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Chapter 1

Introduction

The basic object of study in an optimization problem is a real-valued function f defined on a set

F :

f : F → R,

and the optimization problem is to determine a x̂ ∈ F that minimizes f , that is,

Find x̂ ∈ F such that for all other x’s from F , f(x̂) ≤ f(x).

Depending on the nature of F , there are various types of courses, for example combinatorial

optimization, calculus of variations, stochastic optimization and so on. In this course F will be a

subset of Rn.

1.1. The basic problem

In other words, we will consider the following problem in this course:

{
minimize f(x),

subject to x ∈ F ,
(1.1)

where

x =




x1

...

xn


 ,

is the vector of variables and takes values in R
n, F is a given subset of Rn, and f is a given real-

valued function which is defined (at least) on F . The function f is called the objective function

and F is called the feasible set.

Note that there is no loss of generality in considering only minimization problems, since a

maximization problem for f on F is a minimization problem for −f on F . (Why?)

The course is subdivided into three main parts, depending on the nature of f and F :

(1) Linear programming.

(2) Quadratic optimization.

(3) Nonlinear optimization.

The difficulty level increases as one goes down the above list.

1



2 1. Introduction

1.1.1. Linear programming. If the objective function is a linear function and the feasible set

is given by a bunch of linear inequalities, then the corresponding optimization problem (1.1) is

called linear programming. Thus the general linear programming problem has the following form:
{

minimize c⊤x,

subject to Ax ≥ b,

where c ∈ R
n and b ∈ R

m are given vectors, and A ∈ R
m×n is a given matrix. The inequality “≥”

above means that this inequality holds component-wise. Thus there are m scalar inequalities in

Ax ≥ b. This problem is a special case of (1.1), where

f(x) = c⊤x and F = {x ∈ R
n : Ax ≥ b}.

1.1.2. Quadratic optimization. If the objective function is a quadratic function and the fea-

sible set is given by a bunch of linear inequalities, then the corresponding optimization problem

(1.1) is called quadratic optimization. Thus the general quadratic optimization problem has the

following form:
{

minimize
1

2
x⊤Hx+ c⊤x,

subject to Ax ≥ b,

where c ∈ R
n, A ∈ R

m×n, b ∈ R
m and H ∈ R

n×n is a symmetric matrix. This problem is a special

case of (1.1), where

f(x) =
1

2
x⊤Hx+ c⊤x and F = {x ∈ R

n : Ax ≥ b}.

1.1.3. Nonlinear optimization. The nonlinear optimization problem has the following form:
{

minimize f(x),

subject to gi(x) ≤ 0, i = 1, . . . ,m,

where f and g1, . . . , gm are given functions from R
n to R. These functions will be assumed to be

continuously differentiable, and at least one of them will be assumed to be nonlinear (otherwise,

we will have a linear programming problem). The feasible set in this case is given by

F = {x ∈ R
n : gi(x) ≤ 0, i = 1, . . . ,m}.

1.2. Minimum of a subset of R

Definition 1.1. Let S be a subset of R.

(1) An element u ∈ R is said to be an upper bound of S if for all x ∈ S, x ≤ u. If the set of

all upper bounds of S is not empty, then S is said to be bounded above.

(2) An element l ∈ R is said to be a lower bound of S if for all x ∈ S, l ≤ x. If the set of all

lower bounds of S is not empty, then S is said to be bounded below.

Example 1.2.

(1) The set S = {x ∈ R : 0 ≤ x < 1} is bounded above and bounded below. Any real

number y satisfying 1 ≤ y (for instance 1, 2, 100) is an upper bound of S, and any real

number z satisfying z ≤ 0 (for instance 0, −1) is a lower bound of S.

(2) The set S = {n : n ∈ N} is not bounded above. Although it is bounded below (any real

number x ≤ 1 serves as a lower bound), it has no upper bound, and so it is not bounded

above.
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(3) The set1 S = {(−1)n : n ∈ N} is bounded above and bounded below. It is bounded

above by 1 and bounded below by −1. More generally, any finite set S is bounded above

and below.

(4) The set S =
{

1
n
: n ∈ N

}
is bounded above and bounded below. Any real number x

satisfying 1 ≤ x is an upper bound, and 0 is a lower bound.

(5) The sets Z and R are neither bounded above nor bounded below. Indeed, this follows

from the inequality z < z + 1.

(6) The set ∅ is bounded above and is bounded below. (Why?) ♦

We now introduce the notions of a least upper bound (also called supremum) and a greatest

lower bound (also called infimum) of a subset S of R.

Definition 1.3. Let S be a subset of R.

(1) An element u∗ ∈ R is said to be a least upper bound of S (or a supremum of S) if

(a) u∗ is an upper bound of S, and

(b) if u is an upper bound of S, then u∗ ≤ u.

(2) An element l∗ ∈ R is said to be a greatest lower bound of S (or an infimum of S) if

(a) l∗ is a lower bound of S, and

(b) if l is a lower bound of S, then l ≤ l∗.

Example 1.4. If S = {x ∈ R : 0 ≤ x < 1}, then the supremum of S is 1 and the infimum of S is

0.

Clearly 1 is an upper bound of S.

Now we show that if u is another upper bound, then 1 ≤ u. Suppose not, that is, u < 1. Then

we have

0 ≤ u <
u+ 1

2
< 1, (1.2)

where the first inequality is a consequence of the facts that u is an upper bound of S and 0 ∈ S,

while the last two inequalities follow using u < 1. From (1.2), it follows that the number u+1
2

satisfies 0 < u+1
2 < 1, and so it belongs to S. The middle inequality in (1.2) above then shows

that u cannot be an upper bound for S, a contradiction. Hence 1 is a supremum.

Next we show that this is the only supremum, since if u∗ is another supremum, then in

particular u∗ is also an upper bound, and the above argument shows that 1 ≤ u∗. But 1 < u∗ is

not possible as 1 is an upper bound, and as u∗ is a supremum, u∗ must be less than or equal to

1. So it follows that u∗ = 1.

Similarly one can show that the infimum of S is 0. ♦

In the above example, there was a unique supremum and infimum of the set S. In fact, this

is always the case and we have the following result.

Theorem 1.5. If the least upper bound of a subset S of R exists, then it is unique.

Proof. Suppose that u∗ and u′
∗ are two least upper bounds of S. Then in particular u∗ and u′

∗

are also upper bounds of S. Now since u∗ is a least upper bound of S and u′
∗ is an upper bound

of S, it follows that

u∗ ≤ u′
∗. (1.3)

Furthermore, since u′
∗ is a least upper bound of S and u∗ is an upper bound of S, it follows that

u′
∗ ≤ u∗. (1.4)

From (1.3) and (1.4), we obtain u∗ = u′
∗. �

1Note that this set is simply the finite set {−1, 1}.
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Thus it makes sense to talk about the least upper bound of a set. The least upper bound of

a set S (if it exists) is denoted by

supS

(the abbreviation of ‘supremum of S’). Similarly, the infimum of a set S (if it exists) is also unique,

and is denoted by

inf S.

When the supremum and the infimum of a set belong to the set, then we give them special names,

namely the maximum and minimum, respectively, of that set.

Definition 1.6.

(1) If supS ∈ S, then supS is called a maximum of S, denoted by maxS.

(2) If inf S ∈ S, then inf S is called a minimum of S, denoted by minS.

Example 1.7.

(1) If S = {x ∈ R : 0 ≤ x < 1}, then supS = 1 6∈ S and so maxS does not exist. But

inf S = 0 ∈ S, and so minS = 0.

(2) If S = {n : n ∈ N}, then supS does not exist, inf S = 1, maxS does not exist, and

minS = 1.

(3) If S = {(−1)n : n ∈ N}, then supS = 1, inf S = −1, maxS = 1, minS = −1.

(4) If S =
{

1
n
: n ∈ N

}
, then supS = 1 and maxS = 1. It can be shown that inf S = 0. So

minS does not exist.

(5) For the sets Z and R, sup, inf, max, min do not exist.

(6) For the set ∅, sup, inf, max, min do not exist. ♦

In the above examples, we note that if S is nonempty and bounded above, then its supremum

exists. In fact this is a fundamental property of the real numbers, called the least upper bound

property of the real numbers, which we state below:

If S is a nonempty subset of R having an upper bound, then supS exists.

Remark 1.8. In Exercise 1.14 below, given a nonempty set S of R, we define −S = {−x : x ∈ S}.
One can show that if a nonempty subset S of R is bounded below, then −S is bounded above and

so sup(−S) exists, by the least upper bound property. The negative of this supremum, namely

− sup(−S), can then be shown to serve as the greatest lower bound of S (this is precisely the

content of Exercise 1.14). Thus the real numbers also have the ‘greatest lower bound property’:

If S is a nonempty subset of R having an lower bound, then inf S exists.

In fact one can define the infimum and supremum of every subset S of R in the extended real

line, that is, the set R together with the symbols +∞ and −∞.

Definition 1.9. Let S ⊂ R.

(1) If S is not bounded above, then supS = +∞.

(2) If S is not bounded below, then inf S = −∞.

(3) If S = ∅, then2 sup ∅ = −∞ and inf ∅ = +∞.

Exercise 1.10. Provide the following information about the set S

(1) Does maxS exist? If yes, what is it?

(2) Does minS exist? If yes, what is it?

2this makes sense, since every real number serves as an upper bound (lower bound).
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where S is given by:

(1) (0, 1]

(2) [0, 1]

(3) (0, 1)

(4)
{

1
n
: n ∈ Z \ {0}

}

(5)
{
− 1

n
: n ∈ N

}

(6)
{

n
n+1

: n ∈ N

}

(7) {x ∈ R : x2 ≤ 2}
(8) {0, 2, 10, 2010}
(9)

{
(−1)n

(
1 + 1

n

)
: n ∈ N

}

(10) {x2 : x ∈ R}
(11) { x2

1+x2 : x ∈ R} .

Exercise 1.11. Determine whether the following statements are TRUE or FALSE.

(1) If u is an upper bound of a subset S of R, and u′ < u, then u′ is not an upper bound for S.

(2) If u∗ is the least upper bound of a subset S of R, and ǫ is any positive real number, then u∗ − ǫ
is not an upper bound of S.

(3) Every subset of R has a maximum.

(4) Every subset of R has a supremum which is a real number.

(5) For every set that has a maximum, the maximum belongs to the set.

Exercise 1.12. Let A and B be subsets of R such that A ⊂ B. Prove that supA ≤ supB.

Exercise 1.13. Let A and B be nonempty subsets of R. Define A + B = {x + y : x ∈ A and y ∈ B}.
Prove that sup(A+B) ≤ supA+ supB.

Exercise 1.14. Let S be a nonempty subset of real numbers that is bounded below. Let −S denote the
set of all real numbers −x, where x belongs to S. Prove that inf S exists and inf S = − sup(−S).

1.3. Optimal value and optimal solutions

Consider again the central problem in this course, which we label as (P ):

(P ) :

{
minimize f(x),

subject to x ∈ F ,
(1.5)

The set of values of the function f with domain F is

S := {f(x) : x ∈ F}.
S is a subset of R, and by the previous section, it always has an infimum (which can possibly be

−∞ or +∞). We have the following definitions.

Definition 1.15.

(1) The optimal value of the problem (P ) is inf S = inf
x∈F

f(x).

(2) A vector x ∈ R
n is called a feasible solution to the problem (P ) if x ∈ F .

(3) A vector x̂ ∈ R
n is called an optimal solution to the problem (P ) if x̂ ∈ F and for all

x ∈ F , f(x̂) ≤ f(x).

If x̂ is an optimal solution to (P ), then f(x̂) = minS = min{f(x) : x ∈ F} = min
x∈F

f(x).

It can happen that the problem (P ) has optimal value which is a real number, even though

there is no optimal solution. For example, consider the problem (P ) for f : F → R, when f(x) = x
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and the feasible set is F = (0, 1]. In this case, the optimal value of (P ) is 0, but there is no optimal

solution.

1.4. A useful result from real analysis

Through out these notes, the distance used in R
n will be the one given by the Euclidean norm.

That is, if

x =




x1

...

xn


 ∈ R

n,

then ‖x‖ =
√
x2
1 + · · ·+ x2

n. Thus if x, y ∈ R
n, the distance between x and y is defined as ‖x− y‖.

A function f from F (⊂ R
n) to R

n is said to be continuous at x0 ∈ F if for every ǫ > 0, there

exists a δ > 0 such that for all x ∈ F satisfying ‖x− x0‖ < δ, we have that ‖f(x)− f(x0)‖ < ǫ. A

function f from F (⊂ R
n) to R

n is said to be continuous if for each x0 ∈ F , f is continuous at x0.

A subset F of Rn is called bounded if there exists a R > 0 such that for all x ∈ F , ‖x‖ ≤ R.

A subset F of Rn is said to be open if for each x0 ∈ F , there is a r = r(x0) > 0 such that the

open ball

B(x0, r) := {x ∈ R
n : ‖x− x0‖ < r}

is contained in F . A subset F of Rn is said to be closed if its complement is open. A closed and

bounded subset F of Rn is called compact.

The following result from real analysis is very useful in optimization.

Theorem 1.16. Suppose that K is a nonempty compact subset of Rn and that f : K → R is a

continuous function. Then

S := {f(x) : x ∈ K}
is a nonempty bounded subset of R, and so supS, inf S exist. Moreover, they are attained, that

is, there exist points x1, x2 ∈ K such that

f(x1) = max
x∈K

f(x) = sup
x∈K

f(x),

f(x2) = min
x∈K

f(x) = inf
x∈K

f(x).

Proof. See for example, Rudin [R]. �

Exercise 1.17. Let f : R → R be a continuous function such that

lim
x→+∞

f(x) = 0 = lim
x→−∞

f(x).

Show that f must have a (global) maximum or a minimum on R. Give examples to show that it can
happen that the function has a maximum and no minimum, and the function has a minimum and no
maximum.

Exercise 1.18. In R
n, is the unit sphere Sn−1 := {x ∈ R

n : ‖x‖ = 1} compact? Justify your answer.

Exercise 1.19. (∗) Prove that there is a constant C such that if p is any real polynomial of degree 2010,
then

|p(0)| ≤ C

∫ 1

−1

|p(x)|dx.

Hint: View the set of polynomials of degree 2010 as a subset of R2011. Consider the continuous function

p 7→ |p(0)|∫
1
−1

|p(x)|dx
on the unit sphere in R

2011.
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Linear programming





Chapter 2

Introduction to linear
programming

2.1. What is linear programming?

2.1.1. The problem. Linear programming is a part of the subject of optimization, where the

function f : F → R is linear, and the set F is described by linear equalities and/or inequalities.

Thus, the function f has the form

f(x) = c1x1 + · · ·+ cnxn = c⊤x,

where x =




x1

...

xn


 (taking values in R

n) is the variable, and c =




c1
...

cn


 (∈ R

n) is fixed.

The set F is the set of points in R
n that satisfy a bunch of linear inequalities1:

ai1x1 + · · ·+ ainxn ≥ bi i ∈ I.

So the linear programming problem is: given such an f , minimize (or maximize) f , that is, find a

x̂ ∈ F such that for all x ∈ F , f(x̂) ≤ f(x).

2.1.2. Why the name ‘linear programming’? To use the adjective ‘linear’ is obvious, since

the function f is linear and the set F is described by linear equalities/inequalities.

But why does one use the word ‘programming’? There is a historical reason behind this.

The problem arose in the 1940s in an allocation problem in USA’s army. And there every x ∈ F
corresponded to, and was referred to, as a (military) ‘program’. So the problem of finding which

program x̂ optimized f , was referred to as ‘linear programming’, and the name has stuck. The

history of the problem and principal contributors are shown in the table below:

Kantorovich 1939 Production/transportation planning

Koopmans WW II Solution to transportation problems

Dantzig 1947 Simplex method

Khachiyan 1979 Polynomial complexity algorithm

Karmarkar 1984 Polynomial complexity algorithm

In this course, we will study the simplex method, which is a widely used method for solving linear

programming problems.

1or equalities. But an equality ai1x1 + · · · + ainxn = bi can be considered to be a pair of inequalities, namely,
ai1x1 + · · · + ainxn ≥ bi and −(ai1x1 + · · · + ainxn) ≥ −bi

9
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2.1.3. Why study linear programming? The reason is that the need arises in applications.

Although linear functions are very simple, linear programming problems arise frequently in prac-

tice, for example in economics, networks, scheduling and so on. We will see a very simplified

example from production planning in the next section, but other applications will be met along

the way. In particular, we will study network flow problems in greater detail in due course.

However, now we will begin with simple example.

2.2. An example

2.2.1. The problem. We own a furniture company that produces two kinds of furniture: tables

and chairs. It produces these two types of furniture from two types of parts: big parts and small

parts. Big parts and small parts look like this:

In order to manufacture a table, one big part and two small parts are used, while to manu-

facture a chair, one small part and one big part are used:

A table sells for SEK 400 and a chair for SEK 300. Assume that the furniture company has

200 big parts and 300 small parts.

The question is: How many tables and chairs should our company produce so as to maximize

its profit?

If the company produces T number of tables and C number of chairs, then the corresponding

profit is 400T + 300C. And we want to maximize this. But there are constraints on T and S. In

order to make T tables, we need T big parts and 2T small parts, while to make C chairs, we need

C big parts and C small parts. So totally we need T + C big parts, which must be less than or

equal to 200 and totally we need 2T +C small parts, which must be less than or equal to 300. Also

the number of chairs and tables cannot be negative. Thus we arrive at the following constraints:

T + C ≤ 200

2T + C ≤ 300

T ≥ 0

C ≥ 0.

So we have the following problem: maximize f : F → R, where f(T,C) = 400T + 300C, and

F =




(T,C)

∣∣∣∣∣∣∣∣

T + C ≤ 200

2T + C ≤ 300

T ≥ 0

C ≥ 0





.

So we see that we have a problem of the type described in Section 2.1.
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T+C≤200

T

C

200

200

0

Figure 1. The half plane of points (T, C) in R
2 satisfying T + C ≤ 200. (The shaded region

above the line denotes the set of ‘deleted’ points, that is, those not satisfying the inequality
T + C ≤ 200.)

T

C

C≥0

0
T

C

T≥0

0
T

C

150

300

0

Figure 2. The half planes of points (T, C) in R2 satisfying C ≥ 0 and T ≥ 0, and 2T + C ≤ 300 respectively.

2.2.2. What does the set F look like? The set of points (T,C) satisfying the inequality

T + C ≤ 200 lie in a half plane as shown in Figure 1.

Similarly, each of the other inequalities describe the half planes depicted in Figure 2.

If all the constraints must be satisfied, then we get the intersection of all these half planes,

namely F is the following convex polygon shown in Figure 3.

F

T

C

0

200

200

300

150

Figure 3. The convex polygon F (the intersection of the four half planes in Figures 1 and 2).

2.2.3. What elementary calculus tells us. From elementary calculus, we know that the de-

rivative of the function f , (that is, the gradient ∇f) must be zero at an interior maximizer x̂.

