Introduction to Algorithms: 6.006
Massachusetts Institute of Technology
Instructors: Erik Demaine, Jason Ku, and Justin Solomon Lecture 16: Dyn. Prog. Subproblems

Lecture 16: Dyn. Prog. Subproblems

Dynamic Programming Review
e Recursion where subproblem dependencies overlap, forming DAG
e “Recurse but re-use” (Top down: record and lookup subproblem solutions)

e “Careful brute force” (Bottom up: do each subproblem in order)

Dynamic Programming Steps (SRT BOT)

1. Subproblem definition subproblem z € X

e Describe the meaning of a subproblem in words, in terms of parameters
e Often subsets of input: prefixes, suffixes, contiguous substrings of a sequence
e Often multiply possible subsets across multiple inputs

e Often record partial state: add subproblems by incrementing some auxiliary variables
2. Relate subproblem solutions recursively (i) = f(x(j),...) for one or more j < i

e Identify a question about a subproblem solution that, if you knew the answer to, reduces
the subproblem to smaller subproblem(s)

e Locally brute-force all possible answers to the question
3. Topological order to argue relation is acyclic and subproblems form a DAG
4. Base cases

e State solutions for all (reachable) independent subproblems where relation breaks down
5. Original problem

e Show how to compute solution to original problem from solutions to subproblem(s)

e Possibly use parent pointers to recover actual solution, not just objective function
6. Time analysis

o > oy work(z), orif work(z) = O(W) forall z € X, then | X |- O(W)

e work(x) measures nonrecursive work in relation; treat recursions as taking O(1) time

2 Lecture 16: Dyn. Prog. Subproblems

Longest Common Subsequence (LCS)

e Given two strings A and B, find a longest (not necessarily contiguous) subsequence of A
that is also a subsequence of B.

e Example: A = hieroglyphology, B =michaelangelo
e Solution: hello or hegloor iello or ieglo, all length 5

e Maximization problem on length of subsequence

1. Subproblems

e | z(i,j) = length of longest common subsequence of suffixes Afi :] and B]j :]

e For0 <i<|Aland 0 < j < |B|

2. Relate

e Either first characters match or they don’t
e If first characters match, some longest common subsequence will use them

e (if no LCS uses first matched pair, using it will only improve solution)

(if an LCS uses first in A[¢| and not first in B[j], matching B]j] is also optimal)

If they do not match, they cannot both be in a longest common subsequence
Guess whether A[i] or B[j] is not in LCS

wij) = { TiFLiE D+ if Ali] = B[j]
)= max{x(i+ 1,7),z(i,7 +1)} otherwise

e (draw subset of all rectangular grid dependencies)
3. Topological order

e Subproblems x (i,) depend only on strictly larger i or j or both
e Simplest order to state: Decreasing ¢ + j

e Nice order for bottom-up code: Decreasing ¢, then decreasing j
4. Base

e x(i,|B|) = z(]A|,j) = 0 (one string is empty)
5. Original problem

e Length of longest common subsequence of A and B is (0, 0)
e Store parent pointers to reconstruct subsequence

o If the parent pointer increases both indices, add that character to LCS

Lecture 16: Dyn. Prog. Subproblems

6. Time

e # subproblems: (|A|+1)-(|B|+1)
e work per subproblem: O(1)
e O(|A| - |B|) running time

def lcs (A, B):
a, b = len(A), len(B)
x = [[0] » (b + 1) for _ in range(a + 1)]
for i in reversed(range(a)) :
for j in reversed(range (b)) :
if A[i] == B[3J]:
x[1][3J] = x[1 + 1][]J + 1] + 1
else:
x[11[3] = max(x[i + 11[31, x[i][]J + 11)
return x[0][0]

4 Lecture 16: Dyn. Prog. Subproblems

Longest Increasing Subsequence (LIS)

e Given a string A, find a longest (not necessarily contiguous) subsequence of A that strictly
increases (lexicographically).

e Example: A = carbohydrate

e Solution: abort, of length 5

e Maximization problem on length of subsequence
e Attempted solution:

— Natural subproblems are prefixes or suffixes of A, say suffix A :]
— Natural question about LIS of A[i :]: is A[¢] in the LIS? (2 possible answers)

But then how do we recurse on A[i + 1 :] and guarantee increasing subsequence?

