Foxit Quick PDF Library 13

Developer Guide

Debenu
(www.debenu.com)

http://www.debenu.com/

About

Debenu Quick PDF Library is a popular PDF SDK for manipulating PDF files on all levels. It's
available for use on Windows, Mac, iOS and Android and provides supports for a variety of
different programming languages.

Debenu Quick PDF Library is a powerful royalty-free PDF developer SDK used by thousands of
developers for working with PDFs on all levels. Including a robust API with over 900 functions
for use with C, C++, C#, Delphi, Objective-C, Swift, Python, PHP, Visual Basic, ASP.NET,
PowerBASIC, Pascal and more, Debenu Quick PDF Library truly is the ultimate toolkit for
project where you need to create, edit, secure, print, render, split, merge or manipulate PDF
documents.

The library is available in ActiveX, DLL, Delphi and LIB editions. Single, multiple developer and
source code license are available.

Debenu Quick PDF Library is a Debenu product (http://www.debenu.com/).

http://www.debenu.com/

Features

The Debenu Quick PDF Library API consists of approximately 600 functions which cover a wide
range of features from the PDF specification. Some of the SDKs features include:

Create PDFs on the fly

Render and print PDFs

Secure, sign and protect PDFs

Create, fill and edit PDF forms

Split, merge, append and combine PDFs

Extract text and images from PDFs

Edit PDFs initial view and document properties

Add text, images and barcodes to PDFs

Add and manipulate JavaScript, bookmarks and links
Support for Annotations, vector graphics, GeoPDF
...and much more (check out the function reference for the full list)

http://www.quickpdflibrary.com/help/quickpdf/FunctionGroups.php

Programming Languages

Debenu Quick PDF Library is available as an ActiveX, a DLL and a native Delphi library. There
is also a LIB edition for C++. You can use Debenu Quick PDF Library with any programming
language that supports these technologies.

Some well-known programming languages that support these technologies are:

ASP NET

C#

C++ Builder
C/C++
Objective-C
Swift

Classic ASP
Delphi

Java

Pascal

PHP
PowerBASIC
PowerBuilder
Python
VBScript
Visual Basic
Visual Basic NET
Visual C++
And more...

License terms

The full end user license agreement for Debenu Quick PDF Library is provided with the installer
package, but to give you a rough idea of how you can and can't use Debenu Quick PDF Library,
here's a few key points:

e Per developer. Licenses for Debenu Quick PDF Library are sold on a per developer
basis. No run-time licenses, no server licenses and no annual payments.

e Royalty free. You can use Debenu Quick PDF Library in your applications without
needing to pay any royalty fees for distribution.

¢ No limits on number of applications. We sell licenses based on the number of your
developers who will be using the library, not the number of applications your company
intends to build using our library.

e Servers. You are permitted to use Debenu Quick PDF Library in a server environment
with the small provision that access to Debenu Quick PDF Library by third parties must
be via your own software and your software cannot expose functionality of the library via
an APL.

e Compiled applications only. You are not permitted to create your own PDF software
libraries or to use Debenu Quick PDF Library in any development component or toolkit.

e No reselling. You are not allowed to resell Debenu Quick PDF Library or your license
key, but you can embed the software in your application, or distribute it with your system.

Setup

System requirements

Desktop

Windows XP (32-bit, 64-bit)

Windows Vista (32-bit, 64-bit)

Windows 7 (32-bit, 64-bit)

Windows 8, Windows 8 Pro and Windows 8 Enterprise

Server

e Windows Server 2003 (32-bit, 64-bit)
e Windows Server 2008 (32-bit, 64-bit)
e Windows Server 2012

Special note: Debenu Quick PDF Library is stand-alone software. It does not require Adobe Reader, Adobe
Acrobat or any other third-party PDF software to be installed in order for it to work.

Evaluation Version and Full Version

The evaluation version and the full version of Debenu Quick PDF Library use the same installer,
so you only ever need to download one version of Debenu Quick PDF Library.

The full version is unlocked using your commercial license key.

The evaluation version is time limited to 30 days; however, during those 30 days the library is
not limited in any way. You get full access to all of the functions without any nag ware or trial
watermarks.

License Key

There are two different types of license key for Debenu Quick PDF Library: a trial license key
and a commercial license key. The trial license key is provided with every download and
installation of the library and the commercial license key is provided to you after you have
purchased the library.

By default the trial license key is located in a text file called TRIAL_LICENSE_KEY.TXT which is
located in the default installation directory for the library. This text file also includes the
expiration date for the trial license key that you have been issued.

Installation

Debenu Quick PDF Library is delivered to customers by way of an electronic download. When
installing Debenu Quick PDF Library the default installation location is the Program Files
directory.

32-bit machine
C:\Program Files\Debenu\PDF Library

64-bit machine
C:\Program Files (x86)\Debenu\PDF Library

The installation directory will contain five different editions of the library: ActiveX, Delphi, DLL
and LIB. Each edition has its own sub-directory which includes a getting started guide.

For customers who are evaluating Debenu Quick PDF Library the installation directory also
contains a file called TRIAL_LICENSE_KEY.TXT which contains your 30 day trial license key.

The installation directory also contains Debenu Quick PDF Library Function Reference, the
Developer Guide, a samples folder and the license agreement for this software.

Resources

Getting started guides

There is a special getting started guide for each edition of Debenu Quick PDF Library available

online:
e Getting Started ActiveX Edition
e Getting Started DLL Edition
e Getting Started Delphi Edition
e Getting Started LIB Edition

The getting started guides are also provided as PDFs in the product download.

Function reference

The function reference for Debenu Quick PDF Library is provided as a PDF in the product
download but it is also available for viewing online: Debenu Quick PDF Library Function
Reference.

Tutorials

Tutorials for Debenu Quick PDF Library in a variety of different programming languages can be
found on Debenu Quick PDF Library’s Tutorials page. These tutorials provide all of the
information required to get up and running in a few different programming environments and
also a step-by-step guide on how to create your first PDF application with Debenu Quick PDF
Library.

Sample code
Sample code for Debenu Quick PDF Library is available in a few different locations.
e Official samples

e User samples on forum
e Tasks section of this Developer Guide

Demo

The Debenu Quick PDF Library Demo is distributed with the Debenu Quick PDF Library installer
package.

The demo application shows you how to perform a wide range of different tasks — such as split
pages by bookmarks, convert PDFs to images, extract text and much more — through
customizable scripts, that you can modify to suit your own needs.

http://www.debenu.com/products/development/debenu-pdf-library/getting-started/getting-started-activex-edition/
http://www.quickpdflibrary.com/help/getting-started-activex.php
http://www.debenu.com/products/development/debenu-pdf-library/getting-started/getting-started-dll-edition/
http://www.quickpdflibrary.com/help/getting-started-dll.php
http://www.debenu.com/products/development/debenu-pdf-library/getting-started/getting-started-delphi-edition/
http://www.quickpdflibrary.com/help/getting-started-delphi.php
http://www.debenu.com/products/development/debenu-pdf-library/getting-started/getting-started-lib-edition/
http://www.quickpdflibrary.com/help/getting-started-tcp.php
http://www.debenu.com/products/development/debenu-pdf-library/getting-started/getting-started-lib-edition/
http://www.debenu.com/docs/pdf_library_reference/FunctionGroups.php
http://www.debenu.com/docs/pdf_library_reference/FunctionGroups.php
http://www.quickpdflibrary.com/tutorials/index.php
http://www.quickpdflibrary.com/samples/index.php
http://quickpdf.org/forum/sample-code_forum13.html

(®) Debenu Quick PDF Library 9.11 Demo (2.30) = | = 22

1 Home | Scripts |PDF Preview | Web Function Reference| Euv Quick POF Library online now:

=- Annotations and Hotspots
... Add a sticky note
Add link to & destination

'{ Welcome to Quick PDF Library Engine -
e =
 ||// Use 'QP' to access the Quick PDF Library object

| ||// Use MsgBox{string text) to display a popup dialog

||/ Use Preview.OpenFromFile{string filename) to load a PDF in the Preview PDF tab
 ||// Use DisplayPDFReader(string filename) to display a PDF in the default PDF reader New
||/ Use GetOutputFolder() to access the default output folder

i.. Add link to another document,
- Add link to embedded file
Add link to JavaScript

i... Add link to named destinatior [/ Use GetinputFolder() to access the default input folder Save
i Add link to page !
- Add link to web /* Add a sticky note to 3 new document */
@- Barcodes
- Bookmarks ||// Set the origin for the co-ordinates to be the Delete
- Color £ | ||// top left corner of the page.
- C i 5
- Conversion QP SetOrigin(1): Close
[#]- Custom E

(- Direct Access ||// Adding a sticky note to a page is simple with the
- Decument Management _19||// help of the AddNoteAnnotation function.

M- Document Manipulation -
21 ||aP.AddNoteAnnotation(10, 10, 1, 200, 100, 335, 135, "My Fair Lady (1964)", "Many critics found Wilfrid Hyde-
_||white to be rather bland as Colonel Pickering..", 0.1,0.2, 0.4, 1};

(- Document Properties

[#- Extraction

(- Fonts '{ When the QPL object is initiated a blank document

- Forms '{ is created and selected in memory by default. So

- Images ||// all we need to do now is save the document to

&1 JavaScript ||// the local hard disk to see the changes that we've made.
[#- Misc

QP .saveToFile{GetOutputFolder() + "sticky_note.pdf");
- Optional Content Groups (Layers

[#- Page Layout
- Page Manipulation
4 1 K

)| // This line will automatically open the saved PDF in
'{ Adobe Reader.

Input Folder Qutput Folder Quick POF Library Version 8.14 - 13cript Editor

But to begin with, you don’t have to customize anything; you can just select one of the scripts
and click on the Run button to see the library in action. No effort required. Then later, if you want
to take the library for a spin, you can either customize an existing script or create a new script of
your own and save it within the application for future use.

This demo is for new and existing customers alike. The default scripts provided demonstrate
how to perform some of the most common PDF related tasks and will be updated frequently in
the future with more useful scripts.

Forum

Debenu Quick PDF Library has its very own user-to-user forum for Debenu Quick PDF Library
at QuickPDF.org/Forum. This forum is maintained by fans of Debenu Quick PDF Library and
has over 7 years of very useful content and discussions.

FAQ

The FAQ tries to answer all of the basic (and some not so basic) questions that developers
often ask. Currently it has almost 400 questions and answers and that list is growing every day
as more and more customers ask questions.

http://www.quickpdf.org/forum/
http://www.debenu.com/kb/category/debenu-quick-pdf-library/

APl Overview

Debenu Quick PDF Library has almost 600 hundred functions that let you do about just about
everything with PDF files. The API uses a flat structure, so to help you find the functions you
need the functions are broken down into groups in our documentation.

Function groups

In our documentation functions are broken down into different groups -- although functions can
belong to multiple groups -- to make it easier to keep track of them. It's important to know that
these function groups don’t necessarily reveal much about the structure of PDF since they're
just useful groupings that we thought of.

The different function groups can be seen in the online function reference and as bookmarks in
the PDF version of the function reference.

What you should know

To save you time we’ve compiled a list of things you might want to be familiar with prior to using
Debenu Quick PDF Library. You don’t necessarily need to know all of this information if you just
want to do something similar, but if you’re going to be making active use of a bunch of different
functions in the library then this information could be useful to know.

Unlock the library

The UnlockKey function needs to be called and the return value checked otherwise most other
functions called later will fail. More info here

Check functions for return values

Always check the return value of the important functions such as LoadFromFile because if this
function fails the subsequent function calls will fail to. Every single function returns a value.
Checking for return values is not a requirement, but it can be immensely useful in ensuring the
robustness of your code and debugging.

If a function is not documented as having a return value then you can assume that a return
value of one (1) indicates success. A returning value of zero (0) indicates failure. Other returned
values indicate valid handle or ID and what this ID is for can be determined by the function
name.

Memory management

The creation and release of memory buffers are handled automatically in most scenarios by the
DLL and LIB editions of Debenu Quick PDF Library.

There is an internal buffer where all string results are stored. The AnsiStringResultLength
function can be called to get the length of this buffer. This function returns the length of the most

http://www.debenu.com/docs/pdf_library_reference/FunctionGroups.php

recent string returned from the library by all functions that return 8-bit strings.

The same string is used internally for all results and is updated every time a function is called
that returns a string. So if the RenderPageToString function is called then the returned string will
be stored in the internal buffer until a different function which returns a string is called.

In the event that the internal buffer grows too large due to rendering a large file to a string you
could call the LibraryVersion function, which needs just 5 bytes, so that the memory holding the
rendered output is released.

Finally, all memory is released when you call the ReleaseLibrary function.

This only applies to the DLL and LIB editions of Debenu Quick PDF Library as functions that
return a string actually return a pointer to the first character of the string data whereas with the
Delphi and ActiveX editions the functions that return a string are actually returning a string
object.

Memory and direct access functions

Function names that start with DA indicate that the function is a direct access function.
Functions that do not have this pre-fix are memory functions. Direct access and memory
functions cannot be used together. Combining them in your code will result in your code not
working correctly. More info here.

The DA functions are primarily used for PDF documents that are very large and contain
thousands of pages. They are generally faster for these larger documents because the
document does not need to be loaded into memory. For file sizes under 500 MB or under a few
thousand pages the speed differences are negligible.

Finally, functions that have an InputFileName (or similar) parameter that accepts a PDF, such
as the ExtractFilePages function, will often use the direct access functions internally. In addition
to the parameter, the function description will often include the words “on disk” to indicate that
the operation is primarily occurring on disk rather than entirely in memory.

Blank document automatically loaded

When you initialize the library there is always a one page blank document in memory. It is
selected and ready to use by default. This is due to the design of the library. There must always
be at least one document in memory, so if you try to delete that document using the
DeletePages function, the library will automatically re-create a one page blank document.

The blank one page document uses a Letter page size which is 8.5 x 11 inches or 215.9 mm x
279.4 mm. The page size can be changed using the SetPageSize

New documents automatically selected

http://www.quickpdflibrary.com/faq/why-cant-direct-access-and-standard-functions-be-used-together.php

Whether you load an existing document using the LoadFromFile function or create a new
document using the NewDocument function, it will automatically be selected in memory and the
documents ID can be retrieved using the SelectedDocument function.

Multiple documents in memory permitted

You can have more than one document in memory and can swap between them using the ID
returned from calls such functions as NewDocument and SelectedDocument. You can also
count all documents in memory using the DocumentCount function and then retrieve each
documents ID or filename using GetDocumentID or GetDocumentFileName. All of the document
management related functions can be seen in the document management section in the
function reference.

Origin point for drawing operations

The origin has coordinates of “0,0” and is the starting point for finding all other points. The origin
point for a page in a PDF typically starts at a page corner. The default origin for Debenu Quick
PDF Library is the bottom left page corner.