But the gradient of the function at an x ∈ F is ∇f(x) =
[
400 300

]
, which is never zero. So

the only conclusion we arrive at based on the calculus we have learnt so far, is that if there is a

maximizer x̂ ∈ F , then it must lie on the boundary of F . So this doesn’t seem to help much. But

now we will see that it is possible to give a graphical solution to the problem.
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2.2.4. A graphical solution. Now we will see that it is possible to give a graphical solution to

the problem. In order to do this, let us first fix a profit, say P , and look at all the pairs (T,C)

that give this profit, that is, (T,C) in R
2 that satisfy 400T +300C = P . This represents a straight

line in the R
2 plane, which is perpendicular to the line joining the origin and the point (400, 300).

For different values of P , we get different lines, which are parallel to each other. For example, if

P = 0, we get the line ℓ1 passing through the origin, and if P = 60000, we get the line ℓ2. We

see that as P increases, the line moves upwards, and so the profit is maximized when the line is

as high as possible, while simultaneously intersecting the set F . This line is labelled by ℓmax, and

f(T,C) is maximized at the corner point E of the set F , as shown in the Figure 4. The point E is

a common point for the lines T +C = 200 and 2T + C = 300, and so E corresponds to the point

(T,C) = (100, 100). The maximum profit is thus given by f(100, 100) = 400·100+300·100 = 70000

SEK. So we have solved the problem graphically.

F

T

C

0

f(T,C) = 0

f(T,C) = 60000
f(T,C) = 70000

(400, 300)

E

200

200

300

150 400
ℓ1 ℓ2

ℓmax

Figure 4. The function (T, C) 7→ f(T, C) = 400T +300C is maximized at the extreme point E
of the convex polygon F . The arrow shows the direction in which the lines f(T, C) = P move
as the P increases.

2.2.5. The general case in R
2. More generally in R

2, an inequality of the type ai1x1+ai2x2 ≥ bi
(i ∈ I) determines a half plane, and so the set F described by ai1x1 + ai2x2 ≥ bi, i ∈ I is again

an intersection of half planes, and so it describes a convex polygon.

F

x1

x2

The level sets of the function f to be optimized are straight lines that are perpendicular to

the vector c:

f(x1, x2) = c⊤x = c1x1 + c2x2 = V,

that is they are perpendicular to the line joining (0, 0) and (c1, c2); see the following figure.
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f(x1,x2)=V1

f(x1,x2)=V2

f(x1,x2)=V3

(c1,c2)

x1

x2

Thus by a reasoning similar to our specific example, we see that the function f is maximized or

minimized again at a corner point or an extreme point of the convex polygon, as shown below.

F
E

x1

x2

(c1,c2)

Of course, it may happen that there is no extremizer at all as shown in the following figure, where

the set F is unbounded.

F

x1

x2

(c1,c2)

It may also happen that there are infinitely many extremizers; see the figure below, where the

vector c is perpendicular to one of the sides of the convex polygon F .

F

x1

x2

(c1,c2)

But in any case, we notice that if there is an extremizer, then there is an extreme point of the

convex polygon F that is an extremizer. So it suffices to check the extreme points of the convex

polygon F .
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2.2.6. How does one work in R
n? Generally in R

n, the constraints ai1x1 + · · ·+ ainxn ≥ bi,

i ∈ I describe half spaces, and so the set F described by a bunch of these describes a ‘convex

polytope’, just like in R
2, where we obtained a convex polygon. Examples of convex polytopes in

R
3 are shown below:

Since the function to be maximized or minimized is linear, once again, the level sets f(x) = C

(where C is a constant) are hyperplanes that move parallel to each other. So the function is

maximized or minimized at an ‘extreme point’ of the convex polytope F .

But what exactly do we mean by an ‘extreme point of a convex polytope’ F? And how

do we calculate these? We will learn to determine the extreme points of F by means of linear

algebra. This is the content of the Chapter 4. We will also learn in this chapter that in a linear

programming problem, it suffices to check the extreme points of F .

However, in actual applications, this number of extreme points can be terribly large, and

calculating all extreme points is not a viable option. There is a way out. Instead of first calculating

all extreme points and then checking the values of the function at each of these extreme points,

one follows the algorithm shown in Figure 5. This is called the Simplex Method, and we will learn

this in Chapter 5.

Start with an

initial extreme point

Is the extreme point

optimal?

Yes

No

Move to an

adjacent extreme point

Stop

Figure 5. The simplex method.

But first, in the next chapter, we will learn about the standard form of the linear programming

problem. This is a linear programming problem having a particular form. We will see all types of

linear programming problems can be converted to an equivalent linear programming problem in

the standard form. In the sequel, we will then learn to solve the linear programming problem in

the standard form alone.
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Exercise 2.1. Solve the following linear programming problem graphically:




maximize 2x1 + 5x2

subject to 0 ≤ x1 ≤ 4,
0 ≤ x2 ≤ 6,
x1 + x2 ≤ 8.

Exercise 2.2. How should one position 28 guards according to the symmetric arrangement shown below
around the castle C so as to have the maximum number of guards on each side? Here p and q denote
numbers of guards. Pose this as a linear programming problem and solve it graphically.

p

p p

p

q

q

q

q

C





Chapter 3

The standard form

We saw in the previous chapter that a linear programming problem is an optimization problem in

which the function to be optimized is linear and the domain of the function is described by linear

inequalities. Depending of the particular application at hand, the exact form of these constraints

may differ. However, we will learn in this chapter that it is always possible to convert the given

linear programming problem to an equivalent form, called the standard form, given below:

Minimize f : F → R

where

f(x) = c⊤x (x ∈ F) and

F = {x ∈ R
n : Ax = b and x ≥ 0}.

Here c ∈ R
n is a fixed vector, A ∈ R

m×n is a fixed matrix and b ∈ R
m is a fixed vector. Thus

A, b, c are given.

The vector inequality x ≥ 0 is simply an abbreviation of the n inequalities for its components,

that is, x1 ≥ 0, . . . , xn ≥ 0. Thus written out, the linear programming problem in the standard

form is:




minimize c1x1 + · · ·+ cnxn

subject to a11x1 + · · ·+ a1nxn = b1
...

am1x1 + · · ·+ amnxn = bm
x1 ≥ 0, . . . , xn ≥ 0.

(3.1)

In the next sections, we will see how various seemingly different linear programming problems can

be rephrased as equivalent linear programming problems in the standard form.

3.1. Slack variables

Consider the problem

(LP ) :





minimize c1x1 + · · ·+ cnxn

subject to a11x1 + · · ·+ a1nxn ≤ b1
...

am1x1 + · · ·+ amnxn ≤ bm
x1 ≥ 0, . . . , xn ≥ 0.

(3.2)

17
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In this case the set F is determined entirely by linear inequalities. The problem may be alterna-

tively expressed as

(LP ′) :





minimize c1x1 + · · ·+ cnxn

subject to a11x1 + · · ·+ a1nxn + y1 = b1
...

am1x1 + · · ·+ amnxn + ym = bm
x1 ≥ 0, . . . , xn ≥ 0,

y1 ≥ 0, . . . , ym ≥ 0.

(3.3)

The newly introduced nonnegative variables yi convert the inequalities

ai1x1 + · · ·+ ainxn ≤ bi

to equalities

ai1x1 + · · ·+ ainxn + yi = bi.

The variables yi are referred to as slack variables. By considering the new problem as one having

the n +m unknowns x1, . . . , xn, y1, . . . , ym, the problem takes the standard form. The new m×
(n+m) matrix that now describes the linear equalities in the constraints has the special form

[
A I

]
.

(Thus the columns have been partitioned into two parts, the first n columns are the columns of

the original matrix A, and the last m columns are the columns of the m×m identity matrix I.)

Example 3.1. Let us revisit the example we had looked at in Section 2.2. With x1 representing

T and x2 representing C, we had the following problem:

maximize 400x1 + 300x2

subject to x1 + x2 ≤ 200

2x1 + x2 ≤ 300

x1 ≥ 0, x2 ≥ 0.

The problem is not in the standard form. In order to put it into the standard form, we introduce

slack variables, so that the problem takes the form:

minimize −400x1 − 300x2

subject to x1 + x2 + y1 = 200

2x1 + x2 + y2 = 300

x1 ≥ 0, x2 ≥ 0, y1 ≥ 0, y2 ≥ 0.

Thus we have

A =

[
1 1 1 0

2 1 0 1

]
,

b =

[
200

300

]
,

c =




−400

−300

0

0


 .

The problem is now in standard form. ♦

Suppose we have an inequality of the type ai1x1 + · · · + ainxn ≥ bi, which is the same as

−ai1x1 − · · · − ainxn ≤ −bi. Then it can be converted into −ai1x1 − · · · − ainxn + yi = −bi with

the introduction of the slack variable yi ≥ 0.
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So by the introduction of slack variables, any set of linear inequalities can be converted to the

standard form if the unknown variables are all nonnegative.

But what happens if one or more of the unknown variables are not restricted to be nonnegative?

We will see a method of handling this below.

3.2. Free variables

Suppose for example, that the restriction x1 ≥ 0 is absent. So x1 is free to take on any real value.

We can then write x1 = u1 − v1, where we demand that u1 ≥ 0 and v1 ≥ 0. If we substitute

u1−v1 for x1 everywhere in (3.1), we observe two things: the linearity of the objective function, and

the linearity of the constraints is preserved, and moreover, all variables u1, v1, x2, . . . , xn are now

required to be nonnegative. The problem is now expressed in the n+1 variables u1, v1, x2, . . . , xn.

Example 3.2. Consider the problem

minimize x1 + 3x2 + 4x3

subject to x1 + 2x2 + x3 = 5

2x1 + 3x2 + x3 = 6

and x2 ≥ 0, x3 ≥ 0.

Since x1 is unrestricted, we set x1 = u1 − v1, where u1 ≥ 0 and v1 ≥ 0. Substituting this for x1

everywhere, we obtain the new problem:

minimize u1 − v1 + 3x2 + 4x3

subject to u1 − v1 + 2x2 + x3 = 5

2u1 − 2v1 + 3x2 + x3 = 6

and u1 ≥ 0, v1 ≥ 0, x2 ≥ 0, x3 ≥ 0,

and this is in the standard form. ♦

Exercise 3.3. Convert the following problems to standard form:

(1)






minimize x+ 2y + 3z
subject to 2 ≤ x+ y ≤ 3

4 ≤ x+ z ≤ 5
and x ≥ 0, y ≥ 0, z ≥ 0.

(2)





minimize x+ y + z
subject to x+ 2y + 3z = 10

and x ≥ 1, y ≥ 2, z ≥ 1.

(3)






minimize |x|+ |y|+ |z|
subject to x+ 2y = 1

x+ z = 1.
(See Example 3.7.)

3.3. Some examples

In this section, we list some of the classical application areas where linear programming problems

arose. The domain of applications is forever expanding, and no one can tell what new applications

might arise in the future. So by no means is the choice of examples complete.

Example 3.4 (The diet problem). How can we determine the most economical diet that satisfies

the basic minimum nutritional requirements for good health? Such a problem might be one faced

for example by the dietician of an army.

We assume that n different foods are available in the market (for example, spinach, sausages,

peas, etc.), and that the jth food sells at a price cj per unit. In addition, there are m basic

nutritional ingredients (carbohydrates, protein, vitamins, etc.). To achieve a balanced diet, each
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individual must receive at least bi units of the ith nutrient per day. Finally, we assume that each

unit of food j contains aij units of the ith nutrient.

If we denote by xj the number of units of food j in the diet, then the problem is to select the

xj ’s to minimize the total cost, namely, c1x1 + · · ·+ cnxn, subject to the nutritional constraints

a11x1 + · · ·+ a1nxn ≥ b1
...

am1x1 + · · ·+ amnxn ≥ bm

and the nonnegativity constraints x1 ≥ 0, ..., xn ≥ 0 on the food quantities. ♦

Example 3.5 (The transportation problem). Quantities s1, . . . , sℓ, respectively, of a certain prod-

uct are to be shipped from each of ℓ locations (sources) and received in amounts d1, . . . , dk, respec-

tively, at each of k destinations. Associated with the shipping of a unit product from the source

i to the destination j is a unit shipping cost cij . We want to determine the amounts xij to be

shipped between each source-destination pair (i, j) so that the shipping requirements are satisfied

and the transportation cost is minimized.

We set up an array as shown below:

x11 . . . x1k s1
...

...
...

xℓ1 . . . xℓk sℓ
d1 . . . dk

The ith row in this array defines the variables associated with the ith source, while the jth column

in this array defines the variables associated with the jth destination. The problem is to select

nonnegative xij in this array so that the sum across the ith row is si, the sum down the jth column

is dj , and the transportation cost

k∑

j=1

ℓ∑

i=1

cijxij

is minimized. It is assumed that
ℓ∑

i=1

si =
k∑

j=1

dj ,

that is, that the total amount shipped is equal to the total amount received.

Thus we arrive at the following linear programming problem:

minimize
k∑

j=1

ℓ∑

i=1

cijxij

subject to
k∑

j=1

xij = si for i = 1, . . . , ℓ,

ℓ∑

i=1

xij = dj for j = 1, . . . , k,

xij ≥ 0 for i = 1, . . . , ℓ, j = 1, . . . , k.

This is a problem in ℓk variables, and the problem is in standard form, with A being a (ℓ+k)×(ℓk)

matrix. ♦
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Example 3.6 (The manufacturing problem). A factory is capable of having n different production

activities, each of which produces various amounts of m commodities. Each activity can be

operated at any level xi ≥ 0 but when operated at the unity level the ith activity costs ci and

yields aji units of the jth commodity. Assuming linearity of the production, if we are given m

numbers b1, . . . , bm describing the output requirements of the m commodities, and we wish to

minimize the production costs, we obtain the following linear programming problem:

minimize c1x1 + · · ·+ cnxn

subject to a11x1 + · · ·+ a1nxn = b1
...

am1x1 + · · ·+ amnxn = bm
x1 ≥ 0, . . . , xn ≥ 0.

♦

Example 3.7 (Line fitting). An experiment results in m observation points, which are pairs of

real numbers:

(x1, y1), . . . , (xm, ym).

(For example, the xi’s might be the blood pressures of patients and the yi’s might be the corre-

sponding drug dosages given to cure the patient.) It is desired to find a line

y = σx+ c

so that the maximum of all the vertical distances of the observation points to the line is minimized;

see Figure 1.

y = σx + c

x1 x2 xm

y1
y2

ym

Figure 1. Line fitting through observational data points.

The problem is that of finding the constants σ and c so that the maximum of the m numbers

|σx1 + c− y1|, . . . , |σxm + c− ym|
is minimized. We can write this as a linear programming problem in the three variables w, σ and

c as follows:
minimize w

subject to w ≥ σxi + c− yi for i = 1, . . . ,m,

w ≥ −(σxi + c− yi) for i = 1, . . . ,m.

(Why?) This a linear programming problem.

Suppose now that instead we would like to determine σ and c such that the sum of the m

vertical distances between the line and the given points is minimized, that is, we want to minimize

the sum

|σx1 + c− y1|+ · · ·+ |σxm + c− ym|.
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We can also formulate this as a linear programming problem in the variables σ, c and v1, . . . , vm
as follows:

minimize v1 + · · ·+ vm
subject to vi ≥ σxi + c− yi for i = 1, . . . ,m,

vi ≥ −(σxi + c− yi) for i = 1, . . . ,m.

(Why?) This a linear programming problem. ♦

Exercise 3.8. A company manufactures three products called A, B, C. The manufacturing process
consists of two phases, called Cutting and Pressing. (Imagine a paper mill.) Each product goes through
both these phases.

The department of Cutting, can be used for a maximum of 8 hours per day. Moreover, it has the
following capacities for each of the products:

Product Capacity (in units of product per hour)

A 2000

B 1600

C 1100

The production in the department of Cutting can be switched between the products A,B,C smoothly (so
negligible time is wasted).

The department of Pressing, can be used for a maximum of 8 hours per day. Moreover, it has the
following capacities for each of the products:

Product Capacity (in units of product per hour)

A 1000

B 1500

C 2400

The production in the department of Pressing can be switched between the products A,B,C smoothly (so
negligible time is wasted).

The profit made per manufactured unit of the products in a day are given as follows:

Product Profit (in SEK per unit of the product per day)

A 12

B 9

C 8

The company now wants to determine how many units of each product should be produced in a day to
make the total profit as large as possible, within the capacity constraints of its two production departments
of Cutting and Pressing. Formulate this as a linear programming problem.

Exercise 3.9. A cider company produces four types of cider: Apple, Pear, Mixed and Standard. Every
hectoliter of each type of cider requires a certain number of working hours p for production, and a certain
number of hours q for packaging. Also the profit v (in units of SEK/hectoliter of cider sold) made for each
of these ciders is different depending on the type. These numbers p, q and v for the four types of ciders
are specified below:

Cider type p q v

Apple 1.6 1.2 196

Pear 1.8 1.2 210

Mixed 3.2 1.2 280

Standard 5.4 1.8 442

In a week the cider company can spend 80 hours on production and 40 hours on packaging. Also, the
company has decided that the Apple cider shall constitute at least 20% of the total volume of cider
produced, while the Pear cider shall constitute at most 30% of the total volume of cider produced.

The company wants to decide how much of each sort of cider it should produce in a week so as
to maximize its profit under the constraints described above. Formulate this as a linear programming
problem.
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Exercise 3.10. In a certain city there is a subway line with 12 stations. One year ago, a careful survey of
the number of commuters between different pairs of stations was made. In particular, for each pair (i, j)
with i 6= j and i, j ∈ {1, . . . , 12}, the average number rij of commuters per day that use the subway to go
between station i to station j (that is, enter at station i and exit at station j) was recorded.

As one year has passed since this survey, it is reasonable to expect that these numbers rij have
changed, since many people have changed their residence or place of work in the meantime. So one would
like to update this survey. But we don’t want to repeat the careful survey done earlier. So suppose we do
the following now: for every i ∈ {1, . . . 12} we record the average number pi of commuters per day that
enter the subway at station i, and we record also the average number qi of commuters per day that leave
the subway at station i.

Now we want to replace the old numbers rij with new numbers xij that are consistent with the
observations pi and qj , while differing “as little as possible” from the old numbers rij . Formulate this as
a linear programming problem. Take

max
ij

|xij − rij |
as a measure of how much the numbers xij differ from the numbers rij .

Exercise 3.11. A factory F has agreed to supply quantities q1, q2, q3 tonnes of a certain product to
a customer C at the end of three consecutive months. In each month, the factory can manufacture at
most a tonnes of the product, and the cost of manufacturing is c SEK/tonne. But the factory can also
use “overtime”, and then it can produce an additional maximum of b tonnes per month, but with a
manufacturing cost for overtime of d SEK/tonne. It is given that a > b and d > c.

The surplus quantities of the product manufactured in a month, but not delivered at the end of the
month, can be stored for delivery in another month. The storage cost is s SEK/tonne per month.

If the factory does not supply the agreed quantity each month, then they can deliver the missing
quantity at a later month, but no later than the third (=last) month. The agreed fee for being late is f
SEK/tonne per month.

At the beginning of month 1, the storage is empty, and we want the storage to be empty at the end
of the third month. It is given that q1 + q2 + q3 < 3a+ 3b.

The company wants to plan its production so that its total cost is minimized. Formulate this as a
linear programming problem.

Hint: For each month j, introduce variables for the amount produced with “normal” working time,
amount produced with overtime, amount delivered to the customer at the end of the month, amount
stored in that month, and amount owed to the customer at the beginning of that month.

