

Introduction to Algorithms: 6.006
Massachusetts Institute of Technology
Instructors: Erik Demaine, Jason Ku, and Justin Solomon Lecture 16: Dyn. Prog. Subproblems

Lecture 16: Dyn. Prog. Subproblems

Dynamic Programming Review

• Recursion where subproblem dependencies overlap, forming DAG

• “Recurse but re-use” (Top down: record and lookup subproblem solutions)

• “Careful brute force” (Bottom up: do each subproblem in order)

Dynamic Programming Steps (SRT BOT)

1. Subproblem definition subproblem x 2 X

• Describe the meaning of a subproblem in words, in terms of parameters

• Often subsets of input: prefixes, suffixes, contiguous substrings of a sequence

• Often multiply possible subsets across multiple inputs

• Often record partial state: add subproblems by incrementing some auxiliary variables

2. Relate subproblem solutions recursively x(i) = f(x(j), . . .) for one or more j < i

• Identify a question about a subproblem solution that, if you knew the answer to, reduces
the subproblem to smaller subproblem(s)

• Locally brute-force all possible answers to the question

3. Topological order to argue relation is acyclic and subproblems form a DAG

4. Base cases

• State solutions for all (reachable) independent subproblems where relation breaks down

5. Original problem

• Show how to compute solution to original problem from solutions to subproblem(s)

• Possibly use parent pointers to recover actual solution, not just objective function

6. Time analysis
P

• x2X work(x), or if work(x) = O(W) for all x 2 X , then |X| ·O(W)

• work(x) measures nonrecursive work in relation; treat recursions as taking O(1) time

2 Lecture 16: Dyn. Prog. Subproblems

Longest Common Subsequence (LCS)

• Given two strings A and B, find a longest (not necessarily contiguous) subsequence of A
that is also a subsequence of B.

• Example: A = hieroglyphology, B = michaelangelo

• Solution: hello or heglo or iello or ieglo, all length 5

• Maximization problem on length of subsequence

1. Subproblems

• x(i, j) = length of longest common subsequence of suffixes A[i :] and B[j :]

• For 0  i  |A| and 0  j  |B|

2. Relate

• Either first characters match or they don’t

• If first characters match, some longest common subsequence will use them

• (if no LCS uses first matched pair, using it will only improve solution)

• (if an LCS uses first in A[i] and not first in B[j], matching B[j] is also optimal)

• If they do not match, they cannot both be in a longest common subsequence

• Guess whether A[i] or B[j] is not in LCS
⇢

x(i + 1, j + 1) + 1 if A[i] = B[j]• x(i, j) =
max{x(i + 1, j), x(i, j + 1)} otherwise

• (draw subset of all rectangular grid dependencies)

3. Topological order

• Subproblems x(i, j) depend only on strictly larger i or j or both

• Simplest order to state: Decreasing i + j

• Nice order for bottom-up code: Decreasing i, then decreasing j

4. Base

• x(i, |B|) = x(|A|, j) = 0 (one string is empty)

5. Original problem

• Length of longest common subsequence of A and B is x(0, 0)

• Store parent pointers to reconstruct subsequence

• If the parent pointer increases both indices, add that character to LCS

3 Lecture 16: Dyn. Prog. Subproblems

6. Time

• # subproblems: (|A|+ 1) · (|B|+ 1)

• work per subproblem: O(1)

• O(|A| · |B|) running time

1

2

3

4

5

6

7

8

9

10

def lcs(A, B):
a, b = len(A), len(B)
x = [[0] * (b + 1) for _ in range(a + 1)]
for i in reversed(range(a)):

for j in reversed(range(b)):
if A[i] == B[j]:

x[i][j] = x[i + 1][j + 1] + 1
else:

x[i][j] = max(x[i + 1][j], x[i][j
return x[0][0]

+ 1])

4 Lecture 16: Dyn. Prog. Subproblems

Longest Increasing Subsequence (LIS)

• Given a string A, find a longest (not necessarily contiguous) subsequence of A that strictly
increases (lexicographically).

• Example: A = carbohydrate

• Solution: abort, of length 5

• Maximization problem on length of subsequence

• Attempted solution:

– Natural subproblems are prefixes or suffixes of A, say suffix A[i :]

– Natural question about LIS of A[i :]: is A[i] in the LIS? (2 possible answers)

– But then how do we recurse on A[i+ 1 :] and guarantee increasing subsequence?