Using the SetOrigin function in Debenu Quick PDF Library you can change the point of origin to
be any page corner (bottom left, top left, top right, bottom right).

By default calling DrawText(10, 10, “Test”) will result in the text being drawn at 10 points in from
the left of the page and 10 points up from the bottom of the page, but if you call SetOrigin(1)
prior to DrawText then the text will be drawn at 10 points in from the left of the page and 10
points down from the top of the page because passing the value 1 to the Origin parameter for
the SetOrigin function changes the origin to top left of the page.

The default point of origin in Adobe Acrobat was the bottom left page corner up until Acrobat 8,
at which point Adobe switched the point of origin to the top left page corner. As mentioned
above, you can set Debenu Quick PDF Library to use any page corner in a PDF.

In version 7.25 of Debenu Quick PDF Library we added a new function called NormalizePage
that moves and/or rotates the contents of the page so that subsequent drawing operations are
at the expected position on the page. All the page boundary boxes are adjusted to the physical
size of the page and the page's rotation attribute is reset to zero.

Measurement units

In PDF the coordinate system is called default user space. The default for the size of the unitin
default user space (1/72 inch) is approximately the same as a point, a unit widely used in the
printing industry. It is not exactly the same, however; there is no universal definition of a point.

Using the SetMeasurementUnits function you can change the units for all measurements given
to and returned from the library. The available options are default user space, millimeters and
inches.

Unicode, UTF-8 and the DLL and Delphi Editions

Versions of Debenu Quick PDF Library prior to version 8 required that you encode Unicode
characters using UTF-8, however, with the release of version 8 Unicode is handled natively by
the library so UTF-8 encoding and decoding is no longer required.

Fonts
There are three different ways that fonts can be referenced or stored in PDF files. They are:

Full Font Embedding = Larger file size
Recipient doesn’t need the same font to view or edit the file

Subset Font Embedding = Smaller file size
Recipient doesn’t need the same font to view but does need the same font installed in order to
edit the file

No Font Embedding = Smallest file size
Recipient needs to have same fonts installed

Each option has its merits. As long as option 1 or 2 above when you are building your PDF files,
then you can be sure that when your PDF is rendered or printed the font you’ve specified will be
used. If you use option 3, then the PDF viewer will attempt to locate the specified font on the
local machine but if it cannot be found then it will use a substitute font during the
viewing/printing process.

When a PDF is displayed on your screen it is rendered in exactly the same fashion as it would
be prior to being printed.

Processing digitally signed PDF files

Any changes that you make to a PDF after it has been digitally signed will invalidate the digital
signature. PDF files that contain digital signatures must be incrementally updated -- meaning
that the contents of the PDF are updated without rewriting the entire file by way of appending
changes to the end of the file. If digitally signed PDF files are not updated this way then the
digital signature will not only be invalidated, but it will be completely broken too.

When using Debenu Quick PDF Library it's important to note that the combination of
LoadFromFile and SaveToFile does not incrementally update the file. Instead it completely
rewrites the contents of the PDF and breaks the digital signature. If you're working with a PDF
that has a digital signature and you do not want to break or remove the digital signature, then
you should not use the SaveToFile function.

If you need to modify a PDF that has been digitally signed then you should use the DAOpenFile
and DAAppendFile functions as the DAAppend function does incrementally update PDF files,

which means that the digital signature will be invalidated, but not broken. If you are using the
regular functions (i.e. open file using LoadFromFile) then use the AppendToFile function.

Optional Content Groups, Layers and Content Streams: What is the difference?

In version 8 of Debenu Quick PDF Library the functions that used “layer” in the name were
renamed so that they used “content stream” instead. So for example, in 7 and earlier versions
there was a function called NewLayer, but in version 8 and future versions it’s called
NewContentStream.

We decided to rename these functions due to a naming conflict with Adobe. Here’s the back
story.

In Debenu Quick PDF Library 7 and earlier versions layers and optional content groups do not
refer to the same technology, however, in Adobe Acrobat, they do. Confused? There's a simple
explanation for this anomaly:

A page can have one or more content streams. These content streams are combined into one
long string by the PDF viewer.

When Debenu Quick PDF Library was first developed (about 10 years ago) we called these
individual content streams "layers" as they enabled you to move groups of things on top of and
below other things and each new function in this area included the term layer in its name
(NewLayer, LayerCount, MovelLayer, etc.).

However, in version 1.5 of the PDF specification (after we'd already begun using the term layer
to describe content streams for a few years) Adobe added a new feature called optional content
groups. This new feature was technically referred to as optional content groups (OCGs) in the
PDF specification, but in Adobe Acrobat and Adobe Reader, Adobe elected to use the term
layers instead. And thus the confusion began:

We previously used the term “layers” to describe content streams and Adobe uses the
term “layers” to describe optional content groups.

So to avoid any further question, as of Debenu Quick PDF Library 8, we have renamed all
functions that use the term “layer” to use “content stream” instead. This means that NewLayer is
now called NewContentStream and so on. The names of the Optional Content Group functions
rename the same.

Need Appearances and Form Fields

A form field in a PDF is an interactive element that floats above the actual content of the PDF. In
order for a form field to be displayed it must have an associated appearance stream that tells
the conforming PDF viewer how to render the form fields.

Appearance streams can be generated in advance, using the UpdateAppearanceStream
function, or you can tell the conforming PDF viewer to automatically generate the necessary
appearance streams when the PDF is opened by using the SetNeedAppearances function to
set the NeedAppearances flag to true.

If the NeedAppearances flag is set to false and no appearance stream has been generated in
advance for the form fields, then the form fields will not be shown in the conforming PDF viewer.

After existing form fields have been updated the appearance stream must be updated, so if
NeedAppearances flag is set to false then you will need to make a new call to the
UpdateAppearanceStream function.

Tasks

These are the most common tasks for using Debenu Quick PDF Library, but it is not an
exhaustive list, our PDF SDK is capable of far more than is covered here. The sample code
show here is written in JScript which is very similar to JavaScript (and also C#) in syntax.

PDF Creation

PDF creation deals with creating PDF files programmatically from scratch.

Create a simple PDF

Debenu Quick PDF Library allows you to create new PDF files with very few lines of code. If you
wanted to create a blank document with no content then all you would need to do is make one
simple call to the SaveToFile function and that would save the blank document that is already in
memory to disk. Making a simple PDF with just one line of text is not much harder.

/* Create a simple PDF */

// Set page origin to top left, default
// is the bottom left

DPL.SetOrigin (1) ;

// Draw some text on the PDF
DPL.DrawText (100, 100, "Hello World");
// Save the new PDF

DPL.SaveToFile ("my new doc.pdf");

That’s it. This is your basic building block and you can make your PDF files as simple or as
complex as you need them to be.

Create a complex PDF

Debenu Quick PDF Library lets you add text, images, vector graphics, form fields, annotations
and much more to PDF files. You won’t necessarily need all of these elements in your PDF, but
here’s an example of how some of them fit together.

/* Create a complex PDF */

// Set page origin to top left, default is the bottom left
DPL.SetOrigin (1) ;

// Invoice number text

DPL.SetTextSize (20) ;
DPL.DrawText (55, 65, "Invoice #");
DPL.SetTextColor (0, 0.5, 1);
DPL.DrawText (140, 65, "1564824");

// Company logo

DPL.SetFillColor (0, 0, 0);

DPL.SetLineColor (1, 1, 1);:

DPL.DrawCircle (475, 15, 5, 2);
DPL.DrawCircle (490, 20, 10, 2);
DPL.DrawCircle (505, 25, 15, 2);
DPL.DrawCircle (520, 30, 20, 2);
DPL.DrawCircle (535, 35, 25, 2);
DPL.DrawCircle (550, 40, 30, 2);

DPL.DrawHTMLTextBox (470, 38, 100, 100, "THE
CIRCLE
COMPANY.");

// Draw some lines to give the invoice structure

DPL.SetLineColor (0, 0, 0);

DPL.DrawLine (20, 150, 592, 150);
DPL.DrawLine (20, 200, 592, 200);

DPL.DrawLine (400, 250, 592, 250);

// Text color for body

DPL.SetTextColor (0, 0, 0);

// Invoice headings

DPL.SetTextSize (12);

DPL.DrawText (50, 145, "Description");
DPL.DrawText (225, 145, "Quantity");

DPL.DrawText (375, 145, "Unit Price");
DPL.DrawText (525, 145, "Amount");

// Invoice content

DPL.SetTextSize (10);

DPL.DrawText (50, 195, "Fictional Product 1.0");
DPL.DrawText (245, 195, "5");

DPL.DrawText (385, 195, "199.00");

DPL.DrawText (532, 195, "995.00");

// Invoice totals

DPL.DrawText (455, 225, "Sub-Total");
DPL.DrawText (532, 225, "$995.00");
DPL.DrawText (455, 245, "Tax");

DPL.DrawText (532, 245, "$0.00"™);
DPL.DrawHTMLText (455, 270, 100, "Total");
DPL.DrawHTMLText (532, 270, 100, "$995.00");
// Payment due date

DPL.DrawHTMLText (50, 400, 100, "Due Date: Today");

// Save the invoice

DPL.SaveToFile ("invoice.pdf");

Convert this code into the language of your choice and then run it. With not too much difficulty at
all you can create a nifty invoice.

Create a PDF/A document

Debenu Quick PDF Library lets you create PDF/A-1b compliant PDF files with a single call to
SetPDFAMode. Currently this only works when creating new PDF documents, so it won’t work if
you try to load an existing document using LoadFromFile. Only certain PDF features are
supported in PDF/A, interactive elements such as JavaScript and multimedia are not supported.

/* Create a new PDF/A document */

// Call SetPDFAMode to tell Debenu Quick PDF Library that you want to
// create a PDF/A document. Specify which version of PDF/A it

// should use.

DPL.SetPDFAMode (2) ;

// Set page origin for drawing co-ordinates to top left of page

DPL.SetOrigin (1) ;

// Now lets add a bunch of different objects to the PDF which
// are supported by the PDF/A specification.

// Add some document properties to the PDF
DPL.SetInformation (0, "1.9");

DPL.SetInformation(1l, "John Smith");

DPL.SetInformation (2, "The Life and Times of John Smith");
DPL.SetInformation (3, "A very special book");
DPL.SetInformation (4, "book, paperback, ebook");
DPL.SetInformation (5, "Mother Earth");
DPL.SetInformation (6, "Humanity");

// Embed a font that will be used for drawing some sample text
var fontIDl = DPL.AddTrueTypeFont ("Times New Roman", 1);
// Select the font using its font ID

DPL.SelectFont (fontID1l) ;

// Draw normal text

DPL.DrawText (25, 25, "This text was drawn using the DrawText function.");

DPL.SaveToFile ("my pdf-a doc.pdf");

PDF Conversion

Debenu Quick PDF Library supports converting images to PDF, PDF to images and PDF to text.

Convert an image to PDF

Converting images to PDF files is quite a simple task.

/* Image to PDF conversion */

// Load your image into memory
DPL.AddImageFromFile ("samplel23.jpg", 0);
// Get width, height of the image

1Width = DPL.ImageWidth () ;
1lHeight = DPL.ImageHeight () ;

// Reformat the size of the page in the selected document
DPL.SetPageDimensions (1Width, lHeight);

// Draw the image onto the page using the specified width/height
DPL.DrawlImage (0, lHeight, 1lWidth, 1lHeight);

// Store the updated PDF where you like

DPL.SaveToFile ("from image.pdf");

Convert a PDF to an image

When a PDF is displayed it is actually rendered as an image.

/* PDF to image conversion */

// Load the sample file
DPL.LoadFromFile ("sample.pdf", “”);
// Calculate the number of pages
iNumPages = DPL.PageCount () ;

// Render each page of the document to a separate file.
// To view the images open the output folder.

DPL.RenderDocumentToFile (72, 1, iNumPages, 0, "image.bmp");

Convert a PDF to text

Extracting text from a PDF can at times be a difficult task. If a PDF has been scanned from
paper and no OCR process has been performed then the page in a PDF might display what
looks like text but in the objects in the PDF no text actually exists, just an image. You can use
the HasFontResources function to check if a PDF has any text. Extracting text from a PDF that
does indeed contain text objects is a relatively straight forward process using one of the text
extraction functions.

/* PDF to text conversion */

// Load the test file and Iterate through each page in the
// PDF and append it to a text file.

strinputFilePath = "apply fingerprint.pdf";
DPL.LoadFromFile (strInputFilePath, “”);

// Calculate the number of pages

iNumPages

strText =
nPage = 0;

DPL.PageCount () ;

ww .,
7

// Loop through each page in the PDF and extract the text from the page

for (nPage

{
strText

1; nPage<=iNumPages; nPage++)

strText + DPL.ExtractFilePageText (strInputFilePath,

// Write all the data to a file

s = OFSO.CreateTextFile ("extracted text.txt", 1);
s.Writeline (strText) ;

s.Close () ;

nwn
’

nPage,

0);

PDF Rendering

Rendering a PDF so that it can be viewed on screen is quite a difficult process. To render a
PDF page the following steps need to be taken:

1. Locate the page object in the PDF.

2. Extract the page's content streams (one or more strings).

3. Parse the content stream to get the page description commands - these are similar to
PostScript language commands.

4. The content streams commands refer to one or more resources (fonts, images, etc.) -
these resource objects are located in the PDF and images are decoded and fonts are
processed to obtain the glyph outlines. Text is simply a collection of shapes just like
other graphic content.

5. As the page content is followed there are operations that adjust the user matrix which
change the position, scaling and rotation.

6. These commands / objects collectively describe the page in mathematical terms and are
then converted into an appropriate output - either an image (using GDI+ in our case) or a
different graphical language like EPS, EMF/WMF etc.

7. The image is then loaded into the PDF viewer.

Luckily the only item from above that you have to worry about is loading the image into your
application. Debenu Quick PDF Library provides a variety of different functions for rendering a
page from a PDF as an image, some of which can be seen when viewing the PDF rendering tag
in our knowledge base. Here is a simple example using the RenderDocumentToFile function.

/* Render a PDF file */
// Load the sample file
DPL.LoadFromFile ("sample.pdf", “”);

// Calculate the number of pages
iNumPages = DPL.PageCount();

// Render each page of the document to a separate file.
// To view the images open the output folder.

DPL.RenderDocumentToFile (72, 1, iNumPages, 0, "image.bmp");

http://help.quickpdflibrary.com/questions/tagged/render-pdf

PDF Editing

There are many ways in which a PDF file can be edited (not all of which Debenu Quick PDF
Library supports):

Text manipulations: edit text in a PDF.

Image editing: edit an image in a PDF file or replace it.