Exercise 3.12. Assume that a1, . . . , am are given nonzero vectors in R
3 and that b1, . . . , bm are given

positive numbers. Let
P = {x ∈ R

3 : a⊤
i x ≤ bi, i = 1, . . . , m}.

One can think of P as a region in R
3 whose “walls” are formed by the planes

Pi = {x ∈ R
3 : a⊤

i x = bi}, i = 1, . . . , m.

Suppose that we want to find the center and the radius of the largest sphere contained in P. Formulate
this as a linear programming problem. Use the fact that the distance d(y,Pi) of a point y ∈ R

3 to the
plane Pi is given by the formula

d(y, Pi) =
|bi − a⊤

i y|
‖ai‖

.

(For a derivation of this formula for the distance of a point to the plane, see Exercise 10.7.)





Chapter 4

Basic feasible solutions
and extreme points

Recall that the linear programming problem in the standard form is:

(P ) :





minimize c⊤x

subject to Ax = b

and x ≥ 0,

where

x =




x1

...

xn


 ∈ R

n

is the variable, and A ∈ R
m×n, b ∈ R

m and c ∈ R
n are given.

In this chapter we will see that solving this problem amounts to searching for an optimal

solution amongst a finite number of points in R
n. These points will be called basic feasible

solutions, and they can be computed by linear algebraic calculations. Moreover we will see that

these basic feasible solutions really correspond to “corners” or “extreme points” of the feasible set.

4.1. Definitions and the standing assumptions

We will begin with a few definitions.

Definition 4.1.

(1) We call the set F = {x ∈ R
n : Ax = b and x ≥ 0} the feasible set of the linear

programming problem (P ).

(2) A point x ∈ F is called a feasible point of the linear programming problem (P ).

(3) A point x̂ ∈ R
n is called an optimal solution of the linear programming problem (P ) if

(a) x̂ ∈ F , and

(b) for all x ∈ F , c⊤x̂ ≤ c⊤x.

Exercise 4.2. Does every linear programming problem in standard form have a nonempty feasible set?
If “yes”, provide a proof. If “no”, give a specific counterexample.

Does every linear programming problem in standard form (assuming a nonempty feasible set) have
an optimal solution? If “yes”, provide a proof. If “no”, give a specific counterexample.

25
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4.1.1. Standing assumptions. We will make the following assumption in the linear program-

ming problem (P ):

A has rank m, that is, A has independent rows.

This has, among others, the following consequences:

(1) m ≤ n.

(2) The columns of A span R
m. Thus given any vector b ∈ R

m, we can always be sure that

there is at least one x ∈ R
n such that Ax = b (although we can’t be sure that this x

is feasible, since we are not guaranteed in general that such an x will also satisfy the

constraint x ≥ 0).

We make this assumption first of all to avoid trivialities and difficulties of a nonessential nature.

Without this assumption, we will have to worry about whether or not b ∈ ran A for the solvability

of Ax = b. Also, if in the original problem some of the rows of A are linearly dependent, we

can eliminate those that can be expressed as a linear combination of the other remaining ones,

without changing the feasible set. In this manner we can arrive at a matrix A for which the rows

are linearly independent. So this assumption does not really restrict the class of problems we can

solve.

Note that under the above assumption, if in addition we have n = m, then the matrix A is

a square matrix which is invertible. So the equation Ax = b has precisely one solution, namely

x = A−1b. Again the problem of optimization becomes a trivial one, since the feasible set is either

empty (if it is not the case that x = A−1b ≥ 0) or has just one point! So in addition to the

assumption that the rank of A is m, it is reasonable to also assume in the sequel that

m < n.

4.2. Basic solutions and feasible basic solutions

In this section we will learn how to calculate “basic feasible solutions” to Ax = b. It turns out that

the solution to the linear programming problem (P ) can be found among these (finitely many!)

basic feasible solutions. We will see this later. But now, we will first learn how one calculates

these basic feasible solutions.

Let us denote by a1, . . . , an the n columns of A. Thus:

A =
[
a1 . . . an

]
∈ R

m×n.

Assume that we select m independent columns aβ1
, . . . , aβm

from the n columns of A. Then these

chosen columns form a basis for Rm. We have the following notation and terminology:

(1) The tuple β = (β1, . . . , βm) is called the basic index tuple.

(2) Let Aβ be the m×m matrix of the chosen columns, that is,

Aβ =
[
aβ1

. . . aβm

]
∈ R

m×m.

The matrix Aβ is called the basic matrix (corresponding to β).

(3) Let

xβ :=




xβ1

...

xβm




be the vector of variables corresponding to the chosen columns of A. We call xβ the basic

variable vector, and we call its components, namely the variables xβ1
, . . . , xβm

the basic

variables.
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We collect the ℓ = n − m columns of A that are left over (and which did not go into the basic

matrix Aβ) into a matrix Aν . Similarly, the left over components of the variable vector x, which

did not go into the basic variable vector xβ , are collected to form a vector xν . Thus:

Aν =
[
aν1 . . . aνℓ

]
∈ R

m×ℓ and xν :=




xν1

...

xνℓ




We refer to the tuple ν = (ν1, . . . , νℓ) as the non-basic index tuple. The components xνi in the

vector xν are called non-basic variables. Similarly, if the vector

v =




v1
...

vn


 ∈ R

n,

then we will use the notation vβ , vν to mean the vectors

vβ =




vβ1

...

vβn


 ∈ R

m, vν =




vν1
...

vνℓ


 ∈ R

ℓ.

Example 4.3. We revisit Example 3.1. Let

A =

[
1 1 1 0

2 1 0 1

]
∈ R

2×4 and b =

[
200

300

]
∈ R

2.

The system Ax = b can be written as

x1

[
1

2

]

︸ ︷︷ ︸
a1

+x2

[
1

1

]

︸ ︷︷ ︸
a2

+x3

[
1

0

]

︸ ︷︷ ︸
a3

+x4

[
0

1

]

︸ ︷︷ ︸
a4

=

[
200

300

]
.

Suppose that we choose a3 and a2 (which are linearly independent). Then β1 = 3, β2 = 2, and so

β = (3, 2). Also,

Aβ =
[
a3 a2

]
=

[
1 1

0 1

]
and xβ =

[
x3

x2

]
.

Finally, we have ν1 = 1, ν2 = 4, ν = (1, 4),

Aν =
[
a1 a4

]
=

[
1 0

2 1

]
and xν =

[
x1

x4

]
.

With this β, the basic variables are x3 and x2, while the non-basic variables are x1 and x4. ♦

For a chosen basis of Rm from columns of A, and with corresponding index tuples β and ν,

the equation Ax = b is the same as

Aβxβ +Aνxν = b, (4.1)

since

Aβxβ +Aνxν =

m∑

i=1

xβi
aβi

+

ℓ∑

i=1

xνiaνi =

n∑

i=1

xiai = Ax = b.

Suppose that all non-basic variables are set to 0, that is, xν = 0. Then (4.1) gives a unique

solution for the basic variables, namely

xβ = A−1
β b.

This corresponds to a feasible solution for the problem (P ) iff xβ ≥ 0. In light of this, we give the

following definitions.
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Definition 4.4. Suppose β is a basic index tuple.

(1) A basic solution corresponding to β is a solution x to Ax = b such that Aβxβ = b and

xν = 0.

(2) A basic feasible solution corresponding to β is a basic solution x such that xβ ≥ 0.

(3) A basic feasible solution x such that none of the components of xβ are zero, is called a

non-degenerate basic feasible solution. (Thus all the components xβi
are positive.)

(4) A basic feasible solution x such that at least one of the components of xβ is zero, is called

a degenerate basic feasible solution. (Thus all the components xβi
are nonnegative and

at least one of them is zero.)

Example 4.5. Consider Example 4.3, where

A =

[
1 1 1 0

2 1 0 1

]
∈ R

2×4 and b =

[
200

300

]
∈ R

2.

Let β = (3, 2). For a basic solution corresponding to β, we must then have x1 = x4 = 0, and

Aβxβ =

[
1 1

0 1

] [
x3

x2

]
=

[
200

300

]
= b,

and so

xβ =

[
x3

x2

]
=

[ −100

300

]
.

Hence

x =




0

300

−100

0




is a basic solution corresponding to β. It is not a basic feasible solution, since it is not the case

that xβ ≥ 0 (indeed, x3 = −100 < 0).

On the other hand, if we choose β = (1, 2), then the basic solution corresponding to β must

have x3 = x4 = 0, and

Aβxβ =

[
1 1

2 1

] [
x1

x2

]
=

[
200

300

]
= b,

and so

xβ =

[
x1

x2

]
=

[
100

100

]
.

Hence

x =




100

100

0

0




is a basic solution corresponding to β. It is also a basic feasible solution, since xβ ≥ 0. Moreover,

it is a non-degenerate basic feasible solution, since all the components of xβ are positive. ♦

Example 4.6. Now suppose that

A =

[
3 2 1 1

2 1 3 1

]
∈ R

2×4 and b =

[
5

5

]
∈ R

2.

Let β = (2, 4). For a basic solution corresponding to β, we must then have x1 = x3 = 0, and

Aβxβ =

[
2 1

1 1

] [
x2

x4

]
=

[
5

5

]
= b,
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and so

xβ =

[
x2

x4

]
=

[
0

5

]
.

Hence

x =




0

0

0

5




is a basic solution corresponding to β. It is also a basic feasible solution, since xβ ≥ 0. But it is a

degenerate basic feasible solution since at least one of the components of xβ is 0 (x2 = 0). ♦

Exercise 4.7. Consider the system Ax = b, where

A =

[
2 −1 2 −1 3
1 2 3 1 0

]
, b =

[
14
5

]
.

Check if the system has basic solutions. If yes, find all basic solutions and all basic feasible solutions.

4.3. The fundamental theorem of linear
programming

In this section we will learn the (at first somewhat surprising1) result which says that if the linear

programming problem has a solution, then there is a basic feasible solution which is an optimal

solution2. So this means that it is enough to just search for an optimal solution among the (finitely

many) basic feasible solutions, since the minimum value (if it exists) is always achieved at such a

solution.

Theorem 4.8 (Fundamental theorem of linear programming). Consider the linear programming

problem (P ).

(1) If there exists a feasible solution, then there exists a basic feasible solution.

(2) If there exists an optimal solution, then there exists an optimal basic feasible solution.

Proof. (1) Suppose that x is a feasible solution and that it has k positive components correspond-

ing to the index tuple (γ1, . . . , γk) and the rest of the components are 0. Then with the usual

notation

xγ1
aγ1

+ · · ·+ xγk
aγk

= b. (4.2)

We now consider the two possible cases:

1◦ aγ1
, . . . , aγk

are linearly independent. Then k ≤ m, since the rank of A is m. If k = m, then

the solution x is basic, and we are done. Suppose on the other hand that k < m. Since the rank

of A is m, in addition to our k columns aγ1
, . . . , aγk

, we can find extra m− k columns of A (from

the remaining n − k columns) so that these m columns form a basis for R
m. Hence we now see

that the solution x is a degenerate basic feasible solution corresponding to our construction of the

m independent columns.

2◦ aγ1
, . . . , aγk

are linearly dependent. Then there are k scalars yγ1
, . . . , yγk

, not all zeros, such

that

yγ1
aγ1

+ · · ·+ yγk
aγk

= 0. (4.3)

1We will see later that these basic feasible solutions correspond geometrically to corner points of the set F , and so
this result is then something we would expect.

2A basic feasible solution which is an optimal solution will henceforth be referred to as an optimal basic feasible

solution.
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We may assume that at least one of the yi is positive (otherwise, we can multiply (4.3) by −1 to

ensure this). Now we multiply (4.3) by a scalar ǫ and subtract the resulting equation from (4.2)

to obtain

(xγ1
− ǫyγ1

)aγ1
+ · · ·+ (xγk

− ǫyγk
)aγk

= b.

Set y to be be the vector in R
n whose j = γith entry is yγi

and for j not any of the γis, the entry

is 0. With this notation, we see that A(x− ǫy) = b for all ǫ. Now let

ǫ∗ = min

{
xi

yi
: yi > 0

}
> 0.

Then the components of x − ǫ∗y are all nonnegative, and at least one amongst the components

xγ1
− ǫ∗yγ1

, . . . , xγk
− ǫ∗yγk

is 0. So we have now obtained a feasible solution x− ǫ∗y with at most

k−1 positive components. We can now repeat this process if necessary until we get either that all

the components of our solution x are zero3, or the nonzero components of our solution correspond

to linearly independent columns of A. In the former case, our zero solution is a (degenerate) basic

feasible solution, and we are done. In the latter case, we are in Case 1◦, and so this completes the

proof of part (1).

(2) Now suppose that x is an optimal solution. We proceed in the same manner as above. So just

as before, suppose that x has k positive components corresponding to the index tuple (γ1, . . . , γk)

and the rest of the components are 0. We consider the two cases as above.

The argument in Case 1◦ is precisely the same as before, and the same x is an optimal feasible

basic solution (possibly degenerate).

In the second case, we proceed similarly, but we must also ensure that x− ǫ∗y is optimal. We

will do this by showing that c⊤y = 0. Indeed, then we have c⊤(x− ǫ∗y) = c⊤x, and the optimality

of x− ǫ∗y follows from the optimality of x.

Assume, on the contrary, that c⊤y 6= 0. Now we choose r to be the real number which has

the same sign as c⊤y and such that

|r| := min

{∣∣∣∣
xi

yi

∣∣∣∣ : yi 6= 0

}
> 0.

Then we claim that the vector x− ry is feasible. Indeed,

(1) if yi = 0, then xi − ryi = xi − r0 = xi ≥ 0;

(2) if yi > 0, then xi − ryi ≥ xi −
xi

yi
yi = 0;

(3) if yi < 0, then xi − ryi ≥ xi +
|xi|
|yi|

yi = xi +
xi

−yi
yi = 0.

Then we obtain c⊤x > c⊤x− rc⊤y = c⊤(x− ry). But this contradicts the optimality of x. Hence

c⊤y = 0.

So we arrive at the conclusion that x− ǫ∗y is optimal. But now the proof is completed exactly

in the same way as the rest of the proof of Case 2◦ in part (1). �

Exercise 4.9. Suppose that x0 is a feasible solution to the linear programming problem (P ) in the
standard form, where A has rank m. Show that there is a feasible solution x to (P ) that has at most

m+ 1 positive components and such that the objective function has the same value, that is, c⊤x = c⊤x0.
Hint: Add the constraint c⊤x = c⊤x0.

3this can happen if the aγ1
, . . . , aγk

were all zero to begin with
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4.3.1. Sufficiency of checking basic feasible solutions. The fundamental theorem of linear

programming reduces the task of solving the problem (P ) to that of searching solutions among

the basic feasible solutions. But the number of basic feasible solutions is finite! After all, once we

choose m independent columns of the matrix A, there can be at most one basic feasible solution,

and the number of ways of selecting m columns from n ones is itself finite, given by
(
n

m

)
=

n!

m!(n−m)!
.

But in applications, this number can be terribly large. For example if m = 5 and n = 50, then
(
n

m

)
=

(
50

5

)
= 2118760.

This would potentially be the number of basic feasible solutions to be checked for optimality. So

a more efficient method is needed, and there is indeed such a method, called the simplex method.

In the simplex method, we don’t calculate all basic feasible solutions like crazy. Instead, once

we have a basic feasible solution (which corresponds to a “corner” of F), we calculate a next one

(which corresponds to the basic feasible solution of an “adjacent corner”) by noticing in what

direction the function x 7→ c⊤x decreases most rapidly. In this manner, we efficiently reach the

optimal solution, without having to go through all the basic feasible solutions. We will learn this

method in the next chapter, but first we will convince ourselves that basic feasible solutions do

correspond to extreme (or corner) points of F .

4.4. Geometric view of basic feasible solutions

In order to see that basic feasible solutions do correspond to corner points of F , we must first of

all explain what we mean by corner points. We do this below.

4.4.1. Convex sets and extreme points.

Definition 4.10. A set C ⊂ R
n is called convex if for all x, y ∈ C and all t ∈ (0, 1), we have that

(1− t)x+ ty ∈ C.

not convexconvex

Figure 1. Convex and nonconvex sets.

Thus a set C is convex if for every pair of points x and y in C, the line segment joining x and y

is also in C.
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Example 4.11.

(1) R
n is convex.

(2) ∅ is convex. (Why?)

(3) B(a, r) = {x ∈ R
n : ‖x− a‖ ≤ r} is convex.

(4) S(a, r) = {x ∈ R
n : ‖x− a‖ = r} is not convex.

(5) F = {x ∈ R
n : Ax = b and x ≥ 0} is convex.

Exercise 4.12. Let (Ci)i∈I be a family of convex sets in R
n. Prove that their intersection C =

⋂
i∈I

Ci

is convex as well.

Exercise 4.13. Let C ⊂ R
n be a convex set. Show that for all n ∈ N and all x1, . . . , xn ∈ C, there holds

that
x1 + · · ·+ xn

n
∈ C. Hint: Use induction.

Definition 4.14. Let C be a convex set. A point x ∈ C is called an extreme point of C if there

are no two distinct points y, z ∈ C such that x = (1− t)y + tz for some t ∈ (0, 1).

Example 4.15.

(1) The convex set Rn has no extreme points.

(2) The convex set ∅ has no extreme points.

(3) The set of extreme points of the convex set B(a, r) is S(a, r).

We will now see that the set of extreme points of the convex set F = {x ∈ R
n : Ax = b and x ≥ 0}

is precisely the set of basic feasible solutions.

4.4.2. Basic feasible solutions=extreme points of F .

Theorem 4.16. Let F = {x ∈ R
n : Ax = b and x ≥ 0} and let x ∈ F . Then x is an extreme

point of F iff x is a basic feasible solution of (P ).

Proof. (If) Let x be a basic feasible solution corresponding to the basic index tuple (β1, . . . , βm).

Then xβ1
aβ1

+ · · · + xβm
aβm

= b, where aβ1
, . . . , aβm

are linearly independent. Suppose that x

can be expressed as a convex combination of points y, z ∈ F , that is, x = αy + (1 − α)z for some

α ∈ (0, 1). Since all the components of x, y, z are nonnegative, and since α ∈ (0, 1), it follows

that the components of y and z corresponding to indices not in the basic index tuple must all

be zero. Since we know that y, z ∈ F , we can conclude that yβ1
aβ1

+ · · · + yβm
aβm

= b and

zβ1
aβ1

+ · · ·+ zβm
aβm

= b. But by the linear independence of aβ1
, . . . , aβm

, it follows that y = z

(= x). So x is an extreme point of F .

(Only if) Let x be an extreme point of F , having k positive components corresponding to the

index tuple (γ1, . . . , γk) and the rest of the components are 0. With the usual notation, we have

xγ1
aγ1

+ · · · + xγk
aγk

= b. We will show that x is a basic feasible solution, by showing that the

vectors aγ1
, . . . , aγk

are linearly independent. We will do this by contradiction. Suppose that there

are scalars yγ1
, . . . , yγk

, not all zeros, such that yγ1
aγ1

+ · · ·+yγk
aγk

= 0. Set y to be be the vector

in R
n whose j = γith entry is yγi

and for j not any of the γis, the entry is 0. Since xγ1
, . . . , xγk

are

all positive, we can choose4 a positive ǫ such that x+ǫy ≥ 0 as well as x−ǫy ≥ 0. Then the vectors

x+ǫy and x−ǫy belong to F (why?) and they are distinct (why?). Since x = 1
2 (x+ǫy)+ 1

2 (x−ǫy),

we arrive at the conclusion that x is not an extreme point of F , a contradiction. So aγ1
, . . . , aγk

are linearly independent, and hence x is a basic feasible solution. �

This theorem sheds some light on the nature of the convex set F .

