
ArchVoc – Towards an Ontology for Software Architecture

Lenin Babu T
IIT-Kanpur, India.
lenin@cse.iitk.ac.in

Seetha Ramaiah M
IIT-Kanpur, India.

msram@cse.iitk.ac.in

Prabhakar T.V
IIT-Kanpur, India.
tvp@cse.iitk.ac.in

Rambabu D
Cisco Systems Pvt Ltd
rdudduku@cisco.com

Abstract

Knowledge management of any domain requires
controlled vocabularies, taxonomies, thesauri,
ontologies, concept maps and other such artifacts. This
paper describes an effort to identify the major concepts
in software architecture that can go into such meta
knowledge. The concept terms are identified through
two different techniques (1) manually, through back-
of-the-book index of some of the major texts in
Software Architecture (2) through a semi-automatic
technique by parsing the Wikipedia pages. Only
generic architecture knowledge is considered. Apart
from identifying the important concepts of software
architecture, we could also see gaps in the software
architecture content in the Wikipedia.

1. Introduction

The exponential growth of the world's knowledge
has made the job of organization and search very
challenging and demanding. Ontology based
techniques have gained acceptance as a means for
tagging and performing semantic searches. In this
paper we take the first step to construct an ontology for
software architecture, generating a vocabulary. We talk
about two methods of constructing the vocabulary: the
first one using the back-of-the-book index from major
books in software architecture; and the second using
the Wikipedia. The first method is completely manual,
where as the second one is a semi-automatic method
which can be used for any domain.

Wikipedia has grown to be the largest encyclopedia
on the Internet and is growing exponentially. The
Wikimedia foundation provides a query interface
which provides a way for user applications to query
data directly from the MediaWiki servers. One or more
pieces of information about the site and/or a given list
of pages can be retrieved. Information can be queried
in either a machine readable format (xml, json, php,
yaml, wddx) or a human readable format. More than
one piece of information may be requested with a
single query.

The URL: http://en.wikipedia.org/w/query.php is
the query interface to which the user or an application
specifies certain parameters depending on the type of
information one wants to get. Most important
parameters of a query are: format, what and titles. A
typical query is of the form:
http://en.wikipedia.org/w/query.php?format=...&what
=...|...|...&titles=...|...|... & ...
A detailed discussion of the query interface can be
found at [15].

The software architecture community in its short
span has been able to come up with a body of
knowledge which lends itself to enormous reuse - best
practices like design patterns, tactics which seem to be
more fine-grained than patterns, frameworks, factual
information like benchmarks technology artefacts etc.
Every organization also has its own expertise based on
the design and development of problems they have
solved earlier. This taxonomy or ontology of the
software architecture enables the architect in
understanding the existing best practices and the
relationships between them and also provide a means
to apply them to the new systems to be developed. This
knowledge base will help the architect to analyze the
system built.

In the process of creating the knowledge base first
we have to identify the boundaries of software
architecture. To identifying the boundary of the
domain we have to create a controlled vocabulary
which includes all the terms in this domain. Controlled
vocabulary helps in eliminating meaningless terms,
terms which are too broad or too narrow, preventing
different authors from misspelling and slightly
different form of the same term. From this controlled
vocabulary we build the taxonomy, classification that
arranges the terms in this controlled vocabulary into a
hierarchy. Taxonomy helps by describing the subjects.
Taxonomy defines Broader term and Narrow term
relationships. Ontology will contain the terms and
relationships between the terms. In ontology we can
define many relationships like Related term, Uses,
Consists of etc. In the process creating Ontology for
this software architecture domain we have created
taxonomy of the Vocabulary.

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

The rest of the paper is structured as follows: in the
following section we describe the motivation behind
our work. Section 3 describes related work done in this
area. Section 4 describes the methodologies used to
create the taxonomy. Section 5 puts in the picture the
results obtained. Section 6 gives some comments and
possible future work and finally section 7 gives a list of
references.

2. Motivation

 This section describes the main impetus behind our
work. For an architect, thee taxonomy or ontology of
the software architecture enables in understanding the
existing best practices and the relationships between
them. For the teacher and a student of Software
Architecture, and ontology is also useful in knowing
the important concepts and their relationships.

This ontology is also useful in situations like
asset management. A document repository can be
benefit through search enhanced with an ontology
(semantic as against just syntactic).

Our fundamental motive is to come up with a
better ontology which serves as a knowledge base for
software architecture. We tried to compare two
methods of ontology derivation, manual and semi
automatic methods of deriving the vocabulary so that
we can take the best derived vocabulary from both the
approaches

3. Related Work

This section describes the work done by various
people to classify different vocabulary terms in
software architecture domain. In the Grady Booch
Handbook of Software Architecture [16], large
numbers of patterns are classified that allow
comparisons across domains and architecture styles.
Though it solves the domain expertise problem, there
are no such relationships between Architecture Tactics
and quality requirements mapped to the more real life
problem domains. In [17], an ontology is described as
that helps in reusing the architecture level documents
with the help of a knowledge base management tool for
maintaining documents. This paper mainly deals with
viewpoints used in the documents and does not take
care of the other architecture properties. In [18], the
design patterns are classified. There is no emphasis on
mapping these patterns to other architecture properties
and design methodologies.