Page related changes: delete pages, change their order or rotate them.

Altering a PDF file: merge pages from separate PDF files, edit password protected files,
edit metadata, add new content, etc.

Color editing: adjust the color of text objects, shapes, images, etc.

It is extremely important to realize that PDF is not a very good “authoring” format and was never
designed to be. If you need to make significant changes to a document -- i.e. re-write
paragraphs of text, change the layout, etc -- then it is best to go back to the original source
document (often Microsoft Word or similar authoring tools) and make the changes there and
then create the PDF again.

PDF is a fixed format and thus best suited to being used as a presentation format. Always keep
in mind that PDF files are an accurate representation of a document. They are meant for output
or on-screen viewing.

So what PDF editing does Debenu Quick PDF Library support?

Text manipulations. Debenu Quick PDF Library does not let you edit existing text in a
PDF but it does let you add new text.

Image editing. Debenu Quick PDF Library does not let you edit an image -- i.e. you
cannot resize the image or convert an RGB image to a CMYK image -- but it does let
you delete images and replace images with a different image.

Page related changes. Debenu Quick PDF Library provides an extensive range of
functions for manipulating pages in such ways as rotating, replacing, extracting, deleting,
moving and cropping pages. Check out the page manipulation section in the function
reference for all of the relevant functions.

Altering a PDF file. Debenu Quick PDF Library provides a variety of different ways of
altering PDF files. From merging PDF files together or extracting pages from a PDF to
encrypting PDF files or editing a PDFs metadata and much more.

Color editing. Debenu Quick PDF Library provides a lot of control over color when
adding new text or vector graphics into a PDF but it does not let you editing existing
colors in a PDF.

PDF Printing

The same process that goes into preparing a PDF for viewing is required for preparing a PDF
for printing. The PDF must be rendered an image (PostScript and similar formats are also

http://www.quickpdflibrary.com/help/quickpdf/PageManipulation.php
http://www.quickpdflibrary.com/help/quickpdf/DocumentManipulation.php

permitted by certain printers) prior to being sent to the printer or displayed on the screen.

All of the printing functionality in Debenu Quick PDF Library enables you to create a printing

interface with a GUI or to create a printing process that silently prints documents in the
background without any user interaction.

Standard PDF printing

The standard printing option in Debenu Quick PDF Library provides a quick and simple way to

print a document without having to worry about too many settings.

/* Simple PDF printing */

// Load a local sample file from the input folder
DPL.LoadFromFile ("JavaScript.pdf", “”);

// Configure print options

iPrintOptions = DPL.PrintOptions (0, 0, "Printing Sample")

// Print the current document to the default
// printing using the options as configured above

DPL.PrintDocument (DPL.GetDefaultPrinterName (), 1, 1, iPrintOptions);

Custom PDF printing

The custom printing options give you far greater control over the printing process. These options

give you as much control over printing as you usually see in the print dialog of most
applications.

/* Advanced PDF printing */

// Load a sample file from the input folder

DPL.LoadFromFile ("JavaScript.pdf", “7);

// Create the custom printer

CustomPrinter = DPL.NewCustomPrinter ("Microsoft XPS Document Writer");

// Setup the settings for the customer printer
// Medium quality

DPL.SetupCustomPrinter (CustomPrinter, 5, 2);
// Monochrome

DPL.SetupCustomPrinter (CustomPrinter, 6, 1);
// Horizontal Duplex

DPL.SetupCustomPrinter (CustomPrinter, 7, 3);
// Configure print options

iPrintOptions = DPL.PrintOptions (0, 0, "Printing Sample");

// Print the current document to the default printing
// using the options as configured above

DPL.PrintDocument (CustomPrinter, 1, 1, iPrintOptions);

The custom printer functions include all of the functionality required to create your own print
dialog.

PDF Security

PDF provides a variety of different security options. From a simple open password -- where the
user must type in a password prior to being able to view the PDF -- to the more complicated
options where a master password can be used to apply document restrictions, such as no
printing, no editing, etc, to the document. It is also possible to apply digital signatures to PDF
files.

There are two different types of passwords used in PDF files but also two different terms for
each of these types: an owner or master password and an open or user password. The owner
or master password is required for setting document restrictions and the open or user password
is required for making the user enter in a password prior to viewing the document.

Open password
If you want to require that the user type in a password prior to being able to view the PDF file
then you need to encrypt the PDF with an open password.

/* Apply an open password to a PDF */

// Load a sample file from the input folder

DPL.LoadFromFile ("secure me.pdf", “”);

// For adding document restrictions we'll use the

// EncodePermissions function. For this example we will

// not restrict any actions.

EncPerm = DPL.EncodePermissions(l1, 1, 1, 1, 1, 1, 1, 1);

// Encrypting the document must be the last
// function called prior to saving

DPL.Encrypt ("locked down", "", 1, EncPerm);
// Save the updated file to the output folder

DPL.SaveToFile ("secured.pdf");

Document restrictions
If you want to prevent the user from performing certain actions with your document then you
need to add document restrictions to your PDF along with an owner password.

/* Apply a master document and document restrictions to a PDF */

// Load a sample file from the input folder

DPL.LoadFromFile ("secure me.pdf", “7);

// For adding document restrictions we'll use the

// EncodePermissions function. Look at this function

// in the reference to see what the available options are.

// In this sample the only permission we'll give the user

// to the ability to print the document. The user won't be
// able to copy text, modify the document, etc.

EncPerm = DPL.EncodePermissions(1, 0, 0, 0, 0, 0, 0, 0);

// Encrypting the document must be the last
// function called prior to saving

DPL.Encrypt ("locked down", "", 1, EncPerm);
// Save the updated file to the output folder

DPL.SaveToFile ("secured.pdf");

Digital signatures

Debenu Quick PDF Library allows you to add digital signatures to PDF files at the document
level. It does not allow you to sign digital signature form fields.

/* Apply a digital signature to a PDF */

// Use the SignFile function to apply the digital signature.

// This function handles loading the file, signing it, and then
// saving it to disk.

DPL.SignFile("sign me.pdf", "", "Digital Signature Test", “signed.pdf", "gpl test.pfx",
"testing", "A good reason", "Here", "Debenu Quick PDF Library");

PDF decryption

PDF files can be decrypted. Depending on if a user or master password has been used you will
need to include this while decrypting the PDF.

/* Decrypt a PDF file */

// Load a file from the samples folder

// Include the open password when opening

// if it exists.

DPL.LoadFromFile ("secured.pdf", “locked down”);
// Call the Decrypt function

DPL.Decrypt () ;

// Save the decrypted file to the output folder

DPL.SaveToFile ("decrypted.pdf") ;

PDF Splitting

Splitting a PDF is the process of taking pages from one PDF to create a new PDF which
contains only those pages. Splitting is a term that is used in the PDF industry but what is really
happening behind the scenes is that all of the objects, dictionaries and other information that
make up a certain page in your source document is copied and used to create a new document.

Split PDF documents

Debenu Quick PDF Library lets you split PDF files into individual PDF files. The splitting
functionality is versatile so you can split each page in a PDF into a new document or you can
split a range of pages into a new document or you can split based on a number of different
requirements.

Split each page of a PDF file into a new document

The ExtractFilePages function can be used to split each page of a PDF file into a new
document. This function lets you extract ranges of pages from a PDF document on disk and
places the extracted pages into a new PDF document. If you want to process files in memory,
instead of directly on disk, then you should use the ExtractFileRanges function.

/* Split PDF by page */
// Load the sample file that we will split
DPL.LoadFromFile ("sample.pdf", “7);

// Use the SelectedDocument function to get the
// document ID of the file that we just loaded.

int DocID = DPL.SelectedDocument () ;

// Count the total number of pages in the
// selected document. We need the total
// number of pages before we can use the
// ExtractFilePages function.

int TotalPages = DPL.PageCount();
// Remove the selected document from memory.
DPL.RemoveDocument (DocID) ;

// Loop through each page in the document
// and use the ExtractFilePages function
// to copy and save each page in the

// document to a new document.

for (int n = 1; n < TotalPages; n++)

{

DPL.ExtractFilePages ("sample.pdf", “”, "sample split " + Convert.ToString(n) + ".pdf",
Convert.ToString(n));

}

// That's it. You can also copy page ranges using
// this function, for example "10,15,18-20,25-35".

Split PDF document by page range

Debenu Quick PDF Library’s ExtractFilePages and ExtractPageRanges functions let you extract
a range of pages from a PDF.

A sample page range is "10,15,18-20,25-35". Commas separate individual pages while dashes
indicate consecutive pages to extract. Invalid characters will be ignored. Reversed page ranges
such as "5-1" will be accepted. Duplicate page numbers will be accepted but if a change is
made to such a page the same changes will appear on the duplicate pages. The list of pages
will not be sorted so the resulting document will have the pages in the specified order.

Extract a range of pages on disk using ExtractPageRanges
Use the ExtractFilePages function to extract a range of pages from a PDF on disk.

/* Extract a range of pages using direct access */

// The ExtractFilePages function makes extracting

// a range of pages very easy. Simply specify the file
// that pages should be extracted from and the file

// that the pages should be saved to -- as well as the
// range-list that you would like to extract.

DPL.ExtractFilePages ("example.pdf", “”, "example page range.pdf", "2-5, 8, 10, 13-19");

Extract a range of pages in memory using ExtractPageRange
Use the ExtractPageRanges function to extract a range of pages from a PDF in memory.

/* Extract a range of pages in memory */

// Load the PDF

DPL.LoadFromFile (Yexample.pdf”, “7);

// Extract a range of pages
DPL.ExtractPageRanges ("2-5, 8, 10, 13-19");
// New doc with extract pages auto-selected

DPL.SaveToFile (“example page range.pdf”);

The ExtractPages function can also be used to extract only consecutive pages.

PDF Merging

Two or more PDF files can be merged together. Sometimes this process is known is combining
PDF files, joining PDF files or appending one PDF file to another.

Merge PDF documents

Debenu Quick PDF Library supports the merging of two or more PDF documents into one PDF
document. The primary functions available for this task are MergeDocument, MergeFileList and
MergeFileListFast. The function that you use for merging will depend on what your exact
requirements are.

Merge two PDF documents together

If you want to merge two PDF files together then the MergeDocument function can be used.
This function allows you to join one PDF document to another PDF document.

/* Combine two PDF files into one PDF */

// Setup the files for merging

string firstDoc = "samplel.pdf";
string secondDoc = "sample2.pdf";
string DestFileName = "merged samples.pdf";

// Load the first PDF into memory

DPL.LoadFromFile (firstDoc, “);
int MainDocID = DPL.SelectedDocument () ;

// Load the second PDF into memory

DPL.LoadFromFile (secondDoc, “”);
int AppendID = DPL.SelectedDocument () ;

// Select the PDF to which the other PDF

// should be appended to and then merge.

// After merging AppendID will be removed

// from memory and MainDocID will be selected

DPL.SelectDocument (MainDocID) ;
DPL.MergeDocument (AppendID) ;

// Remove document from memory

DPL.SaveToFile (DestFileName) ;

During the merging process any form fields and annotations from the second document are
preserved but outlines (bookmarks) are not.

Merge a list of PDF files together

If you want to merge a list (two or more) of PDF files together then the MergeFileList function is
what you need. This function Merges all the files in a named file list and saves the resulting

merged document to the specified file.
/* Merge a list of PDF files */

// Add a range of files to a list.

DPL.AddToFileList ("FilesToMerge", "samplel.pdf");
DPL.AddToFileList ("FilesToMerge", "sample2.pdf");
DPL.AddToFileList ("FilesToMerge", "sample3.pdf");

// Merge the list of files together

DPL.MergeFileList ("FilesToMerge", "merged file list.pdf");

Outlines (bookmarks), form fields and annotations from all the documents will be present in the
merged document. The file list can be cleared using the ClearFileList function. Depending on
the content and size of the documents that you are merging, the MergeFileListFast function can
be used to obtain faster merging speeds.

Technical note

Read the below information only if you want to know more about PDF. This knowledge is not
required for using the functions mentioned above. It is just for the curious.

It is important to note that merging two PDF files together is not the same as stapling two pieces
of paper together. The only time you see a “page” in a PDF is when the PDF is rendered.

Internally each page in a PDF is represented by a page object. The page object is a dictionary
which includes references to the page's content and other attributes. The individual page
objects are tied together in a structure called the page tree. However, the structure of the page
tree is not necessarily related to the logical structure or flow of the document.

When you merge two PDF files together you need to take two separate PDFs and merge all of
the objects and resources together. It is not simply a case of physically appending one
document to another.

So instead of stapling two sheets together, a more accurate comparison for the PDF merging
process would be the recycling of paper where multiple different sheets of paper are broken
down (and fibers are mixed) to create a new ream of paper.

Note: there are a few different terms which can be used when describing the task of merging
PDF files together. For example, you could say combining PDF files together or appending one
PDF file to another PDF file or joining PDF files together. All of these terms are essentially the
same.

PDF Page Extraction

Debenu Quick PDF Library lets you extract individual pages or page ranges from a PDF, and
create new documents with the pages extracted. The ExtractFilePages, ExtractPages and
ExtractPageRanges functions will do the job for you (but you only need one of them).

Extract one page

The ExtractPages function can be used to easily extract one or more consecutive pages from a
document (the other page extraction functions can technically be used for this as well).

/* Extract one page from a PDF */

// Load the PDF

DPL.LoadFromFile (Yexample.pdf”, “7);

// Extract one page. Specify start page and number of subsequent pages to extract.
DPL.ExtractPages (1, 1);

// New doc with extract pages auto-selected

DPL.SaveToFile (“example pagel.pdf”);

Extract a page range
The ExtractFilePages and ExtractPageRanges functions can be used to extract page ranges.

A sample page range is "10,15,18-20,25-35". Commas separate individual pages while dashes
indicate consecutive pages to extract. Invalid characters will be ignored. Reversed page ranges
such as "5-1" will be accepted. Duplicate page numbers will be accepted but if a change is
made to such a page the same changes will appear on the duplicate pages. The list of pages
will not be sorted so the resulting document will have the pages in the specified order.

Extract a range of pages on disk using ExtractFilePages
Use the ExtractFilePages function to extract a range of pages from a PDF on disk.

/* Extract a range of pages from a PDF on disk */

// The ExtractFilePages function makes extracting

// a range of pages very easy. Simply specify the file
// that pages should be extracted from and the file

// that the pages should be saved to -- as well as the
// range-list that you would like to extract.

DPL.ExtractFilePages ("example.pdf", “”, "example page_range.pdf", "2-5, 8, 10, 13-19");

Extract a range of pages in memory using ExtractPageRanges
Use the ExtractPageRanges function to extract a range of pages from a PDF in memory.

