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Massachusetts Institute of Technology 
Instructors: Erik Demaine, Jason Ku, and Justin Solomon Lecture 16: Dyn. Prog. Subproblems 

Lecture 16: Dyn. Prog. Subproblems 

Dynamic Programming Review 

• Recursion where subproblem dependencies overlap, forming DAG 

• “Recurse but re-use” (Top down: record and lookup subproblem solutions) 

• “Careful brute force” (Bottom up: do each subproblem in order) 

Dynamic Programming Steps (SRT BOT) 

1. Subproblem definition subproblem x 2 X 

• Describe the meaning of a subproblem in words, in terms of parameters 

• Often subsets of input: prefixes, suffixes, contiguous substrings of a sequence 

• Often multiply possible subsets across multiple inputs 

• Often record partial state: add subproblems by incrementing some auxiliary variables 

2. Relate subproblem solutions recursively x(i) =  f(x(j), . . .) for one or more j < i  

• Identify a question about a subproblem solution that, if you knew the answer to, reduces 
the subproblem to smaller subproblem(s) 

• Locally brute-force all possible answers to the question 

3. Topological order to argue relation is acyclic and subproblems form a DAG 

4. Base cases 

• State solutions for all (reachable) independent subproblems where relation breaks down 

5. Original problem 

• Show how to compute solution to original problem from solutions to subproblem(s) 

• Possibly use parent pointers to recover actual solution, not just objective function 

6. Time analysis 
P 

• x2X work(x), or if work(x) =  O(W ) for all x 2 X , then |X| ·O(W ) 

• work(x) measures nonrecursive work in relation; treat recursions as taking O(1) time 
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Longest Common Subsequence (LCS) 

• Given two strings A and B, find a longest (not necessarily contiguous) subsequence of A 
that is also a subsequence of B. 

• Example: A = hieroglyphology, B = michaelangelo 

• Solution: hello or heglo or iello or ieglo, all length 5 

• Maximization problem on length of subsequence 

1. Subproblems 

• x(i, j) = length of longest common subsequence of suffixes A[i :] and B[j :] 

• For 0  i  |A| and 0  j  |B| 

2. Relate 

• Either first characters match or they don’t 

• If first characters match, some longest common subsequence will use them 

• (if no LCS uses first matched pair, using it will only improve solution) 

• (if an LCS uses first in A[i] and not first in B[j], matching B[j] is also optimal) 

• If they do not match, they cannot both be in a longest common subsequence 

• Guess whether A[i] or B[j] is not in LCS 
⇢ 

x(i + 1, j  + 1) + 1  if A[i] = B[j]• x(i, j) =  
max{x(i + 1, j), x(i, j + 1)} otherwise 

• (draw subset of all rectangular grid dependencies) 

3. Topological order 

• Subproblems x(i, j) depend only on strictly larger i or j or both 

• Simplest order to state: Decreasing i + j 

• Nice order for bottom-up code: Decreasing i, then decreasing j 

4. Base 

• x(i, |B|) = x(|A|, j) = 0 (one string is empty) 

5. Original problem 

• Length of longest common subsequence of A and B is x(0, 0) 

• Store parent pointers to reconstruct subsequence 

• If the parent pointer increases both indices, add that character to LCS 
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6. Time 

• # subproblems: (|A|+ 1)  · (|B|+ 1)  

• work per subproblem: O(1) 

• O(|A| · |B|) running time 
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def lcs(A, B): 
a, b = len(A), len(B) 
x = [[0] * (b + 1) for _ in range(a + 1)] 
for i in reversed(range(a)): 

for j in reversed(range(b)): 
if A[i] == B[j]: 

x[i][j] = x[i + 1][j + 1] + 1 
else: 

x[i][j] = max(x[i + 1][j], x[i][j 
return x[0][0] 

+ 1]) 
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Longest Increasing Subsequence (LIS) 

• Given a string A, find a longest (not necessarily contiguous) subsequence of A that strictly 
increases (lexicographically). 

• Example: A = carbohydrate 

• Solution: abort, of length 5 

• Maximization problem on length of subsequence 

• Attempted solution: 

– Natural subproblems are prefixes or suffixes of A, say suffix A[i :] 

– Natural question about LIS of A[i :]: is A[i] in the LIS? (2 possible answers) 

– But then how do we recurse on A[i+ 1  :]  and guarantee increasing subsequence? 