4For example, ǫ = min

{∣∣∣∣
xi

yi

∣∣∣∣ : yi 6= 0

}
works.
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Corollary 4.17. F has only finitely many extreme points.

Proof. There are finitely many basic feasible solutions to (P ). �

Corollary 4.18. If the convex set F is nonempty, and it has at least one extreme point.

Proof. The set F being nonempty simply means that there is a feasible solution. But then by the

fundamental theorem of linear programming, we know that there must be a basic feasible solution.

By the theorem above, we know that this basic feasible solution is an extreme point of F , and so

we obtain the desired conclusion. �

Corollary 4.19. If there is an optimal solution to (P ), then there is an optimal solution to (P )

which is an extreme point of F .

Proof. Again this follows from the fundamental theorem of linear programming and the theorem

above. �

We now consider some examples.

Example 4.20. Let F = {x ∈ R
3 : x1 + x2 + x3 = 1, x1, x2, x3 ≥ 0}. Thus n = 3, m = 1,

A =
[
1 1 1

]
and b = [1]. The three basic feasible solutions are




1

0

0


 ,




0

1

0


 ,




0

0

1


 ,

corresponding to β = 1, β = 2 and β = 3, respectively. These points are the extreme points of the

triangle (the convex set F) shown in Figure 2. ♦

x1

x2

x3

F

Figure 2. F and its extreme points.

Example 4.21. Let

F = {x ∈ R
3 : x1 + x2 + x3 = 1, 2x1 + 3x2 = 1, x1, x2, x3 ≥ 0}.

Thus n = 3, m = 2,

A =

[
1 1 1

2 3 0

]
and b =

[
1

1

]
.

The three basic solutions are



2

−1

0


 ,




1
2

0
1
2


 ,




0
1
3
2
3


 ,

corresponding to β = (1, 2), β = (1, 3) and β = (2, 3), respectively. Of these, the first one is not

feasible. So we have two basic feasible solutions. And these are the extreme points of the line

segment (the convex set F) shown in Figure 3. ♦
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x1

x2

x3

F

Π1

Π2

Figure 3. F and its extreme points. F is the intersection of the hyperplanes Π1 (given by
x1 + x2 + x3 = 1) and Π2 (2x1 + 3x2 = 1) and the half spaces x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

Example 4.22. Consider Example 4.3 again, where

A =

[
1 1 1 0

2 1 0 1

]
∈ R

2×4 and b =

[
200

300

]
∈ R

2.

In this case

F =



x ∈ R

4 :

x1 + x2 + x3 = 200,

2x1 + x2 + x4 = 300,

x1, x2, x3, x4 ≥ 0



 .

There are
(
4
2

)
= 6 possible basic solutions, and they are



0

300

−100

0


 ,




100

100

0

0


 ,




0

200

0

100


 ,




150

0

50

0


 ,




0

0

200

300


 ,




200

0

0

−100


 ,

corresponding to

β = (2, 3), β = (1, 2), β = (2, 4), β = (1, 3), β = (3, 4), β = (1, 4),

respectively. Of these, there are four feasible basic solutions (all of the above except the first one

and the last one). Moreover, these basic feasible solutions are all non-degenerate. We cannot of

course draw a picture in R
4, but the projection of F in the (x1, x2)-plane is shown in Figure 4. ♦

Exercise 4.23. Let C be a convex set in R
n and C′ be a convex set in R

m. Suppose that T ∈ R
m×n is

such that the map x 7→ Tx : Rn → R
m establishes a one-to-one correspondence between C and C′ (that

is, for every c ∈ C, first of all Tc ∈ C′, and moreover, for every c′ ∈ C′, there is a unique c ∈ C such that
Tc = c′). Show that T also establishes a one-to-one correspondence between the extreme points of C and
C′.

Exercise 4.24. Consider the two linear programming problems (LP ) and (LP ′) in (3.2) and (3.3),
respectively, considered in Section 3.1. Show that there is a one-to-one correspondence between the
extreme points of the feasible sets of these two problems.
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



0

0

200

300









150

0

50

0









200

0

0

−100









100

100

0

0







0

200

0

100









0

300

−100

0





x1

x2

x4 = 0

x3 = 0
x2 = 0

x1 = 0

(x1, x2)-plane

Figure 4. Projection of F and of its four extreme points in the (x1, x2)-plane. We have also
shown the other two (non-feasible) basic solutions.





Chapter 5

The simplex method

The idea behind the simplex method is to proceed from one basic feasible solution to the next

(that is one extreme point of the constraint set F to a new one) in such a way so as to continually

decrease the value of the objective function, until a minimum is reached.

The results of the previous chapter guarantee that it is enough to consider only basic feasible

solutions in our search for an optimal feasible solution. The main point in the simplex method is

that it is an efficient way of searching among the basic feasible solutions.

Why the name “simplex method”? The word “simplex” is used to describe a convex polytope.

Since we are moving between corners of a convex polytope F , the name makes sense.

Start with an

initial extreme point

Is the extreme point

optimal?

Yes

No

Move to an

adjacent extreme point

Stop

F

Starting point

Optimal solution

Figure 1. The simplex algorithm begins at a starting extreme point and moves along edges of
the polytope until it reaches the extreme point which is the optimum solution.

5.1. Preliminaries

Before we learn the simplex method in the subsequent sections, in this section we will make a few

observations that will lead to the simplex algorithm. Suppose that we have chosen a basic index

tuple β. Then associated with this β, we introduce the following notation.

37
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Notation element of definition

b R
m Aβb = b

aj (j = 1, . . . , n) R
m Aβaj = aj

y R
m A⊤

β y = cβ

r R
n r = c−A⊤y

z R z = c⊤β b = y⊤Aβb = y⊤b

In particular, r⊤β = c⊤β −y⊤Aβ and r⊤ν = c⊤ν −y⊤Aν . We also introduce the variable z by z = c⊤x.

With the help of the above notation, we can express z as a function of the non-basic variable xν

under the constraint Ax = b as follows:

z = c⊤x

= c⊤β xβ + c⊤ν xν

= y⊤Aβxβ + c⊤ν xν

= y⊤(b −Aνxν) + c⊤ν xν

= y⊤b+ (c⊤ν − y⊤Aν)xν

= z + r⊤ν xν .

Thus we obtain z = c⊤x = z + r⊤ν xν = z +
ℓ∑

i=1

rνixνi .

The components rνi of the vector rν are called the reduced costs for the nonbasic variables. In

the basic solution xν = 0, and so xβ = b and z = z.

Theorem 5.1. Suppose that b ≥ 0 and rν ≥ 0. Then the basic feasible solution x with xβ = b

and xν = 0 is an optimal solution to the linear programming problem (P ).

Proof. The linear programming problem (P ) can be rewritten as

minimize z + r⊤ν xν

subject to Aβxβ +Aνxν = b

and xβ ≥ 0 and xν ≥ 0.

Let x̃ be a feasible solution to the problem. Then we have in particular that x̃ν ≥ 0. Together

with the assumption that rν ≥ 0, this yields that the cost corresponding to x̃ is at least z:

c⊤x̃ = z + r⊤ν x̃ν ≥ z.

But z is precisely the cost corresponding to the basic feasible solution x with xβ = b and xν = 0.

Hence this basic feasible solution is optimal. �

So this result tells us when to stop. If in our algorithm (for moving amongst the basic feasible

solutions) we reach a basic feasible solution corresponding to a β for which b ≥ 0 and rν ≥ 0, we

have got an optimal feasible solution!

Now we see how we actually go from a current basic feasible solution to another one if the

condition rν ≥ 0 is not satisfied.
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So we suppose that for our current basic feasible solution rνq < 0 for some q. In order to find

a better basic feasible solution, we let xνq be a new basic variable, and proceed as follows.

Let xνq = t, where t increases from 0. (Note that in our current basic feasible solution, the

value of the variable xν is 0.) Meanwhile we keep the other non-basic variables still at 0. Thus

xνi = 0 for all i 6= q. Then the cost function is simply equal to

z = z + rνq t,

with the constraint Aβxβ + taνq = b. The constraint can be rewritten as Aβ(xβ + taνq − b) = 0,

and since Aβ is invertible, it follows that xβ + taνq − b = 0, and so

xβ = b− taνq .

Then we have two possible cases:

1◦ aνq ≤ 0. Then t can increase unboundedly while satisfying the constraint xβ ≥ 0. Thus we

have found a “ray” in the set F , and this ray is defined by

xβ(t) = b− taνq and xν(t) = teq,

where eq is the standard basis vector for Rℓ with the qth component 1 and all others 0. Then for

every t ≥ 0, this gives a feasible solution x(t) to the problem, with the corresponding cost

z(t) := z + rνq t

with (recall!) rνq < 0. Hence if we let t ր +∞, then we see that the cost z(t) ց −∞. This

implies that the linear programming problem (P ) has no optimal solution.

2◦ ¬[aνq ≤ 0]. Suppose that the vector aνq has at least one component that is positive. Let

b =




b1
...

bm


 and aνq =




a1,νq
...

am,νq


 .

Then for each i with ai,νq > 0, the t can at most be bi
ai,νq

for feasibility (so that xβ ≥ 0). Indeed,

if t > bi
ai,νq

, then

xβi
= bi − tai,νq < 0,

which renders the x(t) to be not feasible. Hence the maximum that t can increase is given by

tmax = min

{
bi

ai,νq
: ai,νq > 0

}
.

(This is because if t > tmax, then at least one basic variable takes a negative value, making it not

feasible.) Let p ∈ {1, . . . ,m} be an index for which

tmax =
bp

ap,νq
with ap,νq > 0.

So we have that when t (that is, the variable xνq ) has increased from 0 to tmax, xβp
has become

0. Thus we have found a new feasible basic solution, where xνq has become a new basic variable,

while xβp
has become a new non-basic variable (with value 0). We update the basic index tuple

β to the new basic index tuple obtained by replacing βp in β by νq.

If tmax > 0, then the new basic feasible solution gives rise to a cost which is strictly smaller

than the previous basic feasible solution: indeed this is because rνq < 0 and so

z + rνq tmax < z.
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Having tmax > 0 is guaranteed for example when the previous basic feasible solution is non-

degenerate, since then all bis are positive.

There is one point that we have not yet checked, namely if the columns of A corresponding

to the updated β are linearly independent, that is, if

aβ1
, . . . , aβp−1

, aνq , aβp+1
, . . . , aβm

are linearly independent in R
m. We prove this below. The crucial observation is that ap,νq > 0.

We have Aβaνq = aνq , and so we can express aνq as a linear combination of aβ1
, . . . , aβm

:

aνq =

p−1∑

i=1

ai,νqaβi
+ ap,νq︸︷︷︸

>0

aβp
+

m∑

i=p+1

ai,νqaβi
. (5.1)

Suppose that there are scalars α1, . . . , αm such that

α1aβ1
+ · · ·+ αp−1aβp−1

+ αpaνq + αp+1aβp+1
+ · · ·+ αmaβm

= 0.

Then using (5.1), we obtain

p−1∑

i=1

(αi + αpai,νq )aβi
+ (αpap,νq )aβp

+
m∑

i=p+1

(αi + αpai,νq )aβi
= 0.

By the linear independence of aβ1
, . . . , aβm

, we obtain that for all i 6= p, αi + αpai,νq = 0 and

αpap,νq = 0. Since ap,νq > 0, this last equality gives αp = 0, and then we obtain from the other

equalities that the αis are zero also when i 6= p. So we have obtained that α1 = · · · = αm = 0,

proving the desired independence.

5.2. The simplex algorithm

We consolidate the observations made in the previous section to obtain the simplex method for

solving the linear programming problem (P ).

Here is the simplex method:

(1) Given is a partition of the variables, represented via the index tuples β and ν, corre-

sponding to a basic feasible solution x. Calculate the vectors b, y, rν :

Aβb = b, A⊤
β y = cβ , rν = cν −A⊤

ν y.

(Since x is a basic feasible solution, b ≥ 0.)

(2) 1◦ If rν ≥ 0, then the algorithm terminates, and the basic feasible solution defined

via xβ = b and xν = 0 is an optimal solution to the linear programming problem

(P ).

2◦ If ¬[rν ≥ 0], then choose a q such that rνq is the most negative component of rν ,

and calculate the vector aνq : Aβaνq = aνq .

(3) 1◦ If aνq ≤ 0, then the algorithm terminates, and the problem has no optimal solution.

2◦ If ¬[aνq ≤ 0], then calculate tmax and determine a p:

tmax = min

{
bi

ai,νq
: ai,νq > 0

}
,

and p ∈ {1, . . . ,m} is an index for which

ap,νq > 0 and tmax =
bp

ap,νq
.

Update the index vectors β and ν by interchanging νq and βp, and go to Step (1).
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The algorithm is also illustrated in the form of a flow chart shown in Figure 2.

Initial basic

feasible solution

β = (β1, . . . , βm)

ν = (ν1, . . . , νℓ)

Calculate b, y, rν :

Aβb = b,

A⊤
β y = cβ ,

rν = cν −A⊤
ν y.

rν ≥ 0
Optimal solution

xβ = b, xν = 0.

Stop

Stop

Choose q s.t.

rνq = min{rνi : i = 1, . . . , ℓ};
calculate aνq : Aβaνq =aνq .

aνq ≤ 0 Solution

does not exist

tmax=min
{

bi
ai,νq

: ai,νq >0
}
;

choose p s.t. tmax =
bp

ap,νq
;

interchange νq and βp.

yes

yes

no

no

Figure 2. The simplex method.

When solving large problems with the simplex method, namely problems with perhaps thou-

sands of constraints and even more number of variables, it is necessary to keep certain things in

mind. Among others, one should bear in mind that when one is solving equations involving the

basic matrix Aβ , that this matrix differs from the previous basic matrix in just one column. One

way to use this is that with every basic matrix change, one should “update the LU-factors” of the

basic matrix. We will not get into the implementation aspects of how one goes about doing this

here, but one can read about this for example in [GNS, §7.5.2].
Each loop in which one goes from Step (1) to Step (4) (namely from one basic feasible solution

to a new one) is referred to as an iteration. It can be shown (although we will not prove this here)

that after each iteration, the new basic feasible solution obtained is “adjacent” to the previous

one. Recall that basic feasible solutions corresponded to extreme points of F . Two extreme points

x1, x2 are said to be adjacent if for each chosen point on the segment S joining them (that is,
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S = {αx1 + (1 − α)x2 : α ∈ [0, 1]}), this point cannot be written as a convex combination1 of

points not on S; see Figure 3.

x1

x2

x3

F

Figure 3. Amongst the extreme points x1, x2, x3 of F , x1 and x2 are adjacent, while x1 and x3 aren’t.

5.3. How do we find an initial basic feasible
solution?

In Step (1) of the simplex method, we have assumed that we have a basic feasible solution to begin

with. And at the end of Step (3), we have shown that we obtain a new basic feasible solution,

and so it is safe to go to Step (1) again. But right at the beginning, how do we start with a basic

feasible solution?

The point is that starting with a basic solution is no trouble at all. After all, we can just

choose any m independent columns of A, and form the corresponding index tuple β and so on.

But we are of course not guaranteed that the x constructed in this manner is feasible, that is, it

is also such that x ≥ 0.

A brute force way to tackle this is to start calculating all possible (at most
(
n
m

)
) such basic

solutions, and start with the simplex method the moment we have found a basic solution that is

also feasible. But this is not efficient and so we need something more practical.

In this section we study a way of starting with a basic feasible solution rather than using

the brute force method above. Our method will be to consider an auxiliary linear programming

problem first.

We assume that in our standard form of the linear programming problem (P ), each component

of b is nonnegative. This can be ensured by multiplying some of the equations in Ax = b by −1 if

necessary.

The key observation is the following. Consider the linear programming problem

(P ′) :





minimize y1 + · · ·+ ym

subject to
[
A Im

] [ x

y

]
= b

and x ≥ 0, y ≥ 0.

Then this problem has an obvious basic feasible solution, namely
[

0

b

]
. (5.2)

1A point v is a convex combination of v1, . . . , vk if v = λkv1 + · · ·+ λkvk for some scalars λ1, . . . , λk ≥ 0.
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In order to find a basic feasible solution to our linear programming problem (P ), we associate with

(P ) the artificial linear programming problem (P ′). Since this associated artificial problem has

the obvious basic feasible solution given by (5.2), we have no trouble starting the simplex method

for (P ′). It turns out that an optimal feasible solution to (P ′) with objective value 0 yields a

staring basic feasible solution to (P )!

Theorem 5.2. The linear programming problem (P ) has a basic feasible solution iff the associated

artificial linear programming problem (P ′) has an optimal feasible solution with objective value 0.

Proof. (Only if) Suppose that (P ) has a basic feasible solution x. Then the vector

[
x

0

]
is a

basic feasible solution for (P ′), and the associated cost is 0. But since the cost of the problem (P )

is always nonnegative, it follows that this is in fact an optimal feasible solution for (P ′).

(If) Suppose that (P ′) has an optimal feasible solution

[
x

y

]
with objective value 0. But the cost

of (P ′) associated with this solution is y1 + · · ·+ ym = 0. Since y ≥ 0, it follows that y = 0. But

using
[
A Im

] [ x

y

]
= b

and the fact that y = 0, we obtain that Ax = b. Moreover, we know that x ≥ 0. So this x is a

feasible solution to (P ). By the Fundamental Theorem of Linear Programming, we conclude that

there must also exist a basic feasible solution to (P ). �

Note that from the proof of the ‘If’ part of the above result, we see that as yet we do not

actually have a way of constructing a basic feasible solution to (P ). So how do we actually go

about finding an initial basic feasible solution for (P )?

The answer is the following algorithm:

(1) We first set up the associated artificial linear programming problem (P ′).

(2) For (P ′), we use the simplex method to find an optimal basic feasible solution2, starting

from the basic feasible solution [
0

b

]
.

We then have the following two possible cases:

1◦ There is an optimal solution for (P ′) with a positive objective value. Then the

problem (P ) has no basic feasible solution.

2◦ There is an optimal basic feasible solution for (P ′) with objective value 0. This

solution must have the form
[

x

0

]
.

If all the yis are non-basic variables, then it follows that the basic ones are a subset

of the components of x and the rest of the components of x are zero. So it follows

that the x is not just a feasible solution, but in fact a basic feasible solution for (P ).

If some of the yis are basic variables (degenerate case), we can first exchange these

basic variables with non-basic xi variables (which are also 0), to obtain a optimal

basic feasible solution to (P ′) where the basic variables involve components of x

only. At this stage, as in the previous paragraph, it follows that the x a basic

feasible solution for (P ).