/* Extract a range of pages from a PDF in memory */
// Load the PDF

DPL.LoadFromFile (Yexample.pdf”, “7);

// Extract a range of pages
DPL.ExtractPageRanges ("2-5, 8, 10, 13-19");

// New doc with extract pages auto-selected

DPL.SaveToFile (“example page range.pdf”);

The ExtractPages function can also be used to extract only consecutive pages.

PDF Forms

An interactive form -- sometimes referred to as an AcroForm -- is a collection of fields for
gathering information interactively from the user. A PDF document may contain any number of
fields appearing on any combination of pages, all of which make up a single, global interactive
form spanning the entire document.

Debenu Quick PDF Library provides fully support for working with form fields in PDF files, from
adding new form fields to retrieving data from form fields to updating existing form fields with
new data.

Form Field Types
PDF forms support the following field types:

e Button fields represent interactive controls on the screen that the user can manipulate
with the mouse. They include pushbuttons, check boxes, and radio buttons.
Text fields are boxes or spaces in which the user can enter text from the keyboard.
Choice fields contain several text items, at most one of which may be selected as the
field value. They include scrollable list boxes and combo boxes.

e Signature fields represent digital signatures and optional data for authenticating the
name of the signer and the document’s contents.

The GetFormFieldType function can be used to determine which form field type your fields are.

Create a new simple PDF form

Debenu Quick PDF Library lets you create new PDF forms from scratch. In this example we'll
create four new text form fields with varying characteristics.

/* Create a PDF form */

// Tell the library that all co-ordinates should
// begin from the top left corner of the page.

DPL.SetOrigin (1) ;
// Add the first new form field

var 1Dfl = DPL.NewFormField ("First Name", 1);
DPL.SetFormFieldValue (iDfl, "Jane");
DPL.SetNeedAppearances (1) ;
DPL.SetFormFieldBounds (iDf1, 20, 20, 100, 20);
DPL.SetFormFieldAlignment (iDf1l, 2);

// Add the second new form field

var 1Df2 = DPL.NewFormField ("Second Name", 1);
DPL.SetFormFieldValue (iDf2, "Doe");
DPL.SetNeedAppearances (1) ;
DPL.SetFormFieldBounds (iDf2, 20, 50, 100, 20);

fID = DPL.AddTrueTypeFont ("Myriad Pro Cond", 1);
ffID = DPL.AddFormFont (fID);
DPL.SetFormFieldFont (iDf2, ffID);
// Add the third new form field
var iDf3 = DPL.NewFormField ("Age", 1);
DPL.SetFormFieldValue (iDf3, "31");
DPL.SetNeedAppearances (1) ;
DPL.SetFormFieldBounds (iDf3, 20, 80, 100, 20);
// Add the fourth new form field
var iDf3 = DPL.NewFormField ("Nationality", 1);
DPL.SetFormFieldValue (iDf3, "Australian");
DPL.SetNeedAppearances (1) ;
DPL.SetFormFieldBounds (iDf3, 20, 110, 100, 20);
// Save the new PDF form to the hard disk
DPL.SaveToFile ("new_pdf form.pdf");

Create PDF form with buttons

Debenu Quick PDF Library lets you add push buttons, radio buttons and check boxes to PDF
forms. A button field (field type Btn) in PDF represents an interactive control on the screen that
the user can manipulate with the mouse or keyboard.

Push button form fields
Use option 2 with the NewFormField function to create push button form fields.

/* Create a PDF form with push button form fields */
// Set the origin to the top-left corner
DPL.SetOrigin (1) ;

// Add the heading font

DPL.AddStandardFont (5); // Helvetica bold
DPL.SetTextSize (10) ;

ButtonText = "Big JavaScript Button:";
ButtonWidth = DPL.GetTextWidth (ButtonText) ;
ButtonLocation = (DPL.PageWidth()/2) - (ButtonWidth/2);

DPL.DrawText (ButtonLocation, 68, ButtonText);

// Add the font to use for the form fields

FontID = DPL.AddStandardFont (0); // Courier

DPL.AddFormFont (FontID) ;

FieldIndex = DPL.NewFormField ("JavaScript Button:", 2);

DPL.SetNeedAppearances (0) ;

DPL.SetFormFieldBounds (FieldIndex, ButtonLocation, 70, ButtonWidth, 20);

DPL.SetFormFieldFont (FieldIndex, DPL.GetFormFontCount());
DPL.SetFormFieldTextSize (FieldIndex, 12);
DPL.SetFormFieldBorderColor (FieldIndex, 0.5, 0, 0);
DPL.SetFormFieldBorderStyle (FieldIndex, 1, 0, 0, 0);
DPL.SetFormFieldBackgroundColor (FieldIndex, 0.3, 0.3, 0.5);
DPL.SetFormFieldValue (FieldIndex, "");
DPL.SetFormFieldHighlightMode (FieldIndex, 3);

DPL.FormFieldJavaScriptAction (FieldIndex, "U", 'app.alert ("Debenu Quick PDF Library

rocks", 3,0, "Something you should know...");"');

// Compress the contents of the file

DPL.CompressContent () ;

// Save the file

DPL.SaveToFile ("push buttons.pdf");

Radio button form fields
Use option 4 with the NewFormField function to create radio button form fields.

/* Create a PDF form with radio button form fields*/

// Draw co-ordinates from top left corner of page

DPL.SetOrigin (1) ;

// Draw some filler text

DPL.DrawText (20, 20, "Radio Button Test:");

// Add the parent form under which
// the sub form fields will be grouped.

iDfl = DPL.NewFormField ("Nationality", 4);

// Add the first radio button sub form field
iDf101 = DPL.AddFormFieldSub (iDfl, "Australian");
DPL.SetFormFieldCheckStyle (iDf101, 2, 1);
DPL.SetFormFieldBounds (iDf101, 20, 60, 23, 23);
DPL.SetFormFieldBorderColor (iDf101, 0, 0, O0);

// Add the second radio button sub form field
iDf102 = DPL.AddFormFieldSub (iDfl, "Swedish");
DPL.SetFormFieldCheckStyle (iDf102, 2, 1);
DPL.SetFormFieldBounds (iDf102, 20, 120, 23, 23);

DPL.SetFormFieldBorderColor (iDf102, 0, 0, 0);

// Optional: Specify which radio button in
// this group is selected

DPL.SetFormFieldValue (iDfl, "Swedish");

// Call the SetNeedAppearances function.
// Required to display form fields in

// PDF viewer.
DPL.SetNeedAppearances (1) ;

// Save the new PDF form to disk

DPL.SaveToFile ("radio-buttons.pdf");

Checkbox form fields
Use option 3 with the NewFormField function to create checkbox form fields.

/* Create a PDF form with checkbox form fields*/
// Update drawing co-ordinates so that

// they are taken from the top left

// corner of the page.

DPL.SetOrigin (1) ;

// Draw some filler text
DPL.DrawText (20, 20, "Checkboxes:");

// Add the first check box form field
iDfl = DPL.NewFormField ("Australian", 3);
DPL.SetFormFieldCheckStyle (iDf1l, 2, 1);
DPL.SetFormFieldBounds (iDf1, 20, 60, 23, 23);
DPL.SetFormFieldBorderColor (iDf1, 0, 0, 0);
// Add the second check box form field
iDf2 = DPL.NewFormField ("Swdedish", 3);
DPL.SetFormFieldCheckStyle (iDf2, 2, 1);
DPL.SetFormFieldBounds (iDf2, 20, 120, 23, 23);
DPL.SetFormFieldBorderColor (iDf2, 0, 0, 0);
// Optional: Pre-select one of the check boxes
DPL.SetFormFieldValue (iDf1l, "Yes");
// Call the SetNeedAppearances function.
// Required to display form fields in
// PDF viewer.
DPL.SetNeedAppearances (1) ;
// Save the new PDF form to disk
DPL.SaveToFile"checkboxes.pdf") ;

Fill PDF form

Filling in a PDF form can be done with just a few function calls. The data that you use to fill in

the form can come from anywhere -- a database, captured user input, a hardcoded variable, etc.
The important functions here are FormFieldCount, GetFormFieldType and SetFormFieldValue.

/* Fill a PDF form */
// Load a PDF form from the samples folder
DPL.LoadFromFile ("example form.pdf", “”);

// Count the number of form fields in the
// loaded document

FieldCountAcroForms = DPL.FormFieldCount () ;
// Count the number of pages in the document
TotalPages = DPL.PageCount ()
// Loop through each page
for(p = 1; p <= TotalPages; pt+t)
{
// Select page number
DPL.SelectPage (p);
// Loop through each form field on the selected page
for(i = 1; i <= FieldCountAcroForms; i++)
{
// Determine form field type
if (DPL.GetFormFieldType (i) == 1)
{

// If form field type is text then add dummy text

DPL.SetFormFieldValue (i, "Dummy Text");

// Save the updated form
DPL.SaveToFile ("example form updated.pdf");

Delete all form fields from a PDF

Instead of adding or updating form fields you may wish to delete all of them. This is possible
using the DeleteFormField function.

/* Delete PDF form fields */
// Load a PDF that contains some form fields

DPL.LoadFromFile ("pdf form.pdf", “”);

// Count the total number of form fields in the file
TotalFormFields = DPL.FormFieldCount () ;

// Loop through each of the form fields and
// delete them using the DeleteFormField function

while (TotalFormFields > 0)
{
DPL.DeleteFormField (TotalFormFields) ;
TotalFormfields = TotalFormFields--;
// Save the updated file to the output folder
DPL.SaveToFile ("no_pdf form fields.pdf");

Flatten form fields in a PDF

Sometimes you want to take the data in form fields and add it to the PDF as real text objects
that are still displayed even when the PDF is printed or rendered in applications which do not
support form fields. This process is called flattening. Basically you're flattening the interactive
form, so that it is no longer interactive and all that is left is the text which was in the form fields.
The main function for doing this is the FlattenFormField function.

/* Flatten PDF form fields */

// Load a PDF that contains some form fields
DPL.LoadFromFile ("pdf form.pdf", “”);

// Count the total number of form fields in the file
TotalFormFields = DPL.FormFieldCount () ;

// Loop through each of the form fields and
// delete them using the DeleteFormField function

while (TotalFormFields > 0)
{
DPL.FlattenFormField (TotalFormFields) ;
TotalFormfields = TotalFormFields--;
// Save the updated file to the output folder
DPL.SaveToFile ("flattened pdf form.pdf");

Get data from form fields

Debenu Quick PDF Library allows you to extract data from form fields using the
GetFormFieldValue function.

/* Get data from PDF form fields */

// Load a PDF that contains some form fields
DPL.LoadFromFile ("pdf form.pdf", “”);

// Count the total number of form fields in the file
TotalFormFields = DPL.FormFieldCount () ;

// Loop through each of the form fields and

// get value and display it in message box

while (TotalFormFields > 0)

{
fieldValue = DPL.GetFormFieldValue (TotalFormFields) ;
MsgBox (fieldvalue) ;
TotalFormfields = TotalFormFields--;

// Save the updated file

DPL.SaveToFile ("flattened pdf form.pdf");

Duplicate form fields

Debenu Quick PDF Library allows you to add duplicate form fields to PDF files. This means that
two or more form fields share the same name and if one of the form fields is updated then the
other form fields are also updated.

/* Duplicate form fields */
// Create first form field

DPL.NewFormField ('Name', 1);
DPL.SetFormFieldBounds (1, 100, 500, 200, 100);
DPL.SetFormFieldBorderColor (1, 1, 0, 0);

// Create second form field and use same
// name as the first

DPL.NewFormField ('Name', 1);
DPL.SetFormFieldBounds (2, 100, 400, 200, 100);
DPL.SetFormFieldBorderColor (2, 0, 1, 0);
DPL.SaveToFile ('dupfields.pdf"');

If you use the GetFormFieldValueByTitle or SetFormFieldValueByTitle functions then these
functions will only work with the first occurrence of the field that has that title, it will not work with
the duplicate field. So it is better to use the index with the GetFormFieldValue and
SetFormFieldValue functions, instead of the title.

AcroForm vs XFA

There are two types of forms technologies used in PDF files: AcroForm and XFA. The AcroForm
technology was added to the PDF specification in 1996 and standardized as part of the ISO
standard for PDF in 2008. The use of XFA technology was added to the PDF specification in

2005 as a normative reference, meaning that it is not officially part of the PDF specification, just
referenced by it. XFA is a proprietary Adobe technology and has not been standardized by the
ISO, though its license permits other companies to use XFA technology.

Debenu Quick PDF Library provides extensive support for AcroForm form fields and limited
support for XFA form fields. We recommend to our customers that they use the AcroForm
technology because it is more supported by many PDF viewers and PDF editors, while XFA
technology is primarily supported by Adobe products.

PDF JavaScript

Debenu Quick PDF Library lets you add JavaScript to the whole document, a specific page or
other elements such as form fields, outlines and annotations.

Add global JavaScript to a PDF

It is possible to add JavaScript to the document which can be triggered by outlines, form fields,
links and other elements. In this example we add a form field button which when clicked triggers
a JavaScript message box.

/* Add JavaScript to a form field button in a new PDF */

// Use the AddGlobalJavaScript function to add
// JavaScript to a document.

DPL.AddGlobalJavaScript ("QPL", 'function Global Sample () {app.alert ("Debenu Quick PDF
Library rocks",3,0,"Something you should know...");}"');

// Set the paper size

DPL.SetPageSize ("A4");

// Set the origin to the top-left corner
DPL.SetOrigin (1) ;

// Set the measurement units to millimetres
DPL.SetMeasurementUnits (1) ;

// Add the heading font

DPL.AddStandardFont (5); // Helvetica bold
DPL.SetTextSize (10) ;

ButtonText = "Big JavaScript Button:";
ButtonWidth = DPL.GetTextWidth (ButtonText) ;
ButtonLocation = (DPL.PageWidth()/2) - (ButtonWidth/2);

DPL.DrawText (ButtonLocation, 68, ButtonText);

// Add the font to use for the form fields

FontID = DPL.AddStandardFont (0); // Courier

DPL.AddFormFont (FontID) ;

FieldIndex = DPL.NewFormField ("JavaScript Button:", 2);

DPL. SetNeedAppearances (0) ;

DPL.SetFormFieldBounds (FieldIndex, ButtonLocation, 70, ButtonWidth, 10);

DPL.SetFormFieldFont (FieldIndex, DPL.GetFormFontCount());
DPL.SetFormFieldTextSize (FieldIndex, 12);

DPL.SetFormFieldBorderColor (FieldIndex, 0.5, 0, 0);
DPL.SetFormFieldBorderStyle (FieldIndex, 1, 0, 0, 0);
DPL.SetFormFieldBackgroundColor (FieldIndex, 0.3, 0.3, 0.5);

DPL.SetFormFieldValue (FieldIndex, "");
DPL.SetFormFieldHighlightMode (FieldIndex, 3);
DPL.FormFieldJavaScriptAction (FieldIndex, "U", "Global Sample()");

// Save the file

DPL.SaveToFile ("Global JavaScript.pdf");

Here we have linked the global JavaScript to a form field but it could also be linked to an
annotation hotspot (link) or an outline using the AddLinkTodJavaScript function or the
SetOutlineJavaScript function. You can also use these global JavaScript functions from page or
document actions.

