7
�

�
@
@
@
@

8. No. Two opposite edges on the square Q2 form a subgraph that is a forest
on the vertex set. However, it is not a spanning forest, which should be a tree
in this case.
To characterize a spanning forest, we need to require a spanning tree on each
component.

9. i = n− l and m = n−1
n−l .

We have n = i+ l and n = mi+ 1. So i = n− l and m = n−1
i = n−1

n−l .

10. 31.
Since n = 4(10) + 1, there are l = 41− 10 = 31 files.
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11. True.
Proof. Let v be the root. Let P be a path whose length is the diameter, and let
u1 and u2 be its endpoints. There is a path Q1 from u1 to v and a path Q2 from
v to u2. Note that the lengths of Q1 and Q2 cannot exceed the height of the
tree. In fact, they are the levels of u1 and u2, respectively. Since Q1 followed by
Q2 is a walk from u1 to u2, its length is at least that of P (a shortest possible
walk from u1 to u2). Thus, twice the height is at least the sum of the levels of
u1 and u2, which is at least the length of P (which equals the diameter). �
Recall that the diameter of a connected graph is the maximum possible distance
between two vertices. Hence, it is the length of a longest possible path.

12. time

flies when

having

fun

youare

13. tt t t t
B B W W B B B W W B B B W W B B

14. U.

15. 1, 2, 3, 5, 4, 6, 7.
The following picture better reflects the order in which the vertices are encoun-
tered.

�
�

r1

r4 r
5

r2r3 r6 r7
�
�
@
@
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16. 1, 2, 4, 3, 5, 6.

q1q
4

q2q
5

q3q
6

17. 1, 2, 3, 4, 6, 5.

q5q6q1q2 q3 q4A
A����

AA ����

J
J
JJ

J
J
JJ

18. 3, 4, 6, 7, 5, 2, 1. See the following picture.

�
�

r1

r4 r
5

r2r3 r6 r7
�

�
@
@

19. 5, 4, 6, 3, 2, 1.

q1q
4

q2q
5

q3q
6

20. 3, 2, 6, 5, 4, 1.

q5q6q1q2 q3 q4A
AAA����

AAAA ����

J
J
JJ

J
J
JJ

21. ÷
�� @@∗ V

�� @@∗ T
�� @@

n r
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22. (a) b1 b2 + 2 ÷ h ∗ .
(b) ∗ ÷ + b1 b2 2 h .
(c) b1 + b2 ÷ 2 ∗ h .

∗
�� @@÷ h

�� @@
+ 2
�� @@

b1 b2

23. 12.

4 5 1 + 2 ÷ ∗
4 6 2 ÷ ∗
4 3 ∗
12

24. 7.

+ 1 ∗ − 8 5 2
+ 1 ∗ 3 2
+ 1 6
7

25. Los Angeles, Houston, Chicago, New York, Boston.

�� ��b
qLos Angeles q

Houston

q
New York

q
BostonqChicago b

�� ��

Pay attention to the algorithm and not the fact that the answer agrees with the
west-to-east ordering on this map.

26. vw, vwy.
The entire list is v, vw, vwx, vw, vwy, vw, v, failure.
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27. qv q q
q q q
q q q

3 11

5 6 12
2 1

8 10 9
7 4

28.(a) qv q q
q q q
q q q

1 11

8 10 12
4 2

9 7 5
6 3

(b) $400,000.

29. qv q q
q q q
q q q

11 3

12 6 9
10 1

4 2 5
8 7

1, 2, 5, 6, 3, 8, 4, 11

30.(a) qv q q
q q q
q q q

9 4

11 1 7
10 6

3 5 2
12 8

1, 4, 5, 6, 2, 9, 10, 3

(b) $400,000.

31. qv q q
q q q
q q q

3 11

5 6 12
2 1

8 10 9
7 4

32.(a) qv q q
q q q
q q q

1 11

8 10 12
4 2

9 7 5
6 3

(b) 18 minutes.

33. (a) True. In Section 10.3, see Exercises 19 and 23.
(b) True. The relative sizes of the distinct weights is all that matters. An edge
ordering is irrelevant in this case.