2It can be shown that an optimal feasible solution for (P ′) exists, but will not prove this.
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5.4. An example

Let us revisit Example 4.3, and solve it using the simplex method. Recall that we have n = 4,

m = 2,

A =

[
1 1 1 0

2 1 0 1

]
,

b =

[
200

300

]
,

c =




−400

−300

0

0


 .

We start with x3 and x4 as the initial basic variables.

First iteration.

(1) As x3 and x4 are basic variables, we have β = (3, 4) and ν = (1, 2). Thus the basic matrix

Aβ =
[
a3 a4

]
=

[
1 0

0 1

]
,

while

Aν =
[
a1 a2

]
=

[
1 1

2 1

]
.

The basic variables take the value xβ = b at the initial basic solution, where b is determined by

Aβb = b, that is, [
1 0

0 1

]
b =

[
200

300

]
,

and so

b =

[
200

300

]
.

Note that this gives a feasible basic solution since b ≥ 0. This basic feasible solution is



0

0

200

300


 .

We now determine the simplex multipliers (components of y) by solving A⊤
β y = cβ, that is,

[
1 0

0 1

]
y =

[
0

0

]
,

and so

y =

[
0

0

]
.

The reduced costs for the non basic variables (components of rν) are determined by solving

rν = cν −A⊤
ν y,

that is,

rν =

[ −400

−300

]
−
[

1 2

1 1

] [
0

0

]
=

[ −400

−300

]
.
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(2) Since ¬[rν ≥ 0], we must now choose q such that rνq is the most negative component of rν .

Since rν1 = r1 = −400 < 0 and rν2 = r2 = −300 < 0, we choose q = 1. (Thus x1 becomes a new

basic variable.)

We must also determine the vector aνq = a1 by Aβa1 = a1, that is,
[

1 0

0 1

]
a1 =

[
1

2

]
,

and so

a1 =

[
1

2

]
.

(3) Since ¬[a1 ≤ 0], we must now determine tmax and p. (Recall that tmax is the largest the new

basic variable x1 can grow.) We have

tmax = min

{
bi

ai,νq
: ai,νq > 0

}
= min

{
200

1
,
300

2

}
= 150,

while p ∈ {1, . . . ,m} = {1, 2} is an index for which

ap,νq > 0 and tmax =
bp

ap,νq
,

and so we see that p = 2. So the basic variable xβp
= xβ2

= x4 leaves the set of basic variables.

Hence we have that the new basic index tuple is β = (3, 1) and the new non-basic index tuple is

ν = (2, 4), and this stage, we have arrived at a new basic feasible solution. So we shall now begin

with the second iteration.

Second iteration.

(1) Now β = (3, 1) and ν = (2, 4). Thus the basic matrix

Aβ =
[
a3 a1

]
=

[
1 1

0 2

]
,

while

Aν =
[
a2 a4

]
=

[
1 0

1 1

]
.

The basic variables take the value xβ = b, where b is determined by Aβb = b, that is,
[

1 1

0 2

]
b =

[
200

300

]
,

and so

b =

[
50

150

]
.

As expected, this gives a basic feasible solution, given by



150

0

50

0


 .

We now determine the simplex multipliers (components of y) by solving A⊤
β y = cβ, that is,

[
1 0

1 2

]
y =

[
0

−400

]
,

and so

y =

[
0

−200

]
.
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The reduced costs for the non-basic variables (components of rν) are determined by solving

rν = cν −A⊤
ν y,

that is,

rν =

[ −300

0

]
−
[

1 1

0 1

] [
0

−200

]
=

[ −100

200

]
.

(2) Since ¬[rν ≥ 0], we must now choose q such that rνq is the most negative component of rν .

Since rν1 = r2 = −100 < 0, we choose q = 1. (Thus x2 becomes a new basic variable.)

We must also determine the vector aνq = a2 by Aβa2 = a2, that is,
[

1 1

0 2

]
a2 =

[
1

1

]
,

and so

a2 =

[
1
2
1
2

]
.

(3) Since ¬[a2 ≤ 0], we must now determine tmax and p. (Now tmax is the largest the new basic

variable x2 can grow.) We have

tmax = min

{
bi

ai,νq
: ai,νq > 0

}
= min

{
50

1/2
,
150

1/2

}
= 100,

while p ∈ {1, . . . ,m} = {1, 2} is an index for which

ap,νq > 0 and tmax =
bp

ap,νq
,

and so we see that p = 1. So the basic variable xβp
= xβ1

= x3 leaves the set of basic variables.

Hence we have that the new basic index tuple is β = (2, 1) and the new non-basic index tuple is

ν = (3, 4), and this stage, we have arrived at a new basic feasible solution. So we shall now begin

with the third iteration.

Third iteration.

(1) Now β = (2, 1) and ν = (3, 4). Thus the basic matrix

Aβ =
[
a2 a1

]
=

[
1 1

1 2

]
,

while

Aν =
[
a3 a4

]
=

[
1 0

0 1

]
.

The basic variables take the value xβ = b, where b is determined by Aβb = b, that is,
[

1 1

1 2

]
b =

[
200

300

]
,

and so

b =

[
100

100

]
.

This gives yet again a basic feasible solution, given by



100

100

0

0


 .
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We now determine the simplex multipliers (components of y) by solving A⊤
β y = cβ, that is,

[
1 1

1 2

]
y =

[ −300

−400

]
,

and so

y =

[ −200

−100

]
.

The reduced costs for the non-basic variables (components of rν) are determined by solving

rν = cν −A⊤
ν y,

that is,

rν =

[
0

0

]
−
[

1 0

0 1

] [ −1000

−100

]
=

[
1000

100

]
.

(2) Since [rν ≥ 0], the program terminates, and this basic feasible solution is optimal.

The optimal cost is

c⊤x =
[
−400 −300 0 0

]



100

100

0

0


 = −70000.

(Note that in Example 3.1, we had converted the original maximization problem from Section 2.2

into a minimization problem, and so for our original maximization problem, the maximum profit

is 70000, as seen already in Section 2.2.)

Starting with the initial basic index tuple β = (3, 4), the sequence of basic vectors created by

the simplex method is:



0

0

200

300


 −→




150

0

50

0


 −→




100

100

0

0




This is illustrated in Figure 4.





0

0

200

300









150

0

50

0









200

0

0

−100









100

100

0

0








0

200

0

100









0

300

−100

0





x1

x2

x3 = 0

x4 = 0
x2 = 0

x1 = 0

(x1, x2)-plane

Figure 4. The path through the basic feasible solutions generated by the simplex method
starting with the initial basic index tuple β = (3, 4).
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5.5. Problems with the simplex method

Although the simplex method works very well, it is good to keep in mind possible problems

associated with the algorithm. We discuss two main problems. One is the issue called cyclicity

and the other is about the computational complexity.

5.5.1. Termination of the simplex method and cyclicity. So far we have not discussed

whether the simplex method terminates in a finite number of iterations. It turns out that if there

exist degenerate basic feasible solutions, then it can happen that the simplex algorithm cycles

between degenerate solutions and hence never terminates. It can be shown that if all the basic

feasible solutions are non-degenerate, then the simplex algorithm terminates after a finite number

of iterations.

Theorem 5.3. If all of the basic feasible solutions are non-degenerate, then the simplex algorithm

terminates after a finite number of iterations.

Proof. If a basic feasible solution is non-degenerate, then it has exactly m positive components.

In this case,

tmax = min

{
bi

ai,νq
: ai,νq > 0

}
> 0.

So the new basic feasible solution gives rise to a cost which is strictly smaller than the previous basic

feasible solution. Therefore, at each iteration, the objective value decreases, and consequently a

basic feasible solution that has appeared once can never reappear. But we know that there are only

finitely many basic solutions, and hence finitely many basic feasible solutions. So the algorithm

terminates after a finite number of iterations. �

Cycling resulting from degeneracy is not a frequent occurrence in practice. But the fact that

it could happen has led the development of methods to avoid cycling. We will not study these

here in this first introductory course.

5.5.2. Computation complexity of the simplex method. A natural question that the user

of an algorithm asks is:

“As the size of the input to an algorithm increases,

how does the running time change?”

Roughly speaking, the computational complexity of an algorithm is this relationship between the

amount of time or the number of steps that it takes to solve the problem as a function of the size

of the input.

The simplex method is very efficient in practice. Although the total number of basic feasible

solutions could be as large as
(
n
m

)
, it is rare that one needs to perform as many iterations. Nev-

ertheless, there are examples of linear programming problems which require 2n − 1 steps in order

to find the solution. Thus the worst case behaviour is bad, since it is exponential in n.

This bad worst-case scenario of the simplex method has led to the search for other more

efficient polynomial time algorithms for solving linear programming problems. An example of one

such method is an interior point algorithm of Karmarkar. Its main feature is that the optimal

extreme points are not approached by following the edges but rather by moving within the interior

of the polyhedron. However, we will not study this here.

Exercise 5.4. Consider the following linear programming problem:

minimize −3x1 + 4x2 − 2x3 + 5x4

subject to x1 + x2 − x3 − x4 ≤ 8,
x1 − x2 + x3 − x4 ≤ 4,
x1, x2, x3, x4 ≥ 0.
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Transform the problem to standard form using two slack variables, x5 and x6. Solve this problem using
the simplex method. Start with the introduced slack variables as the basic variables.

Suppose that the objective coefficient corresponding to x4 is changed from 5 to 2. Use the simplex method
to solve this modified problem. Start from the final solution found in the previous part of this exercise.

Exercise 5.5. Consider the following set of constraints:

x1 + 2x2 + 3x3 + 4x4 = 10,
2x1 + 3x2 + 4x3 + 5x4 = 12,
x1, x2, x3, x4 ≥ 0.

To find out systematically whether of not there exists a feasible solution, we consider the following linear
programming problem (LP ) with two ‘artificial’ variables x5 and x6:

(LP )





minimize x5 + x6,
subject to x1 + 2x2 + 3x3 + 4x4 + x5 = 10,

2x1 + 3x2 + 4x3 + 5x4 + x6 = 12,
x1, x2, x3, x4, x5, x6 ≥ 0.

Solve the problem (LP ) using the simplex method, and find the optimal cost. Based on this, decide
whether or not there is a vector satisfying the original set of constraints.

Exercise 5.6. Consider the following linear programming problem:

minimize 4x1 + 3x2 + 2x3 + 3x4 + 4x5,
subject to 4x1 + 3x2 + 2x3 + x4 = 5,

x2 + 2x3 + 3x4 + 4x5 = 3,
x1, x2, x3, x4, x5 ≥ 0.

Use the simplex method to find an optimal solution. Start with x1 and x5 as basic variables.

The optimal solution is not unique. Find another optimal solution than the one obtained in the previous
part.

Exercise 5.7. Consider the following linear programming problem:

minimize x1 + 5x2 + 2x3,
subject to x1 + x2 ≥ 2,

x1 + x3 ≥ 2,
x2 + x3 ≥ 2,
x1, x2, x3 ≥ 0.

Use the simplex method to find an optimal solution and the optimal value. Start with the basic solution
with x1 = x2 = x3 = 1.

Exercise 5.8. Consider the following linear programming problem:

maximize q⊤x,
subject to Px ≤ b,

x ≥ 0,

where P =

[
1 −1 1
1 1 −1

]
, b =

[
1
1

]
, and q =




1
1
2


.

Use the simplex method to solve this problem. Start with the slack variables as basic variables.

Find two vectors x0 ∈ R
3 and d ∈ R

3 such that with x(t) := x0 + td, t ∈ R, there holds that:

(1) x(t) is a feasible solution for each t > 0, and

(2) q⊤x(t) → +∞ as t → +∞.

Exercise 5.9. Consider the linear programming problem

(LP ) :






minimize c⊤x,
subject to Ax = b,

x ≥ 0,
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where A =




1 1 0 1 0 0
2 2 2 1 0 2
2 0 2 1 2 1



, b =




1
3
5



, and c =




2
1
1
1
2
1



.

Suppose that x1, x3, x5 are chosen as basic variables. Find the corresponding basic solution and verify
that it is feasible. Using the simplex method determine a new (better) basic feasible solution and check
that it is optimal.

Exercise 5.10. We are given the following five vectors in R
3:

a1 =




1
−1
0


 , a2 =




0
1
1


 , a3 =




−1
0
−1


 , a4 =




1
1
1


 , b =




2
3
6


 .

We want to find out if there exist nonnegative scalars xj such that

b = x1a1 + x2a2 + x3a3 + x4a4.

To this end, we consider the following linear programming problem in the seven variables formed by
x = (x1, x2, x3, x4), y = (y1, y2, y3):

(LP ) :





minimize y1 + y2 + y3,
subject to Ax+ Iy = b,

x ≥ 0 and y ≥ 0,

where A =
[
a1 a2 a3 a4

]
.

Show that x = (2, 5, 0, 0), y = (0, 0, 1) is an optimal solution to (LP ). Do there exist nonnegative scalars
xj such that b = x1a1 + x2a2 + x3a3 + x4a4?



Chapter 6

Duality theory

This chapter deals with central theoretical results for linear programming, namely the duality

theorem and the complimentarity theorem.

First of all we must define the so-called dual problem corresponding to the given linear pro-

gramming problem. The coupling between this dual problem and the original (called primal)

problem is most significant if the primal problem has the following form:

minimize

n∑

j=1

cjxj

subject to

n∑

j=1

aijxj ≥ bj , i = 1, . . . ,m,

xj ≥ 0, j = 1, . . . , n,

or written in a more compact form,

minimize c⊤x

subject to Ax ≥ b,

x ≥ 0.

So in this chapter, we will start with this form of the linear programming problem, which is often

referred to as the canonical form.

In many (perhaps most) applications of linear optimization, one has the constraint that x ≥ 0,

that is, that the variables must be nonnegative. Such constraints can obviously be absorbed in

the constraints Ax ≥ b (by making A taller), but there are advantages to consider the constraint

x ≥ 0 being separate from Ax ≥ b. Firstly, the constraint x ≥ 0 is so simple that it would be

wasteful to treat it as a part of general linear inequalities; calculations can be made less heavy

if one utilizes the special structure of the inequalities x ≥ 0. Secondly, as suggested above, the

duality and complimentarity theory is more significant if x ≥ 0 is handled separately.

Consequently, in this chapter, we will consider the linear programming problem in the form

(P ) :





minimize c⊤x

subject to Ax ≥ b,

x ≥ 0,

(6.1)

where x ∈ R
n is the variable vector, and A ∈ R

m×n, b ∈ R
m and c ∈ R

n are given. We refer to

this linear programming problem as the primal problem (P ).

51
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The m inequalities given by Ax ≥ b are called general while the n inequalities given by x ≥ 0

are called simple. The set of all x ∈ R
n which satisfy all the constraints in P is called the feasible

set of (P ), and is denoted by FP :

FP = {x ∈ R
n | Ax ≥ b and x ≥ 0}.

A difference with the previous few chapters is that no we do not make any special assumptions on

the matrix A. Thus any of the cases m > n, m = n or m < n are possible. Moreover, we do not

assume that A has linearly independent rows or columns.

6.1. The dual linear programming problem

The following linear programming problem is called the dual problem to the above problem (P ):

(D) :





maximize b⊤y

subject to A⊤y ≤ c,

y ≥ 0,

(6.2)

where y ∈ R
m is the variable vector, and the A, b, c are the same as in (P ). We refer to this linear

programming problem as the dual problem (D). A visual mnemonic is shown below:

x1 . . . xn ≥ 0

y1
...

ym




a11 . . . a1n
...

...

am1 . . . amn




≥

≥

b1
...

bm

≤ ≥ ≥

0 c1 . . . cn min/max

The n inequalities given by A⊤y ≤ c are called general while the m inequalities given by y ≥ 0

are called simple. The set of all y ∈ R
m which satisfy all the constraints in (D) is called the

feasible set of (D), and is denoted by FD:

FD = {y ∈ R
m | A⊤y ≤ c and y ≥ 0}.

Here are a few additional definitions:

(1) The point x ∈ R
n is called a feasible solution to (P ) if x ∈ FP .

(2) The point x̂ ∈ R
n is called an optimal solution to (P ) if x̂ ∈ FP and for all x ∈ FP ,

c⊤x̂ ≤ c⊤x.

(3) The point y ∈ R
m is called a feasible solution to (D) if y ∈ FD.

(4) The point ŷ ∈ R
m is called an optimal solution to (D) if ŷ ∈ FD and for all y ∈ FD,

b⊤ŷ ≥ b⊤y.

6.2. The duality theorem

The following inequality is fundamental.

Proposition 6.1. For every x ∈ FP and every y ∈ FD, c⊤x ≥ b⊤y.

Proof. If x ∈ FP and y ∈ FD, then observing that x⊤A⊤y = y⊤Ax, we obtain

c⊤x− b⊤y = x⊤c− x⊤A⊤y + y⊤Ax− y⊤b

= x⊤(c−A⊤y) + y⊤(Ax− b) ≥ 0,

since x ≥ 0, c−A⊤y ≥ 0, y ≥ 0 and Ax− b ≥ 0. �

An immediate consequence of the above inequality is the following optimality condition:
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Corollary 6.2. If x̂ ∈ FP , ŷ ∈ FD and c⊤x̂ = b⊤ŷ, then x̂ and ŷ are optimal for (P ) and for

(D), respectively.

Proof. For every x ∈ FP and y ∈ FD, we have

c⊤x ≥ b⊤ŷ = c⊤x̂ ≥ b⊤y.

In particular, we have obtained c⊤x ≥ c⊤x̂ and b⊤ŷ ≥ b⊤y, giving the desired optimalities of x̂

and ŷ for (P ) and (D), respectively. �

The following important theorem is proved in the appendix to this chapter in Section 6.7.

Theorem 6.3 (The duality theorem).

(1) If both FP 6= ∅ and FD 6= ∅, then there exists at least one optimal solution x̂ to (P ) and

there exists at least one optimal solution ŷ to (D). Moreover, c⊤x̂ = b⊤ŷ.

(2) If FP 6= ∅, but FD = ∅, then for every ρ ∈ R, there exists an x ∈ FP such that c⊤x < ρ.

One then says that the optimal value of (P ) is −∞. In this case neither (P ) nor (D)

has an optimal solution.

(3) If FD 6= ∅, but FP = ∅, then for every ρ ∈ R, there exists a y ∈ FD such that b⊤y > ρ.

One then says that the optimal value of (D) is +∞. In this case neither (P ) nor (D)

has an optimal solution.

(4) Finally, it can happen that both FP = ∅ and FD = ∅. (That is neither (P ) nor (D) have

any feasible solutions.)

As a direct consequence of this theorem, we get the converse to Corollary 6.2 above.

Corollary 6.4. If x̂ ∈ FP , ŷ ∈ FD are optimal solutions to (P ) and (D), respectively then

c⊤x̂ = b⊤ŷ.

6.3. The complimentarity theorem

From Corollaries 6.2 and 6.4, it follows that x̂ and ŷ are optimal solutions to (P ) and (D) iff

x̂ ∈ FP , ŷ ∈ FD and c⊤x̂ = b⊤ŷ. We shall now give an alternative (and often more useful)

criterion for determining when two solutions to (P ) and (D) are also optimal solutions to (P ) and

(D).

If x ∈ R
n, then we set s = Ax− b. Then x ∈ FP is equivalent to x ≥ 0 and s ≥ 0.

If y ∈ R
m, then we set r = c−A⊤y. Then y ∈ FD is equivalent to y ≥ 0 and r ≥ 0.