Page actions and JavaScript

Using the PagedJavaScriptAction function you can trigger JavaScript on page open or page
close events.

Document actions and JavaScript

Using the DocJavaScriptAction function you can trigger JavaScript on a document close, print
and save event.

Retrieve JavaScript
Using these functions it is possible to retrieve JavaScript from the PDF:

GetDocJavaScript -- returns JavaScript for document actions
GetGlobalJavaScript -- returns global JavaScript packages
GetOpenActiondavaScript -- returns JavaScript for document open action
GetOutlineJavaScript -- returns JavaScript for outline actions
GetPageJavaScript -- returns pave-level JavaScript open and close actions

PDF Markup Annotations

Annotations that are used primarily to markup a PDF are called markup annotations. Debenu
Quick PDF Library provides support for sticky notes and retrieving information about markup
annotations.

Add a sticky note
Using the AddNoteAnnotation function you can add a sticky note to a page in a PDF.

/* Add a sticky note to a PDF */

// Set the origin for the co-ordinates to be the
// top left corner of the page.

DPL.SetOrigin (1) ;

// Adding a sticky note to a page is simple with the
// help of the AddNoteAnnotation function.

DPL.AddNoteAnnotation (10, 10, 1, 200, 100, 335, 135, "My Fair Lady (1964)", "Many
critics found Wilfrid Hyde-White to be rather bland as Colonel Pickering...", 0.1, 0.2,
0.4, 1);

// When the QPL object is initiated a blank document

// is created and selected in memory by default. So

// all we need to do now is save the document to

// the local hard disk to see the changes that we've made.

DPL.SaveToFile ("sticky note.pdf");

Get annotation properties

Using the GetAnnotDblProperty, GetAnnotIntProperty, GetAnnotStrProperty and
AnnotationCount functions you can retrieve lots of information about annotations.

PDF Links

Links in PDF files are actually technically annotations. They are known as link annotations. They
are not part of the content of a PDF but rather an interactive element that sits on top and can be
added, moved or deleted with ease.

It is easy to confuse links in PDF files with how links work in HTML. In HTML the link and the
text or image that is being linked are directly connected. They are part of the same element. But
in PDF this is not the case. The link and the object being linked are not directly related. In the
PDF specification the text on the page is part of the page description commands while the link
itself is just an invisible area over the text stored in an "annotation" object.

At times the disconnect between the link annotation and the object that you’re trying to link can
make positioning the link over the object difficult. The co-ordinate points must be determined for
each object and the annotation placed on top of the object that will be linked.

Add link to the web
Use the AddLinkToWeb function to add links to web pages.

/* Add a link to the web*/

// Set the origin for the co-ordinates to be the
// top left corner of the page.

DPL.SetOrigin (1) ;

// Adding a link to the web is easy
// with the AddLinkToWeb function

DPL.AddLinkToWeb (200, 100, 60, 20, "http://www.quickpdflibrary.com", 1);
// Hyperlinks and text are two separate
// elements in a PDF, so we'll draw some
// text now so that you know where the
// hyperlink is located on the page.
DPL.DrawText (205, 114, "Click me!"™);
// When the QPL object is initiated a blank document
// is created and selected in memory by default. So
// all we need to do now is save the document to
// the local hard disk to see the changes that we've made.
DPL.SaveToFile ("link to web.pdf");
Add link to another page in same PDF
Use the AddLinkToPage function to add links from one page to another in the same PDF.

/* Add a link to a specific page in an external PDF */

// Set the origin for the co-ordinates to be the
// top left corner of the page.

DPL.SetOrigin (1) ;

// Create page 2 in the default document.
// Page 2 is automatically selected after
// being created.

DPL.NewPages (1) ;

DPL.SetTextSize ("24");

DPL.DrawText (250, 114, "Page 2");

// Select page 1 again so that
// we can add our link to page 2.

DPL.SelectPage (1) ;

// Adding a link to a page is easy using
// the AddLinkToPage function.

DPL.AddLinkToPage (200, 100, 60, 20, 2, 0, 1);
// Hyperlinks and text are two separate
// elements in a PDF, so we'll draw some
// text now so that you know where the
// hyperlink is located on the page.
DPL.DrawText (205, 114, "Click me!");
// Save the new PDF to disk
DPL.SaveToFile ("link to_page.pdf");
Add link to another document
Use the AddLinkToFile function to add a link to a specific page and position in another PDF.

/* Add a link to a specific page in an external PDF */

// Set the origin for the co-ordinates to be the
// top left corner of the page.

DPL.SetOrigin (1) ;

// Adding a link to a page in an external PDF
// is easy using the AddLinkToFile function.

DPL.AddLinkToFile (200, 100, 60, 20, "example.pdf", 22, 200, 1, 1);
// Hyperlinks and text are two separate

// elements in a PDF, so we'll draw some

// text now so that you know where the

// hyperlink is located on the page.

DPL.DrawText (205, 114, "Click me!"™);

// When the QPL object is initiated a blank document

// is created and selected in memory by default. So

// all we need to do now is save the document to

// the local hard disk to see the changes that we've made.

DPL.SaveToFile ("link to_another doc.pdf");

Add link to embedded file
Use the AddLinkToEmbeddedFile function to add a link to file embedded within the PDF.

/* Add a link to a file embedded within a PDF*/
// Embed a file into the current document
EmbeddedFileID = DPL.AddEmbeddedFile ("debenu final tm.pdf", "application/pdf");

// Set the origin for the co-ordinates to be the
// top left corner of the page.

DPL.SetOrigin (1) ;

// Adding a link to an embedded file 1is
// easy using the AddLinkToEmbeddedFile function.

DPL.AddLinkToEmbeddedFile (200, 100, 80, 20, EmbeddedFileID , "My embedded file", 1);
// Hyperlinks and text are two separate

// elements in a PDF, so we'll draw some

// text now so that you know where the

// hyperlink is located on the page.

DPL.DrawText (205, 114, "Double-Click Me!");

// When the QPL object is initiated a blank document

// is created and selected in memory by default. So

// all we need to do now is save the document to

// the local hard disk to see the changes that we've made.

DPL.SaveToFile ("link to embedded file.pdf");

Add link to link to JavaScript

Use the AddLinkToJavaScript function to add a link to a JavaScript action.
/* Add a link that executes a snippet of JavaScript when clicked on */
// Load a PDF with JavaScript

N

DPL.LoadFromFile ("doc with javascript.pdf",

// Use the AddLinkToJavaScript function to add a link
// that executes some JavaScript when clicked on

DPL.AddLinkToJavaScript (220, 570, 190, 210, 'app.alert("Debenu Quick PDF Library
rocks",3,0,"Something you should know...");',1);

// Set the opening page and zoom factor

// for our sample file.
DPL.SetOpenActionDestination (1, -1);

// Save the file to disk in the output folder.
DPL.SaveToFile ("link to javascript.pdf");

Add link to a destination

Use the AddLinkToDestination function to add a link to a destination in the same document. The
target page, position and zoom level are specified by a destination object which can be created
with the NewDestination function.

/* Add a link a link to a destination in the same document*/
// Set page origin to top left

DPL.SetOrigin (1) ;

// Add a 2nd page to the default 1 page doc

DPL.NewPages (1) ;

// Add a new destination on page 2, draw some text too
DestID = DPL.NewDestination(2, 0, 7, 0, 200, 0, 0);
DPL.DrawText (300, 300, "Page 2 Destination");

// Select page 1 again

DPL.SelectPage (1) ;

// Use the AddLinkToDestination function to add
// a link to the destination that we've previously created

DPL.AddLinkToDestination (200, 100, 60, 20, DestID, 1);
// Hyperlinks and text are two separate

// elements in a PDF, so we'll draw some

// text now so that you know where the

// hyperlink is located on the page.

DPL.DrawText (205, 114, "Click me!"™);

// Save the file to disk.
DPL.SaveToFile ("link to destination.pdf");

Add link to named destination

Use the AddLinkToDestination and NewNamedDestination functions to add a link to a named
destination in the same document. The target page, position and zoom level are specified by a

destination object which can be created with the NewDestination function.
/* Add a link a link to a named destination in the same document */

// Set page origin to top left and add
// a 2nd page to the default 1 page doc

DPL.SetOrigin (1) ;
DPL.NewPages (1) ;

// Add a new destination on page 2
DestID = DPL.NewDestination(2, 0, 7, 0, 200, 0, 0);

// Add a named destination reference to the
// destination object that we've just created

DPL.NewNamedDestination ("MyNamedDestination", DestID);
// Draw some text so we know where we are
DPL.DrawText (300, 300, "Page 2 Named Destination");

// Select page 1 again

DPL.SelectPage (1) ;

// Use the AddLinkToDestination function to add
// a link to the destination that we've previously created

DPL.AddLinkToDestination (200, 100, 60, 20, DestID, 1);
// Hyperlinks and text are two separate

// elements in a PDF, so we'll draw some

// text now so that you know where the

// hyperlink is located on the page.

DPL.DrawText (205, 114, "Click me!");

// Save the file to disk

DPL.SaveToFile ("link to destination.pdf");

PDF Bookmarks (Outlines)

Debenu Quick PDF Library provides extensive support for adding, editing and removing
bookmarks from PDF files. In the PDF specification bookmarks are technically referred to as
outlines and this is the terminology that we have used when naming our bookmark related
functions but in this guide we have referred to them as bookmarks.

Add new bookmarks to a PDF
Use the NewOutline function to add new bookmarks to a PDF.

/* Add new bookmarks to a PDF */

// Load a PDF with multiple pages

DPL.LoadFromFile ("100 pages.pdf", "");

// Add a new parent bookmark that links to page 50

outlineIDl = DPL.NewOutline (0, "Bookmark to page 50", 50, DPL.PageHeight()):;

// Now lets add a child bookmark to the parent bookmark and
// point that to page 100

outlineID2 = DPL.NewOutline (outlineIDl, "Bookmark to page 100", 100, DPL.PageHeight());
// It's also possible to manipulate the style of bookmarks a little

// so lets try adding a little bold text and a bright color to the

// child bookmark that we just created

DPL.SetOutlineColor (outlineID2, 0, 192, 0);

// It's not just other pages that you can add bookmarks to.

// Bookmarks can open web links, trigger JavaScript, open external

// files and other similar actions. Lets add a bookmark web link to finish.

outlineID3 = DPL.NewStaticOutline (0, "Debenu Quick PDF Library Website");
DPL.SetOutlineWebLink (outlineID3, "http://www.quickpdflibrary.com/");

// Finally, lets change the initial view settings so that
// when the PDF opens in Adobe Reader that it displays

// the bookmarks panel by default

DPL.SetPageMode (1) ;

// Save the updated PDF to disk

DPL.SaveToFile ("100_pages_with bookmarks.pdf");

Remove all bookmarks from a PDF

Use the the OutlineCount, RemoveOutline, GetFirstOutline, GetFirstChildOutline and
GetNextOutline functions to remove all bookmarks from a PDF.

/* Remove all bookmarks from a PDF */
// Load a PDF that has some bookmarks
DPL.LoadFromFile ("bookmarks.pdf", "");
// Count all bookmarks in the PDF
totalOutlines = DPL.OutlineCount () ;

// Run through each bookmark in the PDF

// starting with the parent bookmark
// and then walking through the child

// bookmarks.

for (x = 1; x <= totalOutlines; x++)
{
parentOutline = DPL.GetFirstOutline();
childOutline = DPL.GetFirstChildOutline (parentOutline);

while (DPL.GetNextOutline (childOutline) != 0)

{
nextOutline = DPL.GetNextOutline (childOutline) ;
DPL.RemoveOutline (nextOutline) ;

}
DPL.RemoveOutline (childOutline) ;
DPL.RemoveOutline (parentOutline) ;

// Save the PDF with no bookmarks to disk

DPL.SaveToFile ("no bookmarks.pdf");
/* Remove all bookmarks from a PDF */

// Load a PDF that has some bookmarks
DPL.LoadFromFile ("bookmarks.pdf", "");
// Count all bookmarks in the PDF
totalOutlines = DPL.OutlineCount ()

// Run through each bookmark in the PDF
// starting with the parent bookmark

// and then walking through the child
// bookmarks.

for (x = 1; x <= totalOutlines; x++)
{
parentOutline = DPL.GetFirstOutline();
childOutline = DPL.GetFirstChildOutline (parentOutline);

while (DPL.GetNextOutline (childOutline) != 0)

{
nextOutline = DPL.GetNextOutline (childOutline) ;
DPL.RemoveOutline (nextOutline) ;

}

DPL.RemoveOutline (childOutline) ;
DPL.RemoveOutline (parentOutline) ;
// Save the PDF with no bookmarks to disk
DPL.SaveToFile ("no bookmarks.pdf");
Find and list all bookmarks

Use the OutlineCount and OutlineTitle functions to find and list all bookmarks found in a PDF.

/* Find all bookmarks in a document and display them in a message box */

// Load the sample file from the input folder

DPL.LoadFromFile ("bookmarks.pdf", “7);
iMainDocID = DPL.GetDocumentID (DPL.DocumentCount()) ;

// Count the number of pages
iFilePages = DPL.PageCount () ;
// Count the number of bookmarks
iNumOutlines = DPL.OutlineCount () ;
// Declare the variable that we'll use for storing the bookmark titles
DocName = "";
// Cycle through each bookmark, saving the chunk as a separate file
for (n = 1; n < iNumOutlines; n++)
{
// Select the main document

DPL.SelectDocument (iMainDocID) ;

// Select the current bookmark
iOutlineID = DPL.GetOutlinelID(n) ;

// Get the bookmark title

DocName = DocName + DPL.OutlineTitle (iOutlineID) + "\n";

// Display a message box with all the bookmarks listed

MsgBox (DocName) ;

PDF Fonts

Debenu Quick PDF Library provides support for a wide range of different fonts, enabling you to
embed and subset fonts. Support for Unicode characters is also provided.

Add a TrueType font
Use the AddTrueTypeFont function to embed a TrueType font in a PDF.