34. (a) 200+200+150 = $550.
(b) A shortest path tree. qBuff qRoch qSyrq

Ith

q
Bing

�
�

$450

$300

$200$200$150

$300

A
A

H
HHH

A shortest path tree from Syracuse is shown in bold. The path from Syracuse
to Ithaca is the longest.

35. (a) $31,000.
(b) A minimum spanning tree. tA

tM
t
F

tP
t

R

�
�
�

B
B
BB

�
�
�
��

Z
Z

Z
ZZ

Z
Z
Z

�
�
��

6

11

5

15

7

12

8

13

13

9

The weight of the minimum spanning tree is 5 + 6 + 8 + 12 = 31.
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36.
l=1 m=3 h=5

1 2 4 6 8

l=m=4 h=5

6 8

l=h=4

6

Return location = 0.

37. 50 seconds. The worst case complexity is n. The time required is
n

1×109 = 5×1010 instructions
1×109 instructions per second = 50 seconds.

38. n − 1. At worst, we have one comparison for each 2 ≤ i ≤ n. There are
n− 1 such i.

39. True. Both 3x and x− 1 are polynomials of degree 1.

40. False. x2 + 1 is a higher degree polynomial than 25x.

41. False. x3 − x2 + 7 is a lower degree polynomial than x4.

42. True. Both x2 and 4x2 + 5x are polynomials of degree 2.

43. False. In fact, O(n log2 n) ⊂ O(n2), in Theorem 10.16.

44. (a) The first, since f(n) = 30n3 + 500n has is a higher degree polynomial
than g(n) = 600n2 + 10000.
(b) The second, since g(15) > f(15).
(c) 21 years, since g(n) ≥ f(n) iff n ≤ 20.
In particular, solve f(n)− g(n) = 0 and get n = 20.

45. ∃ C ∈ R+ such that ∀ x > 0, |f(x)| ≤ C · 1.
This is the definition of bounded with M = C. It also characterizes the assertion
that f(x) ∈ O(1).

46. O(log2 n) ⊂ O(n) by Theorem 10.16. O(n) ⊆ O(n
3
2 ) by Lemma 10.11.

Hence, O(log2 n) ⊆ O(n
3
2 ) by the transitivity of ⊆.

47. Yes, O(n− 1) ⊆ O(n2).
The worst-case complexity of Minimum is n− 1 and O(n− 1) = O(n) ⊆ O(n2).

48. Yes. Minimum always uses n− 1 comparisons.
Note that the while loop is never exited until i = n. Also Θ(n− 1) = Θ(n).
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49.
loc = 1

a b c
b < a ?

���
HHH

loc = 2

a b c
a3 < x ?

�� @@

loc = 1

a b c
a1 < x ?

�� @@

loc = 3 loc = 1loc = 3 loc = 2

50. i = 2 : 6 3 8 2 5
i = 3 : 3 6 8 2 5
i = 4 : 3 6 8 2 5
i = 5 : 2 3 6 8 5

end : 2 3 5 6 8

51.
4 3 2 1

��
�

HH
H

4 3

�� @@

4 3

2 1

�� @@

2 1

1 2 3 4

H
HH

�
��

3 4

@@ ��

4 3

1 2

@@ ��

2 1

52. i = 4, j = 1 : 4 2 1 3
j = 2 : 2 4 1 3
j = 3 : 2 1 4 3

i = 3, j = 1 : 2 1 3 4
j = 2 : 1 2 3 4

end : 1 2 3 4
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53. i = 1 : 2 4 3 1
i = 2 : 1 4 3 2
i = 3 : 1 2 3 4

end : 1 2 3 4

54. In order.
See Algorithm 10.8. When A is ordered, the comparison A[j] < A[i] holds true
for every j < i. Also, see the proof of Example 10.23.

55. No.
See Algorithm 10.11. The comparison A[j] > A[j+1] is done for each n ≥ i ≥ 2
and 1 ≤ j ≤ i− 1, regardless of the order of A.

56. 3 1 6 4

?

1 3 6 4 , mid = 2

��	 ? @@R

1 3 6 4

?

4 6 , mid = 2

��	 ?

4 6

A left-to-right reading of the leaves shows the correct order for A.

57. No.
It is Θ(n2), since we are measuring worst-case complexity.