With the help of these notations, the complementarity theorem can be formulated as follows:

Theorem 6.5 (The complimentarity theorem). x ∈ R
n is an optimal solution to (P ) and y ∈ R

m

is an optimal solution to (D) iff

xj ≥ 0, rj ≥ 0, xjrj = 0 for j = 1, . . . , n,

yi ≥ 0, si ≥ 0, yisi = 0 for i = 1, . . . ,m,
(6.3)

where s := Ax− b and r := c−A⊤y.

Rephrased in somewhat briefer form: x ∈ R
n is an optimal solution to (P ) and y ∈ R

m is an

optimal solution to (D) iff

Ax ≥ b, A⊤y ≤ c, x ≥ 0, y ≥ 0, y⊤(Ax− b) = 0, x⊤(c−A⊤y) = 0.
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Proof. First we observe that whenever x ∈ R
n and y ∈ R

m, one has:

c⊤x− b⊤y = x⊤c− x⊤A⊤y + y⊤Ax − y⊤b

= x⊤(c−A⊤y) + y⊤(Ax− b)

= x⊤r + y⊤s

=
n∑

j=1

xjrj +
m∑

i=1

yisi.

(If) Suppose that the inequalities (6.3) are satisfied. Then x ∈ FP (since x ≥ 0 and s ≥ 0) and

y ∈ FD (since y ≥ 0 and r ≥ 0). Moreover,

c⊤x− b⊤y =

n∑

j=1

xjrj +

m∑

i=1

yisi = 0,

where the last equality holds since all xjri = 0 and all yisi = 0. Thus c⊤x = b⊤y, and so by

Corollary 6.2, x and y are optimal solutions to (P ) and (D), respectively.

(Only if) Now suppose that x and y are optimal solutions to (P ) and (D), respectively. Since x

is a feasible solution to (P ), we must have x ≥ 0 and s ≥ 0, and similarly, since y is a feasible

solution to (D), we must have y ≥ 0 and r ≥ 0. Moreover, by Corollary 6.4, we have c⊤x = b⊤y,

which gives:

0 = c⊤x− b⊤y =

n∑

j=1

xjrj +

m∑

i=1

yisi.

But note that each term in the sum above is nonnegative (indeed, xj ≥ 0, rj ≥ 0 for all j and

yi ≥ 0, si ≥ 0 for all i). So the only way their sum can be zero is when each term is zero. Hence

all xjrj = 0 and all yisi = 0. �

As in the last part of the proof of the ‘only if’ part of the above theorem, we note that if we

know that x, r, s, y ≥ 0, then the condition

xjrj = 0 for all j and yisi = 0 for all i

in the theorem is equivalent with

x⊤r = 0 and y⊤s = 0.

In words, the complimentarity theorem says that the necessary and sufficient condition for a

feasible solution to (P ) and a feasible solution to (D) to also be optimal solutions to (P ) and (D),

respectively, is that the following two things must hold:

(1) for each j ∈ {1, . . . , n}, either the jth simple inequality in problem (P ) is an equality1,

or the jth general inequality in problem (D) is an equality2,

(2) for each i ∈ {1, . . . ,m}, either the ith simple inequality in problem (D) is an equality3,

or the ith general inequality in problem (P ) is an equality4.

1that is, xj = 0
2that is, rj = 0
3that is, yi = 0
4that is, si = 0
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6.4. Dual problem (general form)

Consider the linear programming problem in the following general form

(P ) :





minimize c⊤1 x1 + c⊤2 x2

subject to A11x1 +A12x2 ≥ b1,

A21x1 +A22x2 = b2,

x1 ≥ 0, x2 is free.

(6.4)

Here
c1 ∈ R

n1 ,

c2 ∈ R
n2 ,

b1 ∈ R
m1 ,

b2 ∈ R
m2 ,

A11 ∈ R
m1×n1 ,

A12 ∈ R
m1×n2 ,

A21 ∈ R
m2×n1 ,

A22 ∈ R
m2×n2

are given. The variables x1 ∈ R
n1 and x2 ∈ R

n2 . To say that x2 is “free” simply means that it is

not constrained to be nonnegative (unlike x1).

We will now transform the problem in the canonical form (6.1). To this end, we write the

equality constraint A21x1 +A22x2 = b2 as a pair of inequality constraints:

A21x1 +A22x2 ≥ b2,

−A21x1 −A22x2 ≥ −b2.

We write the free variable x2 as a difference of two (constrained) nonnegative variables: x2 =

v2 − v3, where v2 ≥ 0 and v3 ≥ 0. Thus the problem now takes the following form:

(P ) :





minimize c⊤1 x1 + c⊤2 v2 − c⊤2 v3
subject to A11x1 +A12v2 −A12v3 ≥ b1,

A21x1 +A22v2 −A22v3 ≥ b2,

−A21x1 −A22v2 +A22v3 ≥ −b2,

x1 ≥ 0, v2 ≥ 0, v3 ≥ 0.

(6.5)

This is indeed a problem in the canonical form (6.1), with

A =




A11 A12 −A12

A21 A22 −A22

−A21 −A22 A22


 , b =




b1
b2

−b2


 , c =




c1
c2

−c2


 ,

and

x =




x1

v2
v3


 .

For writing down the dual problem, we introduce the variable vector

y =




y1
u2

u3


 ,

and note that

A⊤ =




A⊤
11 A⊤

21 −A⊤
21

A⊤
12 A⊤

22 −A⊤
22

−A⊤
12 −A⊤

22 A⊤
22


 .
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Since the dual of the problem (6.1) is given by (6.2), the dual of the above problem (6.5) is the

following:

(D) :





maximize b⊤1 y1 + b⊤2 u2 − b⊤2 u3

subject to A⊤
11y1 +A⊤

21u2 −A⊤
21u3 ≤ c1,

A⊤
12y1 +A⊤

22u2 −A⊤
22u3 ≤ c2,

−A⊤
12y1 −A⊤

22u2 +A⊤
22u3 ≤ −c2,

y1 ≥ 0, u2 ≥ 0, u3 ≥ 0.

(6.6)

Here the inequalities

A⊤
12y1 +A⊤

22u2 −A⊤
22u3 ≤ c2,

−A⊤
12y1 −A⊤

22u2 +A⊤
22u3 ≤ −c2,

can be replaced by the equality

A⊤
12y1 +A⊤

22u2 −A⊤
22u3 = c2.

Furthermore we replace the difference between the vectors u2 and u3 by the vector y2, that is,

y2 = u2 − u3, which is not constrained. Thus we arrive at the following problem in the variable

vectors y1 ∈ R
m1 and y2 ∈ R

m2 :

(D) :





maximize b⊤1 y1 + b⊤2 y2
subject to A⊤

11y1 +A⊤
21y2 ≤ c1,

A⊤
12y1 +A⊤

22y2 = c2,

y1 ≥ 0, y2 is free.

(6.7)

This constitutes the dual problem to (6.4).

6.5. Dual problem (standard form)

Now consider the linear programming problem in the standard form

(P ) :





minimize c⊤x

subject to Ax = b,

x ≥ 0.

(6.8)

This is a special case of (6.4), with

A21 = A, c1 = c, b2 = b, x1 = x,

while A11, A12, A22, c2, b1, x2 are “empty” (that is, they are absent). Thus the dual problem to

(6.8) is the dual of (6.4) in this special case (with A21 = A etc.), that is (with y2 now denoted

simply by y),

(D) :

{
maximize b⊤y

subject to A⊤y ≤ c.
(6.9)

This is the dual problem to (6.8).

Assume that we have solved the given problem of the form (6.8) with the simplex method

described earlier, and suppose that the algorithm was terminated owing to rν ≥ 0. With the

notation used earlier, then there holds that

Aβb = b, b ≥ 0, A⊤
β y = cβ , and A⊤

ν y ≤ cν .

(The last inequality follows since rν = cν − A⊤
ν y ≥ 0.)

Let the vector x ∈ R
n be defined by xβ = b and xδ = 0. Then x ≥ 0 and Ax = Aβxβ+Aνxν =

Aβb = b (so that x is the basic feasible solution to the primal problem (6.8) corresponding to basic

index tuple β).

Furthermore, A⊤y ≤ c, since A⊤
β y = cβ and A⊤

ν y ≤ cν . This means that the vector y ∈ R
m is

a feasible solution to the dual problem (6.9).
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Finally, we have

c⊤x = c⊤β xβ + c⊤ν xν = c⊤β xβ = (A⊤
β y)

⊤b = y⊤Aβb = y⊤b = b⊤y.

So we have the following:

(1) x is a feasible solution to the primal problem.

(2) y is a feasible solution to the dual problem.

(3) c⊤x = b⊤y.

Combining these observations it follows that y is an optimal solution to the dual problem (6.9)!

Thus when we solve the primal problem (6.8) with the simplex method, we have also deter-

mined an optimal solution y to the dual problem (6.9).

6.6. An economic interpretation

Consider the example from Section 2.2. Suppose that there is a rival furniture manufacturer (let

us call them IKEA) who also produce tables and chairs, and whose raw material is identical to

what we use, namely the big parts and small parts considered earlier. Suppose IKEA wants to

expand their production and are interested in buying our resources (that is, the number of big

and small parts we have got). The question IKEA asks themselves is: “What is the lowest we can

pay to get the resources?”

To study this problem, we introduce the variables

y1 = the price at which IKEA offers to buy 1 big part,

y2 = the price at which IKEA offers to buy 1 small part,

and let w be the total price IKEA offers us for the 200 big parts and 300 small parts we own.

Thus

w = 200 · y1 + 300 · y2.
IKEA knows that in order for us to accept their offer, they should set the price high enough so

that we make at least as much money by selling them our raw materials as we would with our

optimal production plan. For example, we sell a table for SEK 400, and one table needs one big

part and two small parts. If we sell one big part and two small parts to IKEA, we would make

SEK 1 · y1 + 2 · y2, and so it is sensible that IKEA chooses the y1 and y2 so that

1 · y1 + 2 · y2 ≥ 400.

Similarly, if one considers a chair which we sell for SEK 300 versus the amount obtained by selling

the raw materials (one big and one small part) to IKEA, we obtain the inequality

1 · y1 + 1 · y2 ≥ 300.

And of course the prices y1 and y2 should be nonnegative. Consequently, IKEA is faced with the

following optimization problem:

minimize 200y1 + 300y2
subject to y1 + 2y2 ≥ 400

y1 + y2 ≥ 300

y1 ≥ 0, y2 ≥ 0.

One can check that this is the dual problem to our original problem, namely,

maximize 400 · T + 300 · C
subject to T + C ≤ 200

2T + C ≤ 300

T ≥ 0, C ≥ 0.
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In general, the variables in dual problem can be interpreted as fictitious prices associated with

our resources (constraints) in the original primal problem. And the optimal solution we have for

the original primal problem can then corresponds to an optimal solution for the dual problem,

where we use the limited resources in such a manner so as to minimize the costs associated with

using them. Although we have merely hinted upon this economic interpretation by means of the

example above, we will not go into further detail here.

Exercise 6.6. A computer program of unknown quality has been downloaded by a user from the net to
solve linear programming problems of the type

minimize c⊤x,
subject to Ax = b,

x ≥ 0.

The user tests the program with the following data:

A =




3 2 1 3 3 2
2 4 2 1 2 1
1 2 3 2 3 3



 , b =




14
16
10



 , c =




2
3
2
2
3
2



.

The program then outputs that x = (3, 2, 1, 0, 0, 0) is an optimal solution and y = ( 1
4
, 1
2
, 1
4
) is the optimal

solution to the dual problem.

Check that the output of the program is correct.

Exercise 6.7. Consider the formulation of the linear programming problem in Exercise 5.4 in the standard
form (with 6 variables). Write down the dual linear programming problem. Visualize the feasible set to
the dual problem in a figure with the dual variables y1 and y2 on the axes. What happens to this figure
when the objective function coefficient of x4 in the primal problem is changed from a 5 to a 2? Can you
explain your answer?

Exercise 6.8. Find the dual to the problem (D) given by (6.7). What do you observe?

Exercise 6.9. Verify that the following two linear programming problems are each others duals.

(P ) :





minimize x3,
subject to −x1 + 2x2 + x3 ≥ 0,

3x1 − 4x2 + x3 ≥ 0,
x1 + x2 = 1,
x1, x2 ≥ 0, x3 free.





(D) :






maximize y3,
subject to −y1 + 3y2 + y3 ≤ 0,

2y1 − 4y2 + y3 ≤ 0,
y1 + y2 = 1,
y1, y2 ≥ 0, y3 free.






The problem (P ) has been solved and the optimal solution obtained is x = (0.6, 0.4,−0.2). Use this
information to obtain an optimal solution y to the dual problem.

Exercise 6.10. Formulate the dual problem to the linear programming problem considered in Exercise 5.6.
Find an optimal solution to it using the result found in Exercise 5.6. Illustrate the feasible set and the
optimal solution graphically in a figure with the y1 and y2 variables on the two axes.

Exercise 6.11. Formulate the dual problem to the linear programming problem considered in Exercise 5.7.
Find an optimal solution to it using the result found in Exercise 5.7. Verify that the objective values for
the primal and dual problems are equal.

Exercise 6.12. Formulate the dual problem to the linear programming problem considered in Exercise 5.8.
Determine if it has any feasible solutions. Can you explain your answer?
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Exercise 6.13. We know that the following two linear programming problems (P ) and (D) are duals of
each other.

(P ) :






minimize c⊤x,
subject to Ax ≥ b,

x ≥ 0.






(D) :





maximize b⊤y,

subject to A⊤y ≤ c,
y ≥ 0.





Study the connection between the optimal values (which can possibly be +∞ or −∞) of the problems (P )
and (D) in each of the following cases listed below. In each case,

A =

[
0 1
−1 0

]
.

In each case, solve the problems (P ) and (D) graphically, calculate their optimal values, and if there are
any, their optimal solutions.

(1) b =

[
1
−1

]
, c =

[
−2
2

]
.

(2) b =

[
1
−1

]
, c =

[
2
2

]
.

(3) b =

[
−1
−1

]
, c =

[
−2
2

]
.

(4) b =

[
−1
1

]
, c =

[
2
2

]
.

(5) b =

[
−1
−1

]
, c =

[
2
−2

]
.

Exercise 6.14. Formulate the dual problem to the linear programming problem considered in Exercise 5.9.
Find an optimal solution to it using the result found in Exercise 5.9. Verify that the objective values for
the primal and dual problems are equal.

Exercise 6.15. Consider the problem described in Exercise 5.10. Is there a vector z ∈ R
3 such that

b⊤z > 0 and a⊤
j z ≤ 0 for all j? If so, find such a z. Hint: Consider the dual programming problem to the

linear programming problem set up in Exercise 5.10.

Exercise 6.16. Suppose that A ∈ R
n×n is a matrix with the property A⊤ = −A, that c ∈ R

n×1, and
that the following linear programming problem has a feasible solution:






minimize c⊤x
subject to Ax ≥ −c,

x ≥ 0.

Conclude that the problem has an optimal solution. What is the optimal objective function value of this
problem?

6.7. Appendix

In order to prove Theorem 6.3, we will use Farkas’ lemma, which is a result interesting in its own

right.

6.7.1. Farkas’ lemma.

Lemma 6.17 (Farkas’ lemma). Suppose that the m + 1 vectors q, p1, . . . , pm in R
n are given.

Then exactly one of the following two systems in x ∈ R
n and y ∈ R

m have at least one solution:

(L) :





q⊤x < 0,

p⊤1 x ≥ 0,
...

p⊤mx ≥ 0.

(R) :





q = y1p1 + · · ·+ ympm,

y1 ≥ 0,
...

ym ≥ 0.
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If we introduce the m × n matrix P with rows p⊤1 , . . . , p
⊤
m, then the above result says that

exactly one of the following two systems has at least one solution:

(L) :

{
q⊤x < 0,

Px ≥ 0.
(R) :

{
q = P⊤y,

y ≥ 0.

The proof can be given using the following:

Lemma 6.18. Let

K =

{
v ∈ R

n : v =
m∑

i=1

yipi, yi ≥ 0 for all i

}
.

For every q ∈ R
n, there is a point r ∈ K that is closest to q.

K

q

q′

q′′

r

r′

r′′

p1

pm

Figure 1. For q, q′, q′′ ∈ R
n, r, r′, r′′, respectively, are the closest points in K.

Proof. We prove the claim using induction on m.

The claim does hold if m = 1, since the map t 7→ ‖q − tp1‖ from [0,+∞) to R is continuous

and as t → ∞, ‖q − tp1‖ → ∞ (avoiding the trivial case p1 = 0). Thus the function assumes a

minimum on [0,+∞), say at t0 ∈ [0,+∞). (Why?) Then t0p1 belongs to K and is closest to q.

So let us make the induction hypothesis that we have proved the claim for some m ≥ 1.

We want to prove it for m + 1 given points. Note that m + 1 ≥ 2. Suppose the points q and

p1, . . . , pm+1 are given. By the induction hypothesis, for each j = 1, . . . ,m+ 1, the convex set

Kj =



v ∈ R

n : v =

j−1∑

i=1

yipi +

m+1∑

i=j+1

yipi, yi ≥ 0 for all i





has a closest point rj to q. Now we consider the following three only possible cases:

1◦ q ∈ K. Then we can simply choose r = q.

2◦ q 6∈ K, but q belongs to the span of p1, . . . , pm+1. Let r be the point closest to q amongst

r1, . . . , rm+1. Then this r belongs to K (since it is in one of the Kjs, which in turn are all

subsets of K). We will now also show that r is closest to q amongst all the points of K, that is,

‖q − r‖ ≤ ‖q − v‖ for all v ∈ K. Write

q = α1p1 + · · ·+ αm+1pm+1,

v = y1p1 + · · ·+ ym+1pm+1,

where y1, . . . , ym+1 ≥ 0, and α1, . . . , αm+1 ∈ R. Set

t = min

{
yj

yj − αj

: αj < 0

}
.
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There must be at least one j where αj < 0, since q lies outside K. Then 0 ≤ t < 1 and the

minimum is attained at some index i. So we have yj + t(αj − yj) = tαj + (1 − t)yj ≥ 0 for all j

and tαi + (1− t)yi = 0. Then5 tq + (1− t)v ∈ Ki, so that

‖q − r‖ ≤ ‖q − ri‖
≤ ‖q − (tq + (1− t)v)‖ = (1 − t)‖q − v‖
≤ ‖q − v‖.

3◦ q 6∈ K, and q does not belong to the span of p1, . . . , pm+1. Choose an orthonormal basis

e1, . . . , eℓ for the span of the vectors p1, . . . , pm+1. Set q′ = (q, e1)e1 + · · · + (q, eℓ)eℓ. Then this

q′ does belong to the span of p1, . . . , pm+1, and by the previous two cases, we know that there is

a point r in K closest to q′. But (q − q′, e1) = · · · = (q − q′, eℓ) = 0. (Why?) Hence q − q′ is

orthogonal to the span of p1, . . . , pm+1, and so

‖q − r‖2 = ‖q − q′‖2 + ‖q′ − r‖2 ≤ ‖q − q′‖2 + ‖q′ − v‖2 = ‖q − v‖2

for all v ∈ K. Consequently, r is also the closest point in K to q.