/* Embed a TrueType font within a PDF */

// Use the AddTrueTypeFont function to add a font to

// the default blank document and get the return

// value which is the font ID.

fontIDl = DPL.AddTrueTypeFont ("Arial Rounded MT Bold", 1);
// Select the font using its font ID

DPL.SelectFont (fontID1l) ;

// Draw some text onto the document to see if

// everything is working OK.
DPL.DrawText (100, 700, "Arial Rounded MT Bold");

// Repeat exercise to see what a couple of other
// fonts will look like as well.

fontID2 = DPL.AddTrueTypeFont ("Times New Roman", 1);
DPL.SelectFont (fontID2) ;
DPL.DrawText (100, 650, "Times New Roman") ;
fontID3 = DPL.AddTrueTypeFont ("Century Gothic", 1);
DPL.SelectFont (fontID3) ;
DPL.DrawText (100, 600, "Century Gothic");
// Save the new document to the output folder.
DPL.SaveToFile ("embedded fonts.pdf");

Add a standard font

Use the AddStandardFont function to embed a standard font to a PDF.
/* Add a Windows standard font to a PDF */
// Use the AddStandardFont function to add a font to
// the default blank document and get the return
// value which is the font ID.
fontIDl = DPL.AddStandardFont (0) ;

// Select the font using its font ID

DPL.SelectFont (fontID1) ;

// Draw some text onto the document to see if
// everything is working OK.

DPL.DrawText (100, 700, "Couriex");

// Repeat exercise to see what a couple of other
// fonts will look like as well.

fontID2 = DPL.AddStandardFont (1) ;

DPL.SelectFont (fontID2) ;

DPL.DrawText (100, 650, "CourierBold");

fontID3 = DPL.AddStandardFont (2);

DPL.SelectFont (fontID3);

DPL.DrawText (100, 600, "CourierBoldOblique");

fontID4 = DPL.AddStandardFont (3);

DPL.SelectFont (fontID4) ;

DPL.DrawText (100, 550, "Helvetica");

fontID5 = DPL.AddStandardFont (4);

DPL.SelectFont (fontID5S) ;

DPL.DrawText (100, 500, "HelveticaBold"):;

// Save the new document to the output folder.

DPL.SaveToFile ("embedded standard fonts.pdf");
Add a subsetted font

Use the AddSubsettedFont function to embed a subset of a font in a PDF. This means that only
the font information for the specified characters will be embedded, reducing the size of the
document.

/* Add subsetted text to a PDF */

// Our string of Unicode text goes here
drawstr = "Hello World";

// Add a subset font for the text string
DPL.AddSubSettedFont ("Verdana", 1, drawstr);

// Remap the string to ensure that the correct character
// codes are used.

substr = DPL.GetSubsetstring (drawstr);
// Draw the Unicode text onto the page
DPL.DrawText (100, 600, substr);

// Save the new file to disk

DPL.SaveToFile ("subsetted text.pdf");
Add a subsetted font with Unicode text
Unicode text can be added to PDFs using the AddSubsettedFont function.
/* Add subsetted Unicode text to a PDF */
// Our string of Unicode text goes here
drawstr = "{REF";
// Add a subset font for the text string
DPL.AddSubSettedFont ("Verdana", 7, drawstr);

// Remap the string to ensure that the correct character

// codes are used.
substr = DPL.GetSubsetstring(drawstr);
// Draw the Unicode text onto the page
DPL.DrawText (100, 600, substr);
// Save the new file to disk
DPL.SaveToFile ("unicode text.pdf");

Add a Type 1 font

Use the AddType1Font function to embed PostScript Type 1 fonts in a PDF.
/* Add a Type 1 font to a PDF */
// Load and add the Type 1 font using the
// AddTypelFont function. Read function
// description for full requirements.
FontID = DPL.AddTypelFont ("Allandale.PFM") ;
// Select the font that we've just added
DPL.SelectFont (FontID) ;
// Set page origin to top left
DPL.SetOrigin (1) ;
// Draw some sample text
DPL.DrawText (100, 100, "Hello World");
// Save the new file to disk

DPL.SaveToFile ("embedded typel font.pdf");

Add a CJK font

Use the AddCJKFont function to add a Chinese, Japanese or Korean font to a PDF. Read the
function description for full information.

/* Add a CJK font to a PDF */
// Add a CJK font and select it

FontID = DPL.AddCJKFont (1)
DPL.SelectFont (FontID) ;

// Specify text to be drawn

InputText = "HIXXA"; // Chinese text

// Convert string of text to Unicode
UnicodeInputText = DPL.ToPDFUnicode (InputText) ;
// Draw the string of text onto the PDF
DPL.DrawText (100, 600, UnicodeInputText);

// Save the new file to disk

DPL.SaveToFile ("cjk_font.pdf");

Check PDF for font data

The HasFontResources function can be used to check a PDF for any font resources. If the PDF
does not have any font resources then it can be assumed to be an image only PDF.

/* Check PDF for font resources */
// Load the PDF to test
DPL.LoadFromFile ("example.pdf", “7);

// Check PDF for font resources. If this function returns 0
// then no font resources exist, but if it returns a non-zero value
// then font resources do exist.

HasFontResourcesResult = DPL.HasFontResources();

if (HasFontResourcesResult == 0)

{

MsgBox ("No font resources found. Image only PDF.");

}

else

{

MsgBox (HasFontResourcesResult + " font resource(s) found.");

Save embedded TrueType font data to file

Use the SaveFontToFile function to save embedded TrueType font data to file.
/* Save TrueType font data to file*/
// Load the PDF to extract TrueType font data from
DPL.LoadFromFile ("bookmarks.pdf", “");
// Locate all fonts in the PDF
FindFontsResult = DPL.FindFonts();

// Loop through each font and save
// to file if the font is TrueType and embedded

for (i = 1; i < FindFontsResult; i++)
{
FontID = DPL.GetFontID(i);
DPL.SelectFont (FontID) ;
if (DPL.FontType () == 4)

{
DPL.SaveFontToFile (DPL.FontName () + ".ttf");

}
}

Some additional details:

1. First you need to load the PDF using the LoadFromFile function or one of the other
LoadFrom* functions.

2. Then you need to count all of the fonts in the document using the FindFonts function.
This function will return the total number of fonts in the document. Use this as an index
to loop through each font in the document -- starting from 1 to the total number of fonts.

3. While looping through the index of the fonts, retrieve the fond ID and use this ID to select
the font using the SelectFont function.

4. Only embedded TrueType fonts are supported by the SaveFontToFile function, so you
need to use the FontType function to filter our all fonts that are not embedded TrueType
fonts.

5. Finally, now you can save the embedded TrueType fonts to disk using the
SaveFontToFile function as they are discovered in the loop

PDF Text

Debenu Quick PDF Library lets you draw text onto PDF files in a variety of different ways.

Please note: Sometimes the use of the NormalizePage function is required if the text is
unexpectedly scaled, upside down or sideways after you have drawn it on the page. This
function moves and/or rotates the contents of the page so that subsequent drawing operations
are at the expected position on the page. All the page boundary boxes are adjusted to the
physical size of the page and the page's rotation attribute is reset to zero.

Draw text
Debenu Quick PDF Library lets you easily add simple text strings to PDF.
/* Draw a variety of different text on a new document */

// Set the origin for the drawing co-ordinates. In this case
// we'll draw the co-ordinates from the top left corner of the page.

DPL.SetOrigin (1) ;

// Draw normal text

DPL.DrawText (25, 25, "This text was drawn using the DrawText function.");
// Save the new file to the output folder
DPL.SaveToFile ("simple text.pdf");

Draw styled text

Debenu Quick PDF Library gives you powerful control over styling your text with different fonts,
text size and color and also the positing of the text on the page.

/* Draw a variety of different text on a new document */

// Set the origin for the drawing co-ordinates. In this case
// we'll draw the co-ordinates from the top left corner of the page.

DPL.SetOrigin (1) ;

// Draw normal text

DPL.DrawText (25, 25, "This text was drawn using the DrawText function.");
// Draw an arc of text

DPL.DrawTextArc (150, 150, 100, 280, "This text was drawn using the DrawTextArc

function.", 0);
// Draw text wrapped to a specified width

DPL.DrawWrappedText (400, 50, 200, "This text was drawn using the DrawWrappedText
function. As you can see, the text automatically wraps when it exceeds the specified

width.");
// Set the alignment of the text that we'll draw next
DPL.SetTextAlign(2);

// Draw text in a text box. Specify width and height
// of the text box.

DPL.DrawTextBox (350, 150, 200, 200, "This text was drawn using the DrawTextBox
function. Similar to the DrawText function except that the alignment can be
specified.", 1);

// Change the alignment

DPL.SetTextAlign (0) ;

// Draw rotated text

DPL.DrawRotatedTextBox (300, 200, 200, 200, 90, "This text was drawn using the
DrawRotatedTextBox function.", 1);

// Draw text where each character has a space between it

DPL.DrawSpacedText (15, 300, 10, "This text was drawn using the DrawSpacedText

function.");

// Draw some more text

DPL.DrawText (25, 25, "This text was drawn using the DrawText function.");
// Save the new file to the output folder

DPL.SaveToFile ("Text.pdf");

Add HTML text

Debenu Quick PDF Library provides some HTML text functions which give you greater control
over the layout and styling of your text. See Appendix A of the Function Reference for a full list
of the HTML tags that are available for use with Debenu Quick PDF Library.

/* Use HTML text to make styling and laying out text easier */

// Set the origin for the drawing co-ordinates. In this case
// we'll draw the co-ordinates from the top left corner of the page.

DPL.SetOrigin (1) ;
// Draw a bullet list using DrawHTMLText

DPL.DrawHTMLText (100, 100, 200, "Item 1</1i><1li>Item 2</1i>Item
3</1i><1li>Item 4</1i><1li>Item 5</1i>");

// Draw a paragraph of text in a text box
// with some font and italic text

DPL.DrawHTMLTextBox (200, 300, 200, 200, "<p>This is a text box.
bold and some <i>italic</i> using HTML tags.</p>");

// Save the new file to the output folder

DPL.SaveToFile ("html text.pdf");

I can make some of it

PDF Text Extraction

Extracting text from a PDF can at times be a difficult task. If a PDF has been scanned from
paper and no OCR process has been performed then the page in a PDF might display what
looks like text but in the objects in the PDF no text actually exists, just an image. You can use
the HasFontResources function to check if a PDF has any text. Extracting text from a PDF that
does indeed contain text objects is a relatively straight forward process using one of the text
extraction functions.

Extract text

Simple text extraction where the text of a PDF is output in a human readable format into plain
text is very simple using either the GetPageText, ExtractFilePageText or DAExtractPageText
functions.

/* Extract text from a PDF */

// Load the test file and iterate through each page in the
// PDF and append it to a text file.

strIinputFilePath = "apply fingerprint.pdf";

DPL.LoadFromFile (strInputFilePath, “”);

iNumPages = DPL.PageCount(); // Calculate the number of pages
strText = "";
nPage = 0;
for (nPage = 1; nPage<=iNumPages; nPage++)
{
strText = strText + DPL.ExtractFilePageText (strInputFilePath, "", nPage, 0);

// Write all the data to a file

s = OFSO.CreateTextFile ("extracted text.txt", 1);
s.Writeline (strText);

s.Close();

Extract text advanced

Advanced text extraction where the text, along with co-ordinates, font information is returned as
a CSV string is possible using the GetPageText, ExtractFilePageText or DAExtractPageText
functions. Using options 3 or 4 of the ExtractOptions parameter you can have text returned as
individual words or chunks.

/* Extract advanced text from a PDF */

// Load the file and iterate through each page in the
// PDF and append it to a text file.

strIinputFilePath = "apply fingerprint.pdf";

DPL.LoadFromFile (strInputFilePath, “”);

iNumPages

strText =
nPage = 0;

for (nPage

{
strText

DPL.PageCount (); // Calculate the number of pages

1; nPage<=iNumPages; nPage++)

strText + DPL.ExtractFilePageText (strInputFilePath,

// Write all the data to a file

s = OFSO.CreateTextFile ("extracted text.txt", 1);
s.Writeline (strText) ;

s.Close () ;

nn
’

nPage,

4);

PDF Images

Debenu Quick PDF Library provides extensive support for adding images to PDF files,
extracting images from PDF files, replacing images in PDF files and converting images to PDF
and PDFs to images.

Add image to PDF

Use the AddimageFromFile and Drawlmage functions to add images to PDF files. Supported
image types: BMP, TIFF, JPEG, PNG, GIF, WMF and EMF.

/* Add an image to an existing PDF document */

// Load a file from disk. We'll place the image
// onto this file.

DPL.LoadFromFile ("example.pdf", “7);

// Load your image into memory
DPL.AddImageFromFile ("example.bmp", 0);
// Get width and height of the image

1lWwidth = DPL.ImageWidth () ;
1lHeight = DPL.ImageHeight () ;

// Draw the image onto the page using the specified width/height
DPL.DrawlImage (250, 450, 1lWidth, lHeight);

// Save the updated file to the output folder
DPL.SaveToFile ("pdf with image.pdf");

Extract image from PDF to file

Use the SavelmageToFile function to extract embedded images from PDF files to disk as JPG,
BMP or TIFF images.

/* Extract an image from a PDF to file */
// Load the PDF
DPL.LoadFromFile ("example.pdf", “”)
// Find all images in the PDF

ImagesFound = DPL.FindImages ()

// Get the image ID for the first image
// found in the PDF

ImageID = DPL.GetImageID(1)

// Select the image using its ID
DPL.SelectImage (ImagelD)

// Determine the embedded images
// file type and then save to disk

ImageTypeFound = DPL.ImageType () ;

if (ImageTypeFound == 0)

{

MsgBox ("No image is selected");

}

else if (ImageTypeFound == 1)

{
DPL.SavelImageToFile ("embedded image.jpg");

}

else if (ImageTypeFound == 2)

{
DPL.SaveImageToFile ("embedded image.bmp") ;
}

else if (ImageTypeFound == 3)

{
DPL.SavelmageToFile ("embedded image.tiff");

}
Replace an image
Use the Replacelmage function to replace an old image in a PDF with a new image.
/* Replace an image in a PDF */
// Load the PDF
DPL.LoadFromFile ("example.pdf", “”)
// Find all images in the PDF
ImagesFound = DPL.FindImages ()

// Get the image ID for the first image
// found in the PDF

OriginalImageID = DPL.GetImageID (1)

// Add new image to the PDF

NewImageID = DPL.AddImageFromFile ("example.bmp", 0);
// Replace the old image with the new image
DPL.ReplaceImage (OriginalImageID, NewlImagelD) ;

// Save the updated PDF

DPL.SaveToFile ("image replaced.pdf");

Convert EMF to PDF
Use the ImportEMFFromFile function to convert EMF files to PDF.