In SWEBOK [19] Software Engineering topics are
classified using Bloom’s taxonomy [20]. Bloom’s
taxonomy is well known and widely used classification
of cognitive educational goals. Main classifications

include Knowledge, Comprehension, Application,
Analysis, Synthesis, and Evaluation. Each topic in
Software Engineering domain is classified using the
bloom’s taxonomy.

In [23, 24, 26], an approach to annotate and search
architecture documents and a preliminary vocabulary
has been presented.

 We used two methods for deriving the vocabulary
for this ontology which we shall describe in detail in
the next section.

4. Methodology

Here we describe the two methods of collecting the

vocabulary of a given domain: first one using back-of-
the-book index and the second one using Wikipedia.

4.1 Manual Method:

Using the back-of-the-book index from several
books related to a certain domain, one can manually
construct a controlled vocabulary of that domain.
Given a domain, take as many books as possible
related to that domain and write down all interesting
terms from the back-side index of each book. Eliminate
duplicates from the collected list of terms. And then try
to form clusters of terms based on their conceptual
relatedness, that perform an affinity analysis. Finally
we will be left with a hierarchy of terms related to the
given domain.

4.2 Method Using Wikipedia:

In a Wikipedia document, all the hyper-links
pointing to other documents are favorable towards a
controlled vocabulary. So, start with a seed term from
the domain; get all the links present in the document
whose title is the given seed term.

For example, to get all the links present in the
Wikipedia document titled “Software architecture”, use
the URL:
http://en.wikipedia.org/w/query.php?format=xml
&what=links&titles=Software_architecture
This query will return an XML file consisting of links
present in the document titled “Software architecture”.
This XML file can be processed by some piece of code
to get a list of terms. From this list, the user will select
the terms which are of interest to his/her domain.
Include these terms in the vocabulary. Considering
each of these terms as seed, proceed recursively.

Implementing this method, we have built a tool
called ‘HyperOnto’ in Python and Java. Figure 1 is a
screen shot of our tool. Here, we are showing the
second iteration in the process of collecting the
controlled vocabulary of the “Software architecture”
domain.

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

5. Results

We are interested in the terms/concepts related to

software architecture knowledge which is generic that
is not related to any application domain or a particular
problem [22].

We have obtained 3 different result sets, two of
which have been generated using the back-of-the-book
index method and the third one using our tool. Result
set-1 is collected using four books from the Software
Engineering Institute (SEI) series: [1], [4], [5] and [12].
Result set-2 is collected using these four books plus

some best selling books from the Amazon’s list: [2],
[3], [6], [7], [8], [9], [10], [11], [13] and [14]. Result
set-3 has been generated from Wikipedia using our
tool. Table 1 shows a comparison of these results.
Table 3 gives the complete list.

The terms are classified into nine concept

categories as shown in Figure 2. Table2 shows a break
up of the vocabularies mentioned in Table 1 in these
categories. Figure 3 highlights the categories we have
covered from the SWEBOK guide [19].

Figure 1: Second iteration in the process of collecting the controlled vocabulary of the “Software

architecture” domain.

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

Result set
Method Used Source of Knowledge Size of the

Vocabulary
1 Back-of-the-book index [1], [4], [5] and [12] 850
2 Back-of-the-book index [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11],

[12], [13] and [14].
1650

3 HyperOnto Wikipedia 480
Table 1 : Comparison of the result sets obtained by the two methods

S. No Top-level category From SEI

series books
SEI series plus ten other books Wikipedia

1 Antipatterns 0 47 77
2 Design patterns 41 208 58
3 Frameworks 4 9 5
4 Methodologies 10 11 17
5 Quality Attributes 18 53 24
6 Scenarios 16 18 0
7 Styles 20 70 7
8 Tactics 85 92 0
9 Views & View types 45 57 0

Table 2: Break-up of the vocabularies based on the count of the terms in each top-level category

Figure 2: Concept categories of the “Software architecture” domain

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

Figure 3: Knowledge Areas from SWEBOK which have contributed to the Vocabulary

6. Benefits of the Ontology

This ontology helps an architect in understanding of a
new system and helps in its construction with
existing best practices[26]. We have also said that
this ontology can be used for educational purposes.
For this we have made a Wiki entry
http://wwwp.dnsalias.org/w/index.php/user:Thummal
apalli. covering several architecture properties and
concept maps showing the relationships between
these architecture properties. We have also included
the vocabulary derived from our methods so that
users can evaluate the process and suggest more
unbiased terms. We have developed the ontology as
an Owl Standard file and is available to download
from
http://www.cse.iitk.ac.in/users/soft_arch/www/ontoso
ftarch/.