This completes the proof. �

Proof of Farkas’ lemma; Lemma 6.17: Suppose that the right hand side system (R) has a

solution y ∈ R
m. Then for all x ∈ R

n that satisfies p⊤i x ≥ 0, i = 1, . . . ,m, there holds that

q⊤x =

m∑

i=1

yi︸︷︷︸
≥0

p⊤i x︸︷︷︸
≥0

≥ 0,

which implies that the left hand system (L) has no solution.

Now suppose that the left hand system (L) has no solution. Choose r in K closest to q as in

Lemma 6.18. We first show that

(pj , r − q) ≥ 0 (j = 1, . . . ,m) and (r, r − q) ≤ 0.

For if there is a i such that (pi, r − q) < 0 then for a sufficiently small t > 0, we would have

‖q − (r + tpi)‖2 = ‖q − r‖2 + 2t(pi, r − q) + t2‖pi‖2 < ‖q − r‖2,

contradicting the choice of r, because r + tpi belongs to K.

Similarly, if (r, r − q) > 0, then for a sufficiently small t ∈ (0, 1),

‖q − (r − tr)‖2 = ‖q − r‖2 − 2t(r, r − q) + t2‖r‖2 < ‖q − r‖2,

contradicting the choice of r, because r − tr = (1− t)r belongs to K.

But since (L) has no solution, by taking x = r−q, we must have q⊤x ≥ 0, that is, (q, r−q) ≥ 0.

Combining this with our earlier observation that (r, r − q) ≤ 0, we obtain

‖r − q‖2 = (r − q, r − q) = (r, r − q)− (q, r − q) ≤ 0.

Hence q = r ∈ K. In other words, q = y1p1 + · · ·+ ympm for some y1, . . . , ym ≥ 0. So the system

(R) has a solution. �

There are many different variants of Farkas’ lemma. Lemmas 6.19 and 6.20 given below will

be used to obtain the duality results we have learnt in this chapter.

5Geometrically, the segment joining q and v meets the side Ki of K.
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Lemma 6.19. Given c ∈ R
n and A ∈ R

m×n, then exactly one of the following systems in v ∈ R
n

and y ∈ R
m has at least one solution.

(L1) :





c⊤v < 0,

Av ≥ 0,

v ≥ 0.

(R1) :

{
A⊤y ≤ c,

y ≥ 0.

Proof. If in Farkas’ lemma, we replace the x by v, the q by c and the matrix P with the matrix
[

A

In

]
,

then the system (L) in Farkas’ lemma is precisely the system (L1). The corresponding right hand

side system (R) in Farkas’ lemma becomes the following one in y ∈ R
m and r ∈ R

n:




A⊤y + Inr = c,

y ≥ 0,

r ≥ 0.

But this is equivalent to the right hand side system (R1) above. Thus the claim follows from

Farkas’ lemma. �

Lemma 6.20. Given b ∈ R
m and A ∈ R

m×n, then exactly one of the following systems in u ∈ R
m

and x ∈ R
n has at least one solution.

(L2) :





b⊤u > 0,

A⊤u ≤ 0,

u ≥ 0.

(R2) :

{
Ax ≥ b,

x ≥ 0.

Proof. If in Farkas’ lemma, we replace the x by u, the q by −b and the matrix P with the matrix
[ −A⊤

Im

]
,

then the system (L) in Farkas’ lemma is precisely the system (L2). The corresponding right hand

side system (R) in Farkas’ lemma becomes the following one in x ∈ R
n and s ∈ R

m:




−Ax+ Ims = −b,

x ≥ 0,

s ≥ 0.

But this is equivalent to the right hand side system (R2) above. Thus the claim follows from

Farkas’ lemma. �

6.7.2. Proof of Theorem 6.3. Before proving the duality theorem, we observe that each case

in the duality theorem is actually possible.

Lemma 6.21. Each of the following cases are possible:

(1) FP 6= ∅ and FD 6= ∅.
(2) FP 6= ∅ and FD = ∅.
(3) FP = ∅ and FD 6= ∅.
(4) FP = ∅ and FD = ∅.

Proof. We give four examples for each of the cases. In each example, m = 2, n = 2, and

A =

[
1 −1

−1 1

]
.

The vectors b and c will be different, depending on which case we consider.
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b c FP FD[
1

−2

] [ −1

2

]
6= ∅; x̂ =

[
2

0

]
∈ FP 6= ∅; ŷ =

[
0

1

]
∈ FD

[
1

−2

] [
1

−2

]
6= ∅; x =

[
1

0

]
∈ FP ∅

[ −1

2

] [ −1

2

]
∅ 6= ∅; y =

[
0

2

]
∈ FD

[ −1

2

] [
1

−2

]
∅ ∅

(In the first case, x̂ ∈ FP and ŷ ∈ FD are optimal for P and D, respectively, since we also have

c⊤x̂ = −2 = b⊤ŷ.) �

In particular, the last claim of the lemma above gives the last claim in the duality theorem.

Lemma 6.22. If FP 6= ∅ and FD = ∅, then {c⊤x : x ∈ FP } is not bounded below.

Proof. Since FD = ∅, it follows from Lemma 6.19 that there exists a solution v ∈ R
n to the left

system (L1), that is, c⊤v < 0, Av ≥ 0 and v ≥ 0. Fix an x ∈ FP , and let x(t) = x+ tv, t ∈ R. For

all t > 0, there holds that Ax(t) ≥ b, x(t) ≥ 0 and c⊤x(t) = c⊤x+ tc⊤v. So we see that x(t) ∈ FP

for all t > 0, and that c⊤x(t) → −∞ as t → +∞. Consequently {c⊤x : x ∈ FP } is not bounded

below. �

Lemma 6.23. If FP = ∅ and FP 6= ∅, then {b⊤y : y ∈ FD} is not bounded above.

Proof. Since FP = ∅, it follows from Lemma 6.20 that there exists a solution u ∈ R
m to the left

system (L2), that is, b⊤u > 0, A⊤u ≤ 0 and u ≥ 0. Fix a y ∈ FD, and let y(t) = y + tu, t ∈ R.

For all t > 0, there holds that A⊤y(t) ≤ c, y(t) ≥ 0 and b⊤y(t) = b⊤y + tb⊤u. So we see that

y(t) ∈ FD for all t > 0, and that b⊤y(t) → +∞ as t → +∞. Consequently {b⊤y : y ∈ FD} is not

bounded above. �

Lemma 6.24. If FP 6= ∅ and FD 6= ∅, then there is at least one optimal solution x̂ to (P ) and at

least one optimal solution ŷ to (D). Moreover, c⊤x̂ = b⊤ŷ, which means that the optimal values

in (P ) and (D) are the same.

Proof. The result will follow from Corollary 6.2 if we manage to show that the following system

in the variables x ∈ R
n and y ∈ R

m has at least one solution:

Ax ≥ b,

x ≥ 0,

A⊤y ≤ c,

y ≥ 0,

c⊤x− b⊤y = 0.

But this is equivalent to the following system of equalities and inequalities in the variables x ∈ R
n,

y ∈ R
m, s ∈ R

m and r ∈ R
n having at least one solution:

−Ax+ Is = −b,

A⊤y + Ir = c,

c⊤x− b⊤y = 0,

x ≥ 0,

y ≥ 0,

s ≥ 0,

r ≥ 0.
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This system can also be written compactly as P⊤z = q and z ≥ 0, where

P⊤ =




−A 0 Im 0

0 A⊤ 0 In
c⊤ −b⊤ 0 0


 , q =




−b

c

0


 , z =




x

y

s

r


 .

From Farkas’ lemma, the system P⊤z = q and z ≥ 0 has at least one solution iff the system

q⊤w < 0 and Pw ≥ 0 has no solution, and in our case

P =




−A⊤ 0 c

0 A −b

Im 0 0

0 In 0


 , q⊤ =

[
−b⊤ c⊤ 0

]
, w =




u

v

t


 .

We shall show that the following equivalent system in the variables u ∈ R
m, v ∈ R

n and t ∈ R

does not have a solution:
A⊤u ≤ tc,

Av ≥ tb,

u ≥ 0,

v ≥ 0,

c⊤v − b⊤u < 0.





(6.10)

We will show this in two steps. First we will show that (6.10) cannot have a solution with t > 0.

Next we will show that it cannot have a solution with t ≤ 0.

Suppose first that t > 0. Then every solution u and v to the first four (of the five) constraints

in (6.10) satisfies

t(c⊤v − b⊤u) = v⊤(tc)− u⊤(tb)

= v⊤(tc)− v⊤A⊤u+ u⊤Av − u⊤(tb)

= v⊤(tc−A⊤u) + u⊤(Av − tb)

≥ 0 + 0 = 0,

that is, c⊤v − b⊤u ≥ 0. So the final (fifth) constraint in (6.10) cannot be satisfied.

Now suppose that t ≤ 0. Since FP 6= ∅ and FD 6= ∅, there exists a x ∈ R
n and y ∈ R

m such

that Ax ≥ b, x ≥ 0, A⊤y ≤ c and y ≥ 0. Proposition 6.1 implies that c⊤x − b⊤y ≥ 0. Now we

have

c⊤v − tb⊤y = v⊤c− v⊤A⊤y + y⊤Av − ty⊤b

= v⊤(c−A⊤y) + y⊤(Av − tb) ≥ 0 + 0 = 0.

Moreover,

tc⊤x− b⊤u = x⊤tc− x⊤A⊤u+ u⊤Ax− u⊤b

= x⊤(tc−A⊤u) + u⊤(Ax − b) ≥ 0 + 0 = 0.

Adding the inequalities c⊤v − tb⊤y ≥ 0 and tc⊤x− b⊤u ≥ 0 gives

c⊤v − b⊤u ≥ −t︸︷︷︸
≥0

(c⊤x− b⊤y︸ ︷︷ ︸
≥0

) ≥ 0.

So once again the final (fifth) constraint in (6.10) cannot be satisfied. This completes the proof. �



Chapter 7

Network flow problems

There are a number of linear programming problems that have a special structure. One such

special problem is the network flow problem. We will study these in this chapter. They are

important for two reasons:

(1) They represent broad classes of problems frequently met in applications.

(2) They have an associated rich theory, which provides important insight.

By a “network flow problem”, we mean an example of linear programming, namely that of

finding the minimum cost flow in a network. This gives a way of handling many types of linear

programming applications. We begin with some basic concepts from graph theory.

A network is a pair (N,E), were N is a finite set of nodes, and E is a set of directed edges

between pairs of nodes. The nodes in N are numbered from 1 to m, where m is the number of

nodes. See Figure 1. A directed edge which goes from node i to node j is denoted by (i, j) and is

drawn as an edge with an arrow going from i to j. See Figure 2. There can be two edges between

two given nodes, namely (i, j) and (j, i), and we consider them as different directed edges. See

Figure 4. Let n denote the number of elements in E.

1

2

3

4

5

Figure 1. A network with m = 5 nodes and the directed edges (1, 2), (1, 4), (2, 4), (4, 2), (2, 3), (4, 3), (3, 5).

i j

Figure 2. A directed edge between nodes i and j.

65
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i j

Figure 3. Two directed edges between nodes i and j.

We will assume throughout that the network is connected, which means that it is not the case

that there is a bunch of separated networks with no connection between them. More precisely

there is a path1 between any pair of vertices x and y.

Let xij denote the flow in the edge (i, j) ∈ E. To every edge (i, j) ∈ E, we are given a cost

of flow, denoted by cij . Let x ∈ R
n and c ∈ R

n be the vectors with components xij and cij ,

respectively, for (i, j) ∈ E, arranged in a certain order.

The node is called

(1) a source if the network flow is added at this node (from “outside” the network);

(2) a sink if the flow is absorbed at this node (to be sent outside the network);

(3) an intermediate node if it is neither a source nor a sink.

At each node, one has the flow balance, that is, inflow=outflow. Here the inflow at a node is the

sum of all the flows from all the directed edges into this node, together with the flow supplied to

this node from outside the network (if it happens to be a source node). On the other hand the

outflow at a node is the sum of all the flows to all the directed edges out of this node, together

with the flow to the outside from this node if it happens to be a sink node.

Let bi denote the amount of flow supplied to the network from the outside at node i. For

sources bi > 0, while for sinks bi < 0. For intermediate nodes, bi = 0. We assume that

m∑

i=1

bi = 0. (7.1)

For making the subsequent discussion concrete, we will consider an example of a network, with

m = 5 nodes and n = 7 directed edges given by:

E = {(1, 2), (1, 4), (2, 4), (4, 2), (2, 3), (4, 3), (3, 5)}.

We have shown the network in Figure 1 above. We assume that the nodes 1 and 2 are source

nodes, with flows from the outside equal to 40 and 35, respectively, while the nodes 3 and 5 are

sink nodes, with flows outside being 20 and 55, respectively.

Suppose that we arrange the edges of the network in some order. For example,

(1, 2), (1, 4), (2, 4), (4, 2), (2, 3), (4, 3), (3, 5). (7.2)

Corresponding to such an order of the edges, it is possible to write down the incidence matrix

Ã ∈ R
m×n of the network, defined by

aik =





1 if the kth edge starts at node i,

−1 if the kth edge ends at node i,

0 otherwise.

1a sequence of undirected edges (x, p1), (p1, p2), . . . , (pk−1, pk), (pk, y)
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Thus with the order of edges we had chosen above for our example, the incidence matrix is

Ã =

nodes\edges (1,2) (1,4) (2,4) (4,2) (2,3) (4,3) (3,5)

1

2

3

4

5




1 1 0 0 0 0 0

−1 0 1 −1 1 0 0

0 0 0 0 −1 −1 1

0 −1 −1 1 0 1 0

0 0 0 0 0 0 −1



.

(7.3)

The network flow problem corresponding to this network is the following:

(NFP ) :





minimize c⊤x

subject to Ãx = b̃,

x ≥ 0,

where we use the order in (7.2) for the components of x and c

x =




x12

x13

x24

x42

x23

x43

x35




and c =




c12
c13
c24
c42
c23
c43
c35




,

while the matrix Ã is given by (7.3), and b̃ is given by

b̃ =




b1
b2
b3
b4
b5



=




40

35

−20

0

−55



.

The matrix Ã has linearly dependent rows, since the sum of all the rows is the zero row. This is

always true for any incidence matrix. (Why?) So the last row of Ã is minus the sum of the other

rows of Ã. Also, owing to our assumption (7.1), we also have that the last component of b̃ is minus

the sum of the other components of b̃. This means that we can remove the last equation in the

system Ãx = b̃, without changing the feasible set (since the last equation is satisfied automatically

whenever the others are).

So in the sequel, we will write the network flow problem in the following form:

(NFP ) :





minimize c⊤x

subject to Ax = b,

x ≥ 0,

where A is the (m − 1) × n matrix obtained from Ã by deleting the last row, and the vector

b ∈ R
m−1 is obtained from b̃ by deleting the last component, that is:

A =

nodes\edges (1,2) (1,4) (2,4) (4,2) (2,3) (4,3) (3,5)

1

2

3

4




1 1 0 0 0 0 0

−1 0 1 −1 1 0 0

0 0 0 0 −1 −1 1

0 −1 −1 1 0 1 0


 ,
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and

b=




b1
b2
b3
b4


=




40

35

−20

0


 .

The matrix A has linearly independent rows, since if

y =




y1
y2
y3
y4




is such that y⊤A = 0, then we have that

y1 − y2 = 0,

y1 − y4 = 0,

y2 − y4 = 0,

y2 − y3 = 0,

y3 − y4 = 0,

y3 = 0.

The last equation and the second last one yield y4 = 0, which in turn with the second and third

equation yields y1 = y2 = 0. Thus y = 0.

We shall now see how the simplex method can be simplified when applied to the network flow

problem (NFP ).

Since A ∈ R
(m−1)×n has linearly independent rows, every basic solution has m − 1 basic

variables and n − (m − 1) = n −m+ 1 non-basic variables. The corresponding basic matrix Aβ

has the size (m− 1)× (m− 1), which in our example is 4× 4.

There is a nice interpretation of basic solutions to the network flow problem (NFP ), based

on the notion of a spanning tree. A subset T of edges of a network is called a spanning tree if

(1) every node of the network touches at least one edge in this subset T ,

(2) the network made out of the edges from the subset T is connected, and

(3) there is no “loop” formed by the edges in T (neglecting the directions of the edges).

An example of a spanning tree for our network from Figure 1 is T = {(1, 2), (2, 4), (4, 3), (3, 5)};
see Figure 4.

1

2

3

4

5

Figure 4. The tree T = {(1, 2), (2, 4), (4, 3), (3, 5)}.

The connection between spanning trees and basic variables is due to the following theorem,

which we will not prove here.
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Theorem 7.1. Consider the matrix A ∈ R
(m−1)×n in the network flow problem (NFP). A set of

m− 1 columns of A is linearly independent iff the corresponding m− 1 edges form a spanning tree

for the network.

Given a spanning tree, and a corresponding basic matrix Aβ , it is easy to the determine

directly in the network which values the basic variables must have without solving the system

Aβxβ = b. We illustrate the procedure by means of our example. Consider for example the

spanning tree T = {(1, 2), (2, 4), (4, 3), (3, 5)} from Figure 4. Then the corresponding basic matrix

Aβ and the non-basic matrix Aν are given, respectively, by

nodes\edges(1,2) (2,4) (4,3) (3,5)

1

2

3

4




1 0 0 0

−1 1 0 0

0 0 −1 1

0 −1 1 0




and

nodes\edges (1,4) (4,2) (2,3)

1

2

3

4




1 0 0

0 −1 1

0 0 −1

−1 1 0


 .

The three non-basic variables x14, x42 and x23 are all 0 in the basic solution.

1

2

3

4

540

35

20 55

Figure 5. Flow balance in the tree T .

The values of the basic variables can be calculated in the following way (see Figure 5):

x12 = 40, since the flow balance holds at node 1.

x24 = 40 + 35 = 75, since the flow balance holds at node 2.

x43 = 75, since the flow balance holds at node 4.

x35 = 55, since the flow balance holds at node 3.

We see that the result is a basic feasible solution, since all the basic variables are nonnegative, but

this is not guaranteed to happen with every spanning tree. We shall later indicate how one can

systematically determine a basic feasible solution for starting the simplex method.

Assume that we have found a basic feasible solution. The next step is to find if it is optimal,

by calculating the reduced costs rij for the non-basic variables. First we calculate the vector

y ∈ R
m−1 via y⊤Aβ = c⊤β . In our case, with y⊤ =

[
y1 y2 y3 y4

]
, this gives:

y1 − y2 = c12,

y2 − y4 = c42,

y4 − y3 = c43,

y3 = 0.

If we introduce y5 = 0, then these equations can be written compactly as yi − yj = cij for all the

edges (i, j) ∈ T , that is, for all the basic edges.

Every scalar yi corresponds to a node in the network. The values of these scalars can be determined

directly from the network in the following manner (see Figure 6):

First set y5 = 0, by definition.

The basic edge (3, 5) then gives y3 − y5 = c35, and so y3 = c35.
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y1

y2

y3

y4

y5 = 0

c12

c24

c43

c35

Figure 6. Flow balance in the tree T .

The basic edge (4, 3) gives y4 − y3 = c43, and so y4 = c43 + c35.