/* EMF to PDF conversion */

// Load your image into memory

eImageID = DPL.ImportEMFFromFile"tiger.emf", 0, 0);
// Select the imported image

DPL.SelectImage (eImagelD) ;

// Get width, height of the image

1Width = DPL.ImageWidth () ;
1Height = DPL.ImageHeight () ;

// Reformat the size of the page in the selected document
DPL.SetPageDimensions (1Width, lHeight);

// Draw the image onto the page using the specified width/height
DPL.DrawlImage (0, lHeight, 1lWidth, 1lHeight);

// Store the updated PDF where you like
DPL.SaveToFile ("tiger emf.pdf");

Convert Image to PDF

Use the AddimageFromFile, SetPageDimensions and Drawlmage functions to convert an image
to PDF. Supported image types: BMP, TIFF, JPEG, PNG, GIF, WMF and EMF.

/* Convert an image to a PDF */

// Load a sample image into memory
DPL.AddImageFromFile ("samplel23.jpg", 0);
// Get the width and height of the image

1Width = DPL.ImageWidth() ;
lHeight = DPL.ImageHeight () ;

// Reformat the size of the page in the selected document
DPL.SetPageDimensions (1Width, lHeight);
// Draw the image onto the page using the specified width/height

DPL.DrawImage (0, lHeight, 1wWidth, lHeight);

// Store the updated PDF where you like

DPL.SaveToFile ("samplel23.pdf");

Convert PDF to Image

Converting a PDF to an image is easy using the RenderDocumentToFile function or any of the
other functions that start with Render*.

/* PDF to image conversion */

// Load the 'debenu final tm.pdf' sample file
DPL.LoadFromFile ("example.pdf", “7);

// Calculate the number of pages

iNumPages = DPL.PageCount () ;

// Render each page of the document to a separate file.
// To view the images open the output folder.

DPL.RenderDocumentToFile (72, 1, iNumPages, 0,"example.bmp");

PDF Color

Debenu Quick PDF Library provides you with extensive support for controlling the color of text
and vector graphics that you add to PDF files.

/* Set the color for a variety of different objects -- text, vector graphics, etc */
// Specify the page size
DPL.SetPageSize ('A4");

// Specify the corner of the page where co-ordinates should start.
// In this example we'll specify the top left corner.

DPL.SetOrigin (1) ;
// Set the line color and width

DPL.SetLineColor (255, 0, 255);
DPL.SetLineWidth (0.5);

// Set fill color and then draw a circle

DPL.SetFillColor (0, 0, 255);
DPL.DrawCircle (250, 600, 100, 2);

// Draw some text and specify various
// different colors for the text.

DPL.DrawText (25, 25, "This text was drawn using the DrawText function.");

DPL.SetTextColor (.4, .5, 0);
DPL.DrawTextArc (150, 150, 100, 280, "This text was drawn using the DrawTextArc

function."™, 0);

DPL.SetTextColor (0, .3, 0);

DPL.DrawWrappedText (400, 50, 200, "This text was drawn using the DrawWrappedText
function. As you can see, the text automatically wraps when it exceeds the specified
width.");

DPL.SetTextAlign (2);

DPL.SetTextColor (0, .1, .4);

DPL.DrawTextBox (350, 150, 200, 200, "This text was drawn using the DrawTextBox
function. Similar to the DrawText function except that the alignment can be
specified.", 1);

DPL.SetTextAlign (0) ;

DPL.DrawRotatedTextBox (300, 200, 200, 200, 90, "This text was drawn using the
DrawRotatedTextBox function.", 1);

DPL.SetTextColor (.6, .11, .44);

DPL.DrawSpacedText (15, 300, 10, "This text was drawn using the DrawSpacedText
function.");

DPL.DrawText (25, 25, "This text was drawn using the DrawText function.");

// Save the new document to disk

DPL.SaveToFile ("Color.pdf");

PDF Vector Graphics

Debenu Quick PDF Library provides extensive support for vector graphics enabling you to draw
various different shapes onto your PDF files. In this example we draw multiple boxes and circles
with a variety of different colors.

/* Draw some shapes on a new PDF */
// Set the page size for the new PDF
DPL.SetPageSize ('A4");

// Set the origin for the drawing co-ordinates
// to be the top left corner of the page.

DPL.SetOrigin (1) ;

// Set the measurement unit that we'll use.
// In this example we'll use millimetres.

DPL.SetMeasurementUnits (1) ;
// Set the color and the width for the line

DPL.SetLineColor (255, 0, 0);
DPL.SetLineWidth (0.5) ;

// Create a variety of boxes and circles
// using a loop.

for (x = 0; x <= 9; x++)
{
for (y = 0; y <= 10; y++)
{
DPL.DrawBox (5 + x * 20, 5 + y * 25, 20, 25, 0);
DPL.SetFillColoxr (0, 192, 0);
DPL.DrawCircle (15 + x * 20, 17.5 + y * 25, 8, 2);

// Save the new file to the output folder

DPL.SaveToFile ("Shapes.pdf");

PDF Optional Content Groups (aka Acrobat Layers)

Please note: optional content groups are what Acrobat and Adobe Reader refer to as layers.
Optional content groups is the term used in the PDF specification. See the API Overview
section for a more detailed analysis.

Debenu Quick PDF Library provides extensive support for working with optional content groups

in a variety of different ways, from creating new OCGs to editing or deleting existing OCGs.

Create OCGs
Use the NewOptionalContentGroup function to create optional content groups and add content

to them.
/* These script shows you how to create multiple optional content groups (OCGs)*/

// Create four new optional content groups

OCG1l = DPL.NewOptionalContentGroup ("OCG 1
OCG2 = DPL.NewOptionalContentGroup ("OCG 2
OCG3 = DPL.NewOptionalContentGroup ("OCG 3"
0OCG4 DPL.NewOptionalContentGroup ("OCG 4

// Select the page that you want the OCGs to be
// associated with.

DPL.SelectPage (1) ;

// Specify top left corner for starting point
// of all drawing functions.

DPL.SetOrigin (1) ;

// Add OCG 1

DPL.NewContentStream() ;
DPL.SelectContentStream(l) ;

DPL.DrawText (100, 100, "OCG 1");
DPL.SetContentStreamOptional (OCG1) ;
DPL.SetOptionalContentGroupVisible (OCGl, 1);

// Add OCG 2

DPL.NewContentStream() ;
DPL.SelectContentStream(2) ;

DPL.DrawText (200, 100, "ContentStream 2");
DPL.SetContentStreamOptional (OCG2) ;
DPL.SetOptionalContentGroupVisible (OCG2, 1);

// Add 0OCG 3

DPL.NewContentStream() ;
DPL.SelectContentStream(3) ;

DPL.DrawText (300, 100, "OCG 3");
DPL.SetContentStreamOptional (OCG3) ;
DPL.SetOptionalContentGroupVisible (OCG3, 1);

// Add OCG 4

DPL.NewContentStream() ;
DPL.SelectContentStream(4) ;
DPL.DrawText (400, 100, "OCG 4");
DPL.SetContentStreamOptional (OCG4) ;

DPL.SetOptionalContentGroupVisible (OCG4, 1);
// Save file to disk with new OCGs

DPL.SaveToFile ("option content groups.pdf");

Control visibility and printability of OCGs

Use the SetOptionalContentGroupVisible and SetOptionalContentGroupPrintable functions to
control the visibility and printability settings of OCGs.

/* Create OCGs with differing visibility and printability settings */
// Create four new optional content groups

OCGl = DPL.NewOptionalContentGroup ("OCG 1");
OCG2 = DPL.NewOptionalContentGroup ("OCG 2");
OCG3 = DPL.NewOptionalContentGroup ("OCG 3");
OCG4 = DPL.NewOptionalContentGroup ("OCG 4");

// Select the page that you want the OCGs to be
// associated with.

DPL.SelectPage (1) ;

// Specify top left corner for starting point
// of all drawing functions.

DPL.SetOrigin (1) ;
// Add OCG 1

DPL.NewContentStream() ;

DPL.SelectContentStream (1) ;

DPL.DrawText (100, 100, "OCG 1");

DPL.SetContentStreamOptional (OCG1) ;
DPL.SetOptionalContentGroupVisible (OCGl, 1); // Set this OCG to be visible

// Add OCG 2

DPL.NewContentStream() ;

DPL.SelectContentStream(2) ;

DPL.DrawText (200, 100, "OCG 2");

DPL.SetContentStreamOptional (OCG2) ;

DPL.SetOptionalContentGroupVisible (0OCG2, 0); // Set this OCG to not be visible

// Add OCG 3

DPL.NewContentStream() ;

DPL.SelectContentStream(3) ;

DPL.DrawText (300, 100, "OCG 3");

DPL.SetContentStreamOptional (OCG3) ;

DPL.SetOptionalContentGroupVisible (OCG3, 1); // Set this OCG to be visible
DPL.SetOptionalContentGroupPrintable (OCG3, 1); // Set this OCG to be printable

// Add OCG 4

DPL.NewContentStream() ;

DPL.SelectContentStream(4) ;

DPL.DrawText (400, 100, "OCG 4");

DPL.SetContentStreamOptional (OCG4) ;

DPL.SetOptionalContentGroupVisible (0OCG4, 1); // Set this OCG to be visible
DPL.SetOptionalContentGroupPrintable (0OCG4, 0); // Set this OCG to be not printable
// Save file to disk with new OCGs

DPL.SaveToFile ("ocgs.pdf");

Remove OCGs

Use the OptionalContentGroupCount, GetOptionalContentGroupID and
DeleteOptionalContentGroup functions to delete optional content groups from your PDFs.

/* Delete all optional content groups */
// Load the PDF that contains the OCGs
DPL.LoadFromFile ("ocgs.pdf", “7);
// Count OCGs
OCGCount = DPL.OptionalContentGroupCount () ;
// Loop through each OCG and delete it
for(i = 1; i <= OCGCount; i++)
{
OCGID = DPL.GetOptionalContentGroupID (i) ;
DPL.DeleteOptionalContentGroup (OCGID) ;

// Save file to disk with new OCGs

DPL.SaveToFile ("no_ocgs.pdf");

PDF Content Streams

Content streams are the primary means for describing the appearance of pages and other
graphical elements.

Combine content streams

Use the CombineContentStreams function to combine all content streams for the selected page
into one content stream.

/* Combine all content streams for each page in a PDF */
// Load PDF to process
DPL.LoadFromFile ("example.pdf", “7);

// Count pages

int xPageCount = DPL.PageCount();
// Go through each page and combine content streams
for (int i = 1; 1 <= xPageCount; i++)
{

DPL.SelectPage (i) ;

DPL.CombineContentStreams () ;
// Save the updated file
DPL.SaveToFile ("example updated.pdf");

Remove shared content streams

Use the RemoveSharedContentStreams function to ensure that none of the pages in the
selected document share any content streams.

/* Remove shared content streams */

// Load the PDF
DPL.LoadFromFile (Yexample.pdf”, “7);

// Remove shared content streams
DPL.RemoveSharedContentStreams () ;

// Save the updated PDF
DPL.SaveToFile (“example updated.pdf”);

Encapsulate content streams

Use the EncapsulateContentStream function to surround the current content stream with "save
graphics state" and "restore graphics state" operators.

/* Encapsulate content streams in a PDF */
// Load the PDF
DPL.LoadFromFile ("example.pdf", “7);
// Count pages
xPageCount = DPL.PageCount () ;
// Go through each page and encapsulate content streams
for (int i = 1; 1 <= xPageCount; i++)
{
DPL.SelectPage (i) ;

int xContentStreamCount = DPL.ContentStreamCount () ;

for (int x = 1; x <= xContentStreamCount; x++)

DPL.SelectContentStream(x) ;
DPL.EncapsulateContentStream() ;

// Save the updated file

DPL.SaveToFile ("example updated.pdf");

Normalize page content rotation

Use the NormalizePage function to automatically move and/or rotate the contents of the page
so that subsequent drawing operations are at the expected position on the page. All the page
boundary boxes are adjusted to the physical size of the page and the page's rotation attribute is
reset to zero.

/* Normalize the page content rotation */

DPL.LoadFromFile ("Content Rotation Problems.pdf", “”);
DPL.NormalizePage (0) ;

DPL.DrawText (284, 511, "Testing text");
DPL.SaveToFile ("Rotation Problem Fixed.pdf");

PDF Attachments

PDF files can contain fully embedded files. These embedded files are accessible from the
Attachments menu in conforming PDF readers. There is no limitation on the types of files which
can be embedded, although recent versions of Adobe Acrobat have not permitted executable
depending on the security settings specified in the preferences.

Embed a file in a PDF

Use the EmbedFile function to embed a file within a PDF.
/* Add a file attachment to a PDF */
// Load the PDF
DPL.LoadFromFile ("example.pdf", “7);

// Embed a Word document (can be any media type) in
// selected document.

DPL.EmbedFile ("Link to embedded file...", "example.docx", "application/msword");
// Save the updated file to disk
DPL.SaveToFile (example updated.pdf");
Count embedded files in a PDF
Use the EmbeddedFileCount function to count the number of embedded files in a PDF.
/* Count embedded files in a PDF */
// Load the PDF
DPL.LoadFromFile ("example.pdf", “7);
// Count the embedded files
embeddedFiles = DPL.EmbeddedFileCount () ;
// Display number of embedded files
MsgBox ("Number of Embedded Files: " + embeddedFiles);

Extract embedded file from PDF

Use the GetEmbeddedFileContentToFile function to extract the content of an embedded file
from a PDF.

/* Extract embedded file from a PDF*/
// Load PDF with embedded file

DPL.LoadFromFile ("pdf with embedded file.pdf", “”);

// Extract embedded file content to file on disk

DPL.GetEmbeddedFileContentToFile (1, "JavaScript.docx");

PDF Barcodes

Debenu Quick PDF Library provides support for Code39 (or Code 3 of 9), EAN-13, Code 128,
PostNet and Interleaved 2 of 5 barcodes.

Draw a barcode
Use the DrawBarcode function to add barcodes to your PDF.

/* Draw a variety of different barcodes on a new page in a PDF */

// Set the origin for the co-ordinates to be
// the top left corner of the page.

DPL.SetOrigin (1) ;

// Draw three different barcodes

7

DPL.DrawBarcode (25, 25, 150, 100, "MyBarcode256", 1, 0)
DPL.DrawBarcode (225, 50, 100, 600, "MyBarcode257/RC", 1
DPL.DrawBarcode (350, 50, 200, 150, "MyBarcode258", 3, 0

0);

’
)i
// Save the new file

DPL.SaveToFile ("Barcodes.pdf") ;

Draw a PDF417 barcode
Use the the DrawPDF417Symbol function to add a PDF417 barcode to a PDF.

/* Draw a PDF417 barcode on a PDF */

// Set the origin for the co-ordinates to be
// the top left corner of the page.