 7. Comments and Future Work

This paper describes a first step towards

constructing a full-fledged ontology for application
generic software architecture knowledge. The
vocabulary has to be substantially enhanced through
consideration of other software architecture
documents like books that have not been considered
here, research publications and through expert
reviews. The semantic relationships between these

terms are lot more difficult to construct and requires
more work. The HyperOnto tool may be extended to
extract the relationships among the terms in the
vocabulary using some NLP techniques and to help
construct a full-fledged ontology of any domain.

There seem to be some gaps in the Wikipedia’s
current knowledge base for the Software Architecture
domain, which can be seen in Table 2 of the results.
There are no documents that talk about scenarios,
tactics, views and view types. HyperOnto can be used
to construct the controlled vocabulary of any domain.
With slight modifications the same tool can be used
for any online encyclopedia and can be used to
compare several knowledge bases with regards to the
coverage of the content related to a domain.

8. References

 [1] Len Bass, Paul Clements, Rick Kazman, and Ken Bass.
Software Architecture in Practice. 2nd Edition,
Addison-Wesley, 2003.
[2] Jan Bosch. Design and Use of Software Architectures.
1st Edition, Addison-Wesley 2001.
[3] Stephen T. Albin. The Art of Software Architecture:
Design Methods and Techniques, 1st Edition, Wiley, 2003.
[4] Paul Clements, Felix Bachmann, Len Bass, and David
Garlan, Documenting Software Architectures: Views and
Beyond. Addison-Wesley, 1st Edition, 2002.
[5] Paul Clements, Rick Kazman, and Mark Klein.
Evaluating Software Architectures: Methods and Case
Studies Addison-Wesley, 2002.

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

[6] Ian Gortan. Essential Software Architecture, 1st Edition,
Springer, 2006.
[7] Gamma, Helm, Johnson, Vlissides.Design Patterns:
Elements of Reusable Object-Oriented Software, 1st
Edition, Edison Wesley, 1995.
[8] Frank Buschmann, Regine Meunier, Hans Rohnert, and
Peter Sommerlad. Pattern-Oriented Software Architecture,
Volume 1: A System of Patterns, 1st Edition, John Wiley &
Sons, 1996.

[9] Douglas Schmidt, Michael Stal, Hans Rohnert, and
Frank Buschmann. Pattern-Oriented Software Architecture,
Volume 2: Patterns for Concurrent and Networked
Objects., John Wiley & Sons; 1 edition (September 14,
2000)
[10] Martin Fowler, Patterns of Enterprise Application
Architecture, Addison-Wesley Professional; 1st edition
(November 5, 2002)
[11] Brown, Malveau, and McCormick, AntiPatterns:
Refactoring Software, Architectures, and Projects in Crisis,
John Wiley & Sons; 1 edition (February 1, 2001)
[12] Paul Clements, Linda Northrop, and Linda M.
Northrop, Software Product Lines : Practices and Patterns.
3Rev Ed edition ,Addison-Wesley, 2001.
[13] Raphael Malveau, Thomas J. Mowbray. Software
Architect Bootcamp, Prentice Hall PTR, 2000
[14] Mary Shaw, David Garlan., Software Architecture:
Perspectives on an Emerging Discipline, Prentice-Hall
Engineering/Science/Mathematics, 1996
[15] The Wikipedia query interface,.
http://en.wikipedia.org/w/query.php
[16] Handbook of Software Architecture, Grady Booch.

[17] Christopher A., Welty David A. Ferrucci, Formal
Ontology for reuse of Software Architecture Documents,
Proceedings of the 14th IEEE international conference on
Automated software engineering, 1999.
[18] Magnus Kardell, A classification of object-
oriented design patterns
 http://www.cs.umu.se/~jubo/ExJobbs/MK/patterns.htm
[19] SWEBOK: A Guide to Software Engineering Body of
knowledge, 2004 version.
[20] Bloom’s Taxonomy
http://www.officeport.com/edu/blooms.htm
[21] Philippe Kruchten, A Taxonomy of Architectural
Design Decision., Software Architecture Workshop
Groningen, December 2-3, 2004.
[22] Lago, P., Avgeriou, P. SIGSOFT Software
Engineering Notes, First ACM Workshop on SHAring and
Keusing architectural Knowledge (SHARK)., Vol. 31(5),
pp. 32-36. Sep. 2006.
[23] Rambabu Duddukuri, Prabhakar T.V., On archiving
architecture documents, 12th Asia-Pacific Software
Engineering Conference, 2005. APSEC '05
[24] Helping Architects In Retrieving Architecture
Documents: A Semantic Based Approach, Rambabu
Duddukuri, Prabhakar T.V. Semantic Matchmaking
and Resource Retrieval: Issues and perspectives,
Vldb Workshop, Seoul Korea 2006.
[25] CMAP tools: http://cmap.ihmc.us/
[26] Rambabu Duddukuri, Knowledge Management issues
in software architecture documentation, M.Tech Thesis.
http://www.cse.iitk.ac.in/gsdl/collect/cse/index/assoc/HAS
H013d.dir/doc.pdf

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