Fix: add constraint to subproblems to give enough structure to achieve increasing
property

1. Subproblems

o ‘ x(i) = length of longest increasing subsequence of suffix A[i :| that includes A[i] ‘

e For (0 <i < |A|

2. Relate

e We're told that A[7] is in LIS (first element)
e Next question: what is the second element of LIS?

— Could be any A[j] where j > i and A[j] > A[i] (so increasing)
— Or Ali] might be the last element of LIS

e x(i) =max{l+x(j) |i<j<|A|,Alj] > Ali]} U {1}
3. Topological order

e Decreasing 7
4. Base

e No base case necessary, because we consider the possibility that Afs] is last
5. Original problem

e What is the first element of LIS? Guess!
e Length of LIS of A is max{z(:) | 0 <1i < |A|}

e Store parent pointers to reconstruct subsequence

Lecture 16: Dyn. Prog. Subproblems 5

6. Time

e # subproblems: |A|
e work per subproblem: O(|A|)
e O(]A|?) running time

e Exercise: speed up to O(]A|log|A|) by doing only O(log|A|) work per subproblem,
via AVL tree augmentation

def lis(A):
a = len(A)
x = [1] a

for i in reversed(range(a)) :
for j in range(i, a):
if A[j] > A[i]:
x[1] = max(x[i]l, 1 + x[3])
return max (x)

6 Lecture 16: Dyn. Prog. Subproblems

Alternating Coin Game
e Given sequence of n coins of value vy, vy, ...,v, 1
e Two players (“me” and “you”) take turns
e In a turn, take first or last coin among remaining coins
e My goal is to maximize total value of my taken coins, where I go first
e First solution exploits that this is a zero-sum game: I take all coins you don’t
1. Subproblems

e Choose subproblems that correspond to the state of the game

e For every contiguous subsequence of coins from:to 7,0 <: < j <n

e |z(i, j) = maximum total value I can take starting from coins of values v;, . .., v;

2. Relate

I must choose either coin ¢ or coin j (Guess!)

Then it’s your turn, so you’ll get value (i + 1, j) or (7,5 1), respectively

To figure out how much value I get, subtract this from total coin values

x(i,j) = max{v; + Zi::i+1 v x(i+1,7),0 + Zizi v x(i,j 1)}

3. Topological order
e Increasing j ¢
4. Base
o x(i,i) =v;
5. Original problem
o z(0,n 1)
e Store parent pointers to reconstruct strategy

6. Time
subproblems: ©(n?)

work per subproblem: ©(n) to compute sums

O(n?) running time

e Exercise: speed up to O(n?) time by precomputing all sums Z‘}C:Z vy, in ©(n?) time,
via dynamic programming (!)

Lecture 16: Dyn. Prog. Subproblems 7

e Second solution uses subproblem expansion: add subproblems for when you move next

1. Subproblems

e Choose subproblems that correspond to the full state of the game

e Contiguous subsequence of coins from ¢ to j, and which player p goes next

e z(i,7,p) = maximum total value I can take when player p € {me, you} starts from
coins of values v;, ..., v;

2. Relate

e Player p must choose either coin ¢ or coin 7 (Guess!)

e If p = me, then I get the value; otherwise, I get nothing

Then it’s the other player’s turn

x(i, j,me) = max{v; + z(i + 1, j,you),v; + z(i,j 1,you)}
i Ji(i,j,YOU) :mln{x(z—i—l,j,me),x(z,j]-7me>}

3. Topological order
e Increasing j ¢

4. Base

e x(i,i,me) = v;

e x(i,i,you) =0
5. Original problem

e z(0,n 1,me)

e Store parent pointers to reconstruct strategy
6. Time

e # subproblems: O(n?)
e work per subproblem: O(1)

e O(n?) running time

Lecture 16: Dyn. Prog. Subproblems

Subproblem Constraints and Expansion

We’ve now seen two examples of constraining or expanding subproblems

If you find yourself lacking information to check the desired conditions of the problem, or
lack the natural subproblem to recurse on, try subproblem constraint/expansion!

More subproblems and constraints give the relation more to work with, so can make DP
more feasible

Usually a trade-off between number of subproblems and branching/complexity of relation

More examples next lecture

MIT OpenCourseWare
https://ocw.mit.edu

6.006 Introduction to Algorithms
Spring 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms

https://ocw.mit.edu
https://ocw.mit.edu/terms

	cover.pdf
	Blank Page