DPL.SetOrigin (1) ;

// Draw three different barcodes

DPL.DrawPDF417Symbol (25, 25, "Debenu Quick PDF Library Rocks", 3);
// Save the new file

DPL.SaveToFile ("PDF417 barcode.pdf");

Draw a Data Matrix 2D barcode
Use the DrawDataMatrixSymbol function to add a Data Matrix 2D barcode to a PDF.

/* Draw a Data Matrix 2D barcode on a PDF */

// Set the origin for the co-ordinates to be
// the top left corner of the page.

DPL.SetOrigin (1) ;

// Draw three different barcodes

DPL.DrawDataMatrixSymbol (100, 100, 15, "Debenu Quick PDF Library Rocks"™, 1, 0, 0);
// Save the new file
DPL.SaveToFile ("Data Matrix 2D barcode3.pdf");

Draw text under a barcode

Use the GetBarcodeWidth, DrawBarcode and Drawtext functions to add a barcode and draw
text underneath it.

/* Draw text under a barcode */

// Set co-ordinate origin to top left of page
DPL.SetOrigin (1) ;

// Add the Helvetica standard font

DPL.AddStandardFont (4) ;

// Get the width of the barcode with a bar width of 1 unit
BarcodeWidth = DPL.GetBarcodeWidth (1, "12345", 1);

// Draw the barcode

DPL.DrawBarcode (100, 500, BarcodeWidth, 100, "12345", 1, 0);
// Center the text

DPL.SetTextAlign (1) ;

// Draw the text at 10pt

DPL.SetTextSize (10);
DPL.DrawText (100 + BarcodeWidth / 2, 200 + DPL.GetTextHeight(), "12345");

// Save the updated PDF

DPL.SaveToFile ("text under barcode.pdf");

PDF Metadata

Debenu Quick PDF Library lets you control metadata in PDF files as the Title, Author, Subject
and Keyword properties, as well as custom metadata.

Set document properties
Use the Setinformation function to add Title, Author, Subject and Keyword properties to a PDF.

/* Add standard document information (metadata) to a document. */

// Custom information can be added using the

DPL.SetInformation (0, "1.9");

DPL.SetInformation(l, "John Smith");

DPL.SetInformation (2, "The Life and Times of John Smith");
DPL.SetInformation (3, "A very special book");

DPL.SetInformation (4, "book, paperback, ebook");
DPL.SetInformation (5, "Mother Earth");
DPL.SetInformation (6, "Humanity");

// Draw some explanatory text onto the blank document.

DPL.DrawText (100, 700, "Select Ctrl+D and then click on the Description tab to see the
document information.");

// Save the new file

DPL.SaveToFile ("document information.pdf");

Get document properties
Use the GetInformation function to get document properties from PDF files.

/* Get and display the document properties (metadata) for a document */

// Load a PDF

DPL.LoadFromFile ("document properties.pdf", “7);

// Extract information from the document

DocInformation = "";

DocInformation = DocInformation + "PDF Version: " + DPL.GetInformation(0) + "\n";
DocInformation = DocInformation + "Author: " + DPL.GetInformation(l) + "\n";
DocInformation = DocInformation + "Title: " + DPL.GetInformation(2) + "\n";
DocInformation = DocInformation + "Subject: " + DPL.GetInformation(3) + "\n";
DocInformation = DocInformation + "Keywords: " + DPL.GetInformation(4) + "\n";
DocInformation = DocInformation + "Creator: " + DPL.GetInformation(5) + "\n";
DocInformation = DocInformation + "Producer: " + DPL.GetInformation(6) + "\n";
DocInformation = DocInformation + "Creation date: " + DPL.GetInformation(7) + "\n";
DocInformation = DocInformation + "Modification date: "™ + DPL.GetInformation(8) + "\n";

// Display the

information to the user

MsgBox (DocInformation) ;

Set custom metadata
Use the SetCustomInformation function to add custom metadata to PDF files.

/* Add custom information (metadata) to documents. */

// Custom information can be added using the
// SetCustomInformation function. Create your
// own Key and Value and call the function as

// many times as you require.

DPL.SetCustomInformation ("FirstName", "John");
DPL.SetCustomInformation ("LastName", "Smith");

DPL.SetCustomInformation("Coolness Level", "Very Cool");
// Draw some explanatory text onto the blank document.

DPL.DrawText (100, 700, "Select Ctrl+D and then click on the Custom tab to see the
custom information.");

// Save the new file

DPL.SaveToFile ("custom_information.pdf");

Get custom metadata
Use the GetCustomIinformation to retrieve custom metadata from PDF files.

/* Get custom information (metadata) from PDFs. */

wry
’

DPL.LoadFromFile ("custom information.pdf",

// Custom information/metadata can be retrieved

// from PDF files using the GetCustomInformation function.
// Custom metadata is stored in name/value pairs,

// so in order to retrieve metadata you must know the

// name of the entry that you want to retrieve.

myCustomInfol = DPL.GetCustomInformation ("FirstName") ;
myCustomInfo2 = DPL.GetCustomInformation ("LastName");
myCustomInfo3 = DPL.GetCustomInformation ("Coolness Level");

// Display the custom metadata that we've Jjust retrieved

MsgBox (myCustomInfol) ;
MsgBox (myCustomInfo?2) ;
MsgBox (myCustomInfo3) ;

Misc
This section contains a variety of useful information that doesn’t fall into any other category.

PDF Resources

There are many PDF resources available on the web, but we’ve compiled a few of the really
good ones for you below to give you a head start. It isn’t necessary to know all about the
technical details of PDF when you work with our library, so this is just for the curious.

Planet PDF -- PDF news, tips and in-depth articles

Planet PDF Forum -- PDF discussion forum

PDF Tutorials by Jim King -- easy to follow technical presentations on PDF

Inside PDF -- a blog from Jim King, a Senior Scientist at Adobe Systems

PDF basics -- articles on the basic building blocks of PDF

PDF Specification -- PDF Reference and Adobe Extensions to the PDF Specification

There are many more PDF resources available on the web, but these are some of the best.
There are also some more specific resources dealing with PDF available at Planet PDF.

Introduction to Acrobat & PDF
Accessible PDF

PDF Color

PDF Preflight

Introduction to Acrobat Development
Introduction to Acrobat JavaScript

Useful 3rd Party Applications

These are just some useful applications that we use in our day to day testing.

AsTiffTagViewer -- a free TIFF tag (code, data type, count, value) viewer application
Debenu PDF Tools - application for manipulating PDFs, built using Debenu Quick PDF
Library

tiffinfo.exe (uses libTIFF) - analyze TIFF images, discussed on our blog
JPEGsnoop -- JPEG file decoding utility

Foxit PDF Reader - free lightweight PDF viewer

Adobe Acrobat -- Acrobat is a very useful tool if you work with PDF every day

PDF CanOpener -- this is an Acrobat plug-in for COS level manipulation of PDFs
GPL Ghostscript -- software based on interpreter for PostScript and PDF

GSview -- graphical interface for Ghostscript, display PDF and PostScript

EMF Explorer -- EMF/WMF previewing, conversion and printing

Enfocus Browser -- browse internal objects and dictionaries of PDF files

Notepad++ -- plain text editor useful for opening PDF files in plain text

AMP Font Viewer -- useful font manager for keeping track of installed fonts

You will notice a couple of different PDF viewers on this list, we always find it is a good idea to
test your PDF files in a variety of different PDF viewers because you never know what PDF
viewer your client is going to be using.

http://www.planetpdf.com/
http://forums.planetpdf.com/
http://home.comcast.net/~jk05/presentations/PDFTutorials.html
http://blogs.adobe.com/insidepdf/
http://www.prepressure.com/pdf
http://www.adobe.com/devnet/pdf/pdf_reference.html
http://www.planetpdf.com/enterprise/learningcenter.asp?ContainerID=1511&gid=
http://www.planetpdf.com/enterprise/learningcenter.asp?ContainerID=1505&gid=
http://www.planetpdf.com/creative/learningcenter.asp?ContainerID=1516&gid=
http://www.planetpdf.com/creative/learningcenter.asp?ContainerID=1518&gid=
http://www.planetpdf.com/developer/learningcenter.asp?ContainerID=1515&gid=
http://www.planetpdf.com/developer/learningcenter.asp?ContainerID=1519&gid=
http://www.awaresystems.be/imaging/tiff/astifftagviewer.html
http://www.debenu.com/quick-pdf-tools/index.php
http://www.debenu.com/quick-pdf-tools/index.php
http://gnuwin32.sourceforge.net/packages/tiff.htm
http://www.quickpdflibrary.com/blog/2010/05/analyzing-tiff-images/
http://www.impulseadventure.com/photo/jpeg-snoop.html
http://www.foxitsoftware.com/pdf/reader/
http://www.adobe.com/products/acrobat.html
http://www.windjack.com/product/pdfcanopener/
http://pages.cs.wisc.edu/~ghost/doc/GPL/index.htm
http://pages.cs.wisc.edu/~ghost/gsview/
http://frazmitic.free.fr/emfexplorer/overview.htm
http://www.enfocus.com/product.php?id=4530
http://notepad-plus-plus.org/
http://www.ampsoft.net/utilities/FontViewer.php

	1 About
	1.1 Features
	1.2 Programming Languages
	1.3 License terms
	1.4 Setup
	1.4.1 System requirements
	1.4.2 Evaluation Version and Full Version
	1.4.3 License Key
	1.4.4 Installation

	2 Resources
	2.1 Getting started guides
	2.2 Function reference
	2.3 Tutorials
	2.4 Sample code
	2.5 Demo
	2.6 FAQ

	3 API Overview
	3.1 Function groups
	3.2 What you should know
	3.2.1 Unlock the library
	3.2.2 Check functions for return values
	3.2.3 Memory management
	3.2.4 Memory and direct access functions
	3.2.5 Blank document automatically loaded
	3.2.6 New documents automatically selected
	3.2.7 Multiple documents in memory permitted
	3.2.8 Origin point for drawing operations
	3.2.9 Measurement units
	3.2.10 Unicode, UTF­8 and the DLL and Delphi Editions
	3.2.11 Fonts
	3.2.12 Processing digitally signed PDF files
	3.2.13 Optional Content Groups, Layers and Content Streams: What is the difference?
	3.2.14 Need Appearances and Form Fields

	4 Tasks
	4.1 PDF Creation
	4.1.1 Create a simple PDF
	4.1.2 Create a complex PDF
	4.1.3 Create a PDF/A document

	4.2 PDF Conversion
	4.2.1 Convert an image to PDF
	4.2.2 Convert a PDF to an image
	4.2.3 Convert a PDF to text

	4.3 PDF Rendering
	4.4 PDF Editing
	4.5 PDF Printing
	4.5.1 Standard PDF printing
	4.5.2 Custom PDF printing

	4.6 PDF Security
	4.6.1 Open password
	4.6.2 Document restrictions
	4.6.3 Digital signatures
	4.6.4 PDF decryption

	4.7 PDF Splitting
	4.7.1 Split PDF documents
	4.7.2 Split each page of a PDF file into a new document
	4.7.3 Split PDF document by page range
	4.7.4 Extract a range of pages on disk using ExtractPageRanges
	4.7.5 Extract a range of pages in memory using ExtractPageRange

	4.8 PDF Merging
	4.8.1 Merge PDF documents
	4.8.2 Merge two PDF documents together
	4.8.3 Merge a list of PDF files together
	4.8.4 Technical note

	4.9 PDF Page Extraction
	4.9.1 Extract one page
	4.9.2 Extract a page range
	4.9.3 Extract a range of pages on disk using ExtractFilePages
	4.9.4 Extract a range of pages in memory using ExtractPageRanges

	4.10 PDF Forms
	4.10.1 Form Field Types
	4.10.2 Create a new simple PDF form
	4.10.3 Create PDF form with buttons
	4.10.4 Fill PDF form
	4.10.5 Delete all form fields from a PDF
	4.10.6 Flatten form fields in a PDF
	4.10.7 Get data from form fields
	4.10.8 Duplicate form fields
	4.10.9 AcroForm vs XFA

	4.11 PDF JavaScript
	4.11.1 Add global JavaScript to a PDF
	4.11.2 Page actions and JavaScript
	4.11.3 Document actions and JavaScript
	4.11.4 Retrieve JavaScript

	4.12 PDF Markup Annotations
	4.12.1 Add a sticky note
	4.12.2 Get annotation properties

	4.13 PDF Links
	4.13.1 Add link to the web
	4.13.2 Add link to another page in same PDF
	4.13.3 Add link to another document
	4.13.4 Add link to embedded file
	4.13.5 Add link to link to JavaScript
	4.13.6 Add link to a destination
	4.13.7 Add link to named destination

	4.14 PDF Bookmarks (Outlines)
	4.14.1 Add new bookmarks to a PDF
	4.14.2 Remove all bookmarks from a PDF
	4.14.3 Find and list all bookmarks

	4.15 PDF Fonts
	4.15.1 Add a TrueType font
	4.15.2 Add a standard font
	4.15.3 Add a subsetted font
	4.15.4 Add a subsetted font with Unicode text
	4.15.5 Add a Type 1 font
	4.15.6 Add a CJK font
	4.15.7 Check PDF for font data
	4.15.8 Save embedded TrueType font data to file

	4.16 PDF Text
	4.16.1 Draw text
	4.16.2 Draw styled text
	4.16.3 Add HTML text

	4.17 PDF Text Extraction
	4.17.1 Extract text
	4.17.2 Extract text advanced

	4.18 PDF Images
	4.18.1 Add image to PDF
	4.18.2 Extract image from PDF to file
	4.18.3 Replace an image
	4.18.4 Convert EMF to PDF
	4.18.5 Convert Image to PDF
	4.18.6 Convert PDF to Image

	4.19 PDF Color
	4.20 PDF Vector Graphics
	4.21 PDF Optional Content Groups (aka Acrobat Layers)
	4.21.1 Create OCGs
	4.21.2 Control visibility and printability of OCGs
	4.21.3 Remove OCGs

	4.22 PDF Content Streams
	4.22.1 Combine content streams
	4.22.2 Remove shared content streams
	4.22.3 Encapsulate content streams
	4.22.4 Normalize page content rotation

	4.23 PDF Attachments
	4.23.1 Embed a file in a PDF
	4.23.2 Count embedded files in a PDF

	4.24 Extract embedded file from PDF
	4.25 PDF Barcodes
	4.25.1 Draw a barcode
	4.25.2 Draw a PDF417 barcode
	4.25.3 Draw a Data Matrix 2D barcode
	4.25.4 Draw text under a barcode

	4.26 PDF Metadata
	4.26.1 Set document properties
	4.26.2 Get document properties
	4.26.3 Set custom metadata
	4.26.4 Get custom metadata

	5 Misc
	5.1 PDF Resources
	5.2 Useful 3rd Party Applications