– Fix: add constraint to subproblems to give enough structure to achieve increasing
property

1. Subproblems

• x(i) = length of longest increasing subsequence of suffix A[i :] that includes A[i]

• For 0  i  |A|

2. Relate

• We’re told that A[i] is in LIS (first element)

• Next question: what is the second element of LIS?

– Could be any A[j] where j > i and A[j] > A[i] (so increasing)
– Or A[i] might be the last element of LIS

• x(i) = max{1 + x(j) | i < j < |A|, A[j] > A[i]} [{1}

3. Topological order

• Decreasing i

4. Base

• No base case necessary, because we consider the possibility that A[i] is last

5. Original problem

• What is the first element of LIS? Guess!

• Length of LIS of A is max{x(i) | 0  i < |A|}

• Store parent pointers to reconstruct subsequence

5 Lecture 16: Dyn. Prog. Subproblems

6. Time

• # subproblems: |A|
• work per subproblem: O(|A|)
• O(|A|2) running time

• Exercise: speed up to O(|A| log |A|) by doing only O(log |A|) work per subproblem,
via AVL tree augmentation

1 def lis(A):
2 a = len(A)
3 x = [1] * a
4 for i in reversed(range(a)):
5 for j in range(i, a):
6 if A[j] > A[i]:
7 x[i] = max(x[i], 1 + x[j])
8 return max(x)

�

�

� � � �

�

�

6 Lecture 16: Dyn. Prog. Subproblems

Alternating Coin Game

• Given sequence of n coins of value v0, v1, . . . , vn 1

• Two players (“me” and “you”) take turns

• In a turn, take first or last coin among remaining coins

• My goal is to maximize total value of my taken coins, where I go first

• First solution exploits that this is a zero-sum game: I take all coins you don’t

1. Subproblems

• Choose subproblems that correspond to the state of the game

• For every contiguous subsequence of coins from i to j, 0  i  j < n

• x(i, j) = maximum total value I can take starting from coins of values vi, . . . , vj

2. Relate

• I must choose either coin i or coin j (Guess!)

• Then it’s your turn, so you’ll get value x(i+ 1, j) or x(i, j 1), respectively

• To figure out how much value I get, subtract this from total coin values
Pj Pj 1• x(i, j) = max{vi + vk x(i+ 1, j), vj + vk x(i, j 1)}k=i+1 k=i

3. Topological order

• Increasing j i

4. Base

• x(i, i) = vi

5. Original problem

• x(0, n 1)

• Store parent pointers to reconstruct strategy

6. Time

• # subproblems: ⇥(n2)

• work per subproblem: ⇥(n) to compute sums

• ⇥(n3) running time
Pj• Exercise: speed up to ⇥(n2) time by precomputing all sums k=i vk in ⇥(n2) time,

via dynamic programming (!)

�

�

�

�

7 Lecture 16: Dyn. Prog. Subproblems

• Second solution uses subproblem expansion: add subproblems for when you move next

1. Subproblems

• Choose subproblems that correspond to the full state of the game

• Contiguous subsequence of coins from i to j, and which player p goes next

• x(i, j, p) = maximum total value I can take when player p 2 {me, you} starts from
coins of values vi, . . . , vj

2. Relate

• Player p must choose either coin i or coin j (Guess!)

• If p = me, then I get the value; otherwise, I get nothing

• Then it’s the other player’s turn

• x(i, j, me) = max{vi + x(i + 1, j, you), vj + x(i, j 1, you)}

• x(i, j, you) = min{x(i + 1, j, me), x(i, j 1, me)}

3. Topological order

• Increasing j i

4. Base

• x(i, i, me) = vi

• x(i, i, you) = 0

5. Original problem

• x(0, n 1, me)

• Store parent pointers to reconstruct strategy

6. Time

• # subproblems: ⇥(n2)

• work per subproblem: ⇥(1)

• ⇥(n2) running time

8 Lecture 16: Dyn. Prog. Subproblems

Subproblem Constraints and Expansion

• We’ve now seen two examples of constraining or expanding subproblems

• If you find yourself lacking information to check the desired conditions of the problem, or
lack the natural subproblem to recurse on, try subproblem constraint/expansion!

• More subproblems and constraints give the relation more to work with, so can make DP
more feasible

• Usually a trade-off between number of subproblems and branching/complexity of relation

• More examples next lecture

MIT OpenCourseWare
https://ocw.mit.edu

6.006 Introduction to Algorithms
Spring 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms

https://ocw.mit.edu
https://ocw.mit.edu/terms

	cover.pdf
	Blank Page