– Fix: add constraint to subproblems to give enough structure to achieve increasing 
property 

1. Subproblems 

• x(i) =  length of longest increasing subsequence of suffix A[i :] that includes A[i] 

• For 0  i  |A| 

2. Relate 

• We’re told that A[i] is in LIS (first element) 

• Next question: what is the second element of LIS? 

– Could be any A[j] where j > i and A[j] > A[i] (so increasing) 
– Or A[i] might be the last element of LIS 

• x(i) =  max{1 +  x(j) | i < j < |A|, A[j] > A[i]} [ {1} 

3. Topological order 

• Decreasing i 

4. Base 

• No base case necessary, because we consider the possibility that A[i] is last 

5. Original problem 

• What is the first element of LIS? Guess! 

• Length of LIS of A is max{x(i) | 0  i < |A|} 

• Store parent pointers to reconstruct subsequence 
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6. Time 

• # subproblems: |A| 
• work per subproblem: O(|A|) 
• O(|A|2) running time 

• Exercise: speed up to O(|A| log |A|) by doing only O(log |A|) work per subproblem, 
via AVL tree augmentation 

1 def lis(A): 
2 a =  len(A) 
3 x = [1] * a 
4 for i in reversed(range(a)): 
5 for j in range(i, a): 
6 if A[j] > A[i]: 
7 x[i] = max(x[i], 1 + x[j]) 
8 return max(x) 
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Alternating Coin Game 

• Given sequence of n coins of value v0, v1, . . . , vn 1 

• Two players (“me” and “you”) take turns 

• In a turn, take first or last coin among remaining coins 

• My goal is to maximize total value of my taken coins, where I go first 

• First solution exploits that this is a zero-sum game: I take all coins you don’t 

1. Subproblems 

• Choose subproblems that correspond to the state of the game 

• For every contiguous subsequence of coins from i to j, 0  i  j < n  

• x(i, j) = maximum total value I can take starting from coins of values vi, . . . , vj 

2. Relate 

• I must choose either coin i or coin j (Guess!) 

• Then it’s your turn, so you’ll get value x(i+ 1, j) or x(i, j 1), respectively 

• To figure out how much value I get, subtract this from total coin values
Pj Pj 1• x(i, j) = max{vi + vk x(i+ 1, j), vj + vk x(i, j 1)}k=i+1 k=i 

3. Topological order 

• Increasing j i 

4. Base 

• x(i, i) = vi 

5. Original problem 

• x(0, n  1) 

• Store parent pointers to reconstruct strategy 

6. Time 

• # subproblems: ⇥(n2) 

• work per subproblem: ⇥(n) to compute sums 

• ⇥(n3) running time 
Pj• Exercise: speed up to ⇥(n2) time by precomputing all sums k=i vk in ⇥(n2) time, 

via dynamic programming (!) 
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• Second solution uses subproblem expansion: add subproblems for when you move next 

1. Subproblems 

• Choose subproblems that correspond to the full state of the game 

• Contiguous subsequence of coins from i to j, and which player p goes next 

• x(i, j, p) = maximum total value I can take when player p 2 {me, you} starts from 
coins of values vi, . . . , vj 

2. Relate 

• Player p must choose either coin i or coin j (Guess!) 

• If p = me, then I get the value; otherwise, I get nothing 

• Then it’s the other player’s turn 

• x(i, j, me) = max{vi + x(i + 1, j,  you), vj + x(i, j 1, you)} 

• x(i, j, you) = min{x(i + 1, j,  me), x(i, j 1, me)} 

3. Topological order 

• Increasing j i 

4. Base 

• x(i, i, me) = vi 

• x(i, i, you) = 0  

5. Original problem 

• x(0, n  1, me) 

• Store parent pointers to reconstruct strategy 

6. Time 

• # subproblems: ⇥(n2) 

• work per subproblem: ⇥(1) 

• ⇥(n2) running time 
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Subproblem Constraints and Expansion 

• We’ve now seen two examples of constraining or expanding subproblems 

• If you find yourself lacking information to check the desired conditions of the problem, or 
lack the natural subproblem to recurse on, try subproblem constraint/expansion! 

• More subproblems and constraints give the relation more to work with, so can make DP 
more feasible 

• Usually a trade-off between number of subproblems and branching/complexity of relation 

• More examples next lecture 
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