The basic edge (2, 4) gives y2 − y4 = c24, and so y2 = c24 + c43 + c35.

The basic edge (1, 2) gives y1 − y2 = c12; y1 = c12 + c24 + c43 + c35.

For example if

c =




c12
c14
c24
c42
c23
c43
c35




=




2

5

2

2

1

1

2




,

then we obtain y5 = 0, y3 = 2, y4 = 3, y2 = 5, y1 = 7.

The next step is to calculate the reduced costs for the non-basic variables, that is,

r⊤ν = c⊤ν − y⊤Aν .

In our case, this gives:

r14 = c14 − (y1 − y4) = 5− (7− 3) = 1,

r42 = c42 − (y4 − y2) = 2− (3− 5) = 0,

r23 = c23 − (y2 − y3) = 1− (5− 2) = −2.

Since we had set y5 = 0 earlier, the above equations can be written compactly as follows:

rij = cij − yi + yj for all (i, j) ∈ E \ T,
that is, for all the non-basic edges.

If rν ≥ 0, then the basic feasible solution is optimal. On the other hand, if there is at least

one non-basic variable for which rij < 0, then we let one of these non-basic variables to become

a new basic variable. In our example, we have that r23 = −2 < 0 (and the other rij ≥ 0), which

means that we set x23 = t and let the t increase from 0, while the other non-basic variables remain

at 0. With this, the basic variables are functions of t.

How the basic variables change can be determined as follows (see Figure 7):

x12 = 40, since the flow balance holds at node 1.

x24 = 75− t, since the flow balance holds at node 2.

x43 = 75− t, since the flow balance holds at node 4.

x35 = 55, since the flow balance holds at node 3.

We see that the “new” basic edge (2, 3) together with some of the other “tree edges” (that is,

some of the edges corresponding to the basic variables) form a loop in the network. Every basic
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1

2

3

4

540

35

20 55

t

Figure 7. Flow balance with x23 = t.

variable in this loop changes either by −t or by +t. (In our considered example, it just so happens

that the basic variables all change by −t, but this is not always guaranteed; it can be the case

that they change by +t too.) The basic variables which do not lie in the loop are independent of

t.

The basic variable which goes out, is the one among those that have been changed by −t,

which first goes to 0 when t increases. In our example, t can increase till 75. Then x24 as well as

x43 become 0. We can choose either to go out of the list of basic variables. So if we decide upon

x24 to go out, then we have the new basic variables corresponding to the tree

Tnew = {(1, 2), (2, 3), (4, 3), (3, 5)},
and the new (degenerate) basic feasible solution is given by

x12 = 40, x23 = 75, x43 = 0, x35 = 55 (basic variables);

x14 = 0, x24 = 0, x42 = 0 (non-basic variables).

This completes one iteration in the simplex method, and we can now begin the second iteration,

where we have to repeat the steps above. The scalars yi can be calculated as follows:

First we set y5 = 0, by definition.

The basic edge (1, 2) gives y3 − y5 = c35, and so y3 = c35 = 2.

The basic edge (4, 3) gives y4 − y3 = c43, and so y4 = c43 + c35 = 3.

The basic edge (2, 3) gives y2 − y3 = c23, and so y2 = c23 + y3 = 3.

The basic edge (1, 2) gives y1 − y2 = c12, and so y1 = c12 + y2 = 5.

The next step is to calculate the reduced costs for the non-basic variables using rij = cij − yi+ yj ,

which gives:

r14 = c14 − y1 + y4 = 5− 5 + 3 = 3,

r24 = c24 − y2 + y4 = 2− 3 + 3 = 2,

r42 = c42 − y4 + y2 = 2− 3 + 3 = 2.

Since all rij ≥ 0, this basic feasible solution is optimal.

We note that when the simplex method is applied to the network flow problem (NFP ) as

above, the calculations comprise just additions and subtractions. This implies that if all the bi
and cij are whole numbers, then in the solution above, we just add or subtract whole numbers,

and so no rounding off errors ever occur. Furthermore, the resulting xij are also whole numbers.

Hence the optimal solution found in this manner will have integral components, although we did

not explicitly demand this!

Finally, we indicate how one can determine an initial basic feasible solution in slick manner to

the network flow problem (NFP ). First we grow the network by introducing an extra node which



72 7. Network flow problems

we give number m + 1. So in our example, now we will have 6 nodes. Next introduce m extra

edges as follows:

(1) For each source node, introduce an edge from the source node to the extra node.

(2) For each sink node, introduce an edge to the sink node from the extra node.

(3) For each intermediate node, introduce either an edge from the intermediate node to the

extra node or an edge to the intermediate node from the extra node.

In our example, the extra edges (1, 6), (2, 6), (6, 3), (6, 5), (4, 6) have been introduced; see Figure 8.

1

2

3

4

5

6

Figure 8. The network with the extra node and extra edges.

Now consider a network flow problem for this extended network, where the cost coefficients cij for

the extra edges are chosen to be a “large enough” number M , so that the flows through these extra

edges are very expensive, while the original edges in the network continue to have the original cost

coefficients.

A basic feasible solution to this extended network flow problem is obtained by choosing the

basic variables to be the ones corresponding to the extra edges (which form a spanning tree for the

extended network). The basic variables values are given by xi,(m+1) = bi ≥ 0 in the edges to the

extra node, and xm+1,i = −bi ≥ 0 in the edges from the extra node. In our example, we obtain

the basic variable values to be the following: x16 = 40, x26 = 35, x63 = 20, x65 = 55, x46 = 0.

Then one can apply the simplex method (as described above) on this extended network flow

problem. Since the extra edges are very expensive as compared to the original edges, the simplex

method automatically sees to it that the flow to all the extra edges is 0 (if this is possible), and so

the flow is transferred to the edges in the original network. The optimal solution to the extended

network flow problem is then an optimal solution also to the original problem.

Exercise 7.2. Consider the linear programming problem

minimize c⊤x

subject to Ãx = b,
x ≥ 0,

where

Ã =




1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1

−1 0 0 −1 0 0 −1 0 0
0 −1 0 0 −1 0 0 −1 0
0 0 −1 0 0 −1 0 0 −1



, b =




3
5
7

−2
−4
−9



,

and c =
[
2 3 4 3 3 4 3 2 4

]⊤
.
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Deduce from the special form of the matrix Ã that the problem is a network flow problem, and draw
the corresponding network.

Verify that x̂ :=
[
2 0 1 0 0 5 0 4 3

]⊤
is an optimal solution to the problem.

Exercise 7.3. A given directed network has the node set N and directed edge set E given by:

N = {1, 2, 3, 4, 5, 6}
E = {(1, 2), (1, 3), (2, 3), (2, 4), (3, 4), (3, 5), (4, 5), (4, 6), (5, 6)}.

The network has two source nodes: node 1 with supply 25 units, and node 2 with supply 10 units. The
network also has two sink nodes: node 5 with a demand of 15 units, and node 6 with a demand of 20
units. The nodes 3 and 4 are intermediate nodes, with neither a supply nor a demand. The cost cij of
the flow in the edge (i, j) (in units of 103 SEK per unit flow) is given by:

c12 = 3, c13 = 2, c23 = 1, c24 = 4, c34 = 4, c35 = 4,

c45 = 1, c46 = 2, c56 = 3.

Find a flow with minimum cost that fulfils the constraints on the supply and demand as specified above.
Start with the following basic feasible solution:

x12 = 10, x13 = x35 = 15, x24 = 20, x46 = 20,

and the other xij are zeros. Find the optimal cost.

Exercise 7.4. A company has two factories F1 and F2, and three big customers C1, C2, C3. All transport
from the factories to the customers go through the company’s reloading terminals, T1 and T2. Since the
factories, terminals and customers are spread out over the country, the transport costs between different
points is different. The transportation costs from the factories to the terminals and from the terminals to
the customers (in units of 100 SEK/tonne) are given in the following two tables:

T1 T2

F1 7 6

F2 4 5

C1 C2 C3

T1 6 7 7

T2 6 9 5

The demands of the company’s product for each of the customers in a specific week is 200 tonnes, while the
company’s supply in the same week is 300 tonnes in each of the two factories. The head of the company’s
transport division has proposed the following transport plan, in unit tonnes:

T1 T2

F1 0 300

F2 200 100

C1 C2 C3

T1 0 200 0

T2 200 0 200

You have been hired as an optimization expert, and you need to decide whether the proposed plan is
optimal from the point of view of minimizing the transportation cost. If the proposed plan is not optimal,
then you have been asked to provide an optimal plan. What is your answer?

Exercise 7.5. The linear optimization problem stated below in the variables xik and zkj can be interpreted
as a network flow problem with I source nodes, K intermediate nodes, J sink nodes, an edge from
every source node to every intermediate node (corresponding to the flows xik), and an edge from every
intermediate node to every sink node (corresponding to the flows zkj).

minimize
I∑

i=1

K∑

k=1

pikxik +
K∑

k=1

J∑

j=1

qkjzkj

subject to
K∑

k=1

xik = si for i = 1, . . . , I,

−
I∑

i=1

xik +

J∑

j=1

zkj = 0 for k = 1, . . . ,K,

−
K∑

k=1

zkj = −dj for j = 1, . . . , J,

xik ≥ 0, zkj ≥ 0 for all i, j, k.
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here si, dj , pik and qkj are positive numbers such that

I∑

i=1

si =
J∑

j=1

dj .

Assume specifically that we have the following data given:

I = J = K = 2,
s1 = 30, s2 = 20,
d1 = 40, d2 = 10,
p11 = 5, p12 = 2, p21 = 3, p22 = 2,
q11 = 5, q12 = 5, q21 = 7, q22 = 6.

Show that the following solution to the problem is optimal:

x11 = 0, x12 = 30, x21 = 20, x22 = 0,
z11 = 20, z12 = 0, z21 = 20, z22 = 10.

Calculate the optimal cost.

Exercise 7.6. Consider the minimum cost of flow problem for the network shown below.
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We have numbered the 5 nodes. The nodes 1 and 2 are source nodes with a supply of 5 units each, while
the nodes 3, 4 and 5 are sink nodes with demands of 4, 3 and 3 units, respectively. Beside each directed
edge we have indicated the cost cij per unit flow.

(1) Write the incidence matrix A for the network, with the following order of the edges:

(1, 2), (1, 5), (2, 3), (2, 5), (3, 4), (5, 3), (5, 4).

(Above, the notation (i, j) means the directed edge from node i to node j.)
Let xij denote the flow from node i to node j. Specify the constraints on variables xij of

the linear programming problem associated with this network flow problem.

(2) Show that the solution in the figure below is optimal. We have indicated the flow xij beside
each edge (i, j).
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(3) Suppose that c53 changes from 5 to 3. Verify that the solution in part (a) is no longer optimal.
Hence determine an optimal solution to the new problem (with c53 = 3). Start from the solution
given in part (a).





Part 2

Quadratic optimization





Chapter 8

Convex optimization:
basic properties

In a certain sense an optimization problem is well-posed if the feasible set is a convex set and the

objective function to be minimized is convex. In this chapter we establish some basic properties

of this type of problems.

We have already seen what is a convex set means in Section 4.4.1. Now we define convex

functions.

8.1. Convex and strictly convex functions

Definition 8.1. Let C ⊂ R
n be a convex set. A function f : C → R is said to be convex if for all

x, y ∈ C and all t ∈ (0, 1),

f((1− t)x + ty) ≤ (1− t)f(x) + tf(y).

An often useful equivalent form of this inequality is the following:

f(x+ t(y − x)) ≤ f(x) + t(f(y)− f(x)).

If the left hand side is strictly less than the right hand side for all distinct x and y in C, then f

is called strictly convex.

Geometrically, the definition says that every linear interpolation of a convex function lies

above the graph of the function; see Figure 1 in the case when C = R.

x y

f(x)

f(y)

(1−t)f(x)+tf(y)

(1−t)x+ty

f((1−t)x+ty)

Figure 1. A convex function.

79



80 8. Convex optimization: basic properties

Exercise 8.2. Show that f : R → R given by f(x) = x2 (x ∈ R) is convex using the definition.

A slick way of proving convexity of smooth functions from R to R is to check if f ′′ is nonneg-

ative; see Exercise 8.3 below.

Exercise 8.3. Prove that if f : R → R is twice continuously differentiable and f ′′(x) ≥ 0 for all x ∈ R,
then f is convex. Moreover, show that the condition that f ′′(x) > 0 for all x guarantees strict convexity.

Exercise 8.4. Show that the f : R → R is a convex function, where f is given by:

(1) f(x) = x.

(2) f(x) = x2.

(3) f(x) = ex.

(4) f(x) = e−x.

(5) f(x) = |x|.
In which of these cases is the function strictly convex?

Exercise 8.5. Show that if f is convex on the convex set C ⊂ R
n, and r ∈ R, then the set

K := {x ∈ C : f(x) ≤ r}
is a convex subset of Rn.

Exercise 8.6. Let C ⊂ R
n be a convex set, and let f : C → R be a function. Define the epigraph of f by

U(f) =
⋃

x∈C

{x} × (f(x),+∞) ⊂ C × R.

This is the ‘region above the graph of f ’. Show that if f is convex, then U(f) is a convex subset of C ×R.

Exercise 8.7. Let C ⊂ R
n be a convex set and f : C → R be a convex function. Show that for all n ∈ N

and all x1, . . . , xn ∈ C, there holds that

f
(x1 + · · ·+ xn

n

)
≤ f(x1) + · · ·+ f(xn)

n
.

Exercise 8.8. Determine which of the following statements are TRUE. If the statement is FALSE, then
you should give a counterexample, and if the statement is TRUE, then give a reason why. Let C1, C2

be convex subsets of Rn such that C1 ⊂ C2. Let f : C1 → R and F : C2 → R be functions such that
F |C1

= f , that is, for all x ∈ C1, F (x) = f(x).

(i) If F is convex, then f is convex.

(ii) If f is convex, then F is convex.

Exercise 8.9. Let C be a convex set subset of Rn.

(1) Suppose that (fα)α∈I be a family of convex functions on C such that sup
α∈I

fα(x) < +∞ for all

x ∈ C. Show that the function f defined by f(x) = sup
α∈I

fα(x) (x ∈ C), is convex. Prove that

the set K = {x ∈ C : fα(x) ≤ 0, α ∈ I} is a convex subset of Rn.

(2) If f1, . . . , fn are n convex functions on C and α1, . . . , αn are nonnegative numbers, then s defined
by s(x) = α1f1(x) + · · ·+ αnfn(x) (x ∈ C) is convex.

8.2. Convex optimization

Let F ⊂ R
n be a given convex set and let f : F → R be a given convex function. The convex

optimization problem is the following:

(CO) :

{
minimize f(x),

subject to x ∈ F .

The function f is called the objective function for the problem (CO). The set F is called the

feasible set for the problem (CO). An element x ∈ R
n is said to be a feasible solution for the

problem (CO) if x ∈ F . An element x̂ ∈ R
n is said to be an optimal feasible solution for the

problem (CO) if x̂ ∈ F and for all x ∈ F , f(x̂) ≤ f(x).
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8.3. Set of optimal solutions

For a convex optimization problem (CO), each of the following three alternatives can hold:

1◦ The set of optimal solutions is empty.

2◦ The set of optimal solutions is nonempty, and consists of only one element x̂.

3◦ The set of optimal solutions is nonempty, and consists of more than one element.

Example 8.10. Let F = R.

1◦ If f : F → R is given by f(x) = x, then the set of optimal solutions of the problem (CO)

for this f is empty.

2◦ If f : F → R is given by f(x) = x2, then the set of optimal solutions of the problem

(CO) for this f is nonempty, and consists of only one element x̂, namely x̂ = 0.

3◦ If f : F → R is given by f(x) = 0, then the set of optimal solutions of the problem

(CO) for this f is nonempty, and consists of more than one element. The set of optimal

solutions is in fact F = R.

Lemma 8.11. If there are more than one optimal solutions to the problem (CO), then there are

infinitely many solutions, and moreover, the set of all optimal solutions is a convex set.

Proof. If x̂ and ŷ are distinct optimal solutions in F , then for all t ∈ (0, 1), (1 − t)x̂ + tŷ ∈ F is

also an optimal solution: for all x ∈ F ,

f((1− t)x̂+ tŷ) ≤ (1− t)f(x̂) + tf(ŷ) ≤ (1− t)f(x) + tf(x) = f(x).

Thus there are infinitely many optimal solutions, since for distinct t, t′ ∈ (0, 1),

(1− t)x̂+ tŷ = x̂+ t(ŷ − x̂) 6= x̂+ t′(ŷ − x̂) = (1 − t′)x̂+ t′ŷ.

The optimality of (1− t)x̂+ tŷ demonstrated above also shows that the set of optimal solutions is

convex. �

Lemma 8.12. In the problem (CO), if f is strictly convex and F is convex, then the problem

(CO) has at most one optimal solution.

Proof. Let x̂ and ŷ be distinct optimal solutions in F . We will proceed as in the previous lemma.

By the strict convexity of f , we have for all t ∈ (0, 1),

f((1− t)x̂+ tŷ) < (1− t)f(x̂) + tf(ŷ) ≤ (1− t)f(x̂) + tf(x̂) = f(x̂),

contradicting the optimality of x̂. �

8.4. Feasible directions and descent directions

Given a feasible point x ∈ F , one often wants to know in what directions one can move without

immediately ending up out of F . Also we want to know in which directions the objective function

decreases, that is, the directions in which the graph of the function slopes downwards.

Definition 8.13. A vector d ∈ R
n is called a feasible direction at x ∈ F if there exists an ǫ > 0

such that x+ td ∈ F for all t ∈ (0, ǫ).

A vector d ∈ R
n is called a descent direction for f at x ∈ F if there exists an ǫ > 0 such that

f(x+ td) < f(x) for all t ∈ (0, ǫ).

A vector d ∈ R
n is called a feasible descent direction for f at x ∈ F if d is both a feasible

direction at x and a descent direction for f at x, that is, if there exists an ǫ > 0 such that x+td ∈ F
and f(x+ td) < f(x) for all t ∈ (0, ǫ).
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8.5. Feasible descent directions and optimality

The following result is very useful in order to determine whether or not a given point x̂ is an

optimal solution to the problem (CO).

Theorem 8.14. A point x̂ ∈ F is an optimal solution to the problem (CO) iff there does not exist

a feasible descent direction for f at x̂.

Proof. (Only if) Suppose that there is a feasible descent direction d for f at x̂. Then there is an

ǫ > 0 such that x + td ∈ F and f(x̂ + td) < f(x̂) for all t ∈ (0, ǫ), which implies that x̂ is not

optimal.

(If) Suppose that x̂ ∈ F is not an optimal solution to the problem (CO). Then there exists a

y ∈ F such that f(y) < f(x̂). We will show that d := y− x̂ is a feasible descent direction for f at

x̂. Let x(t) := x̂+ td for all t ∈ (0, 1). Since F is convex, it follows that x(t) ∈ F for all t ∈ (0, 1).

Hence d is a feasible direction at x̂ (take ǫ = 1!). Also, from the convexity of f , we have

f(x(t)) = f((1− t)x̂+ ty)

≤ (1− t)f(x̂) + tf(y)

< (1− t)f(x̂) + tf(x̂)

= f(x̂),

for all t ∈ (0, 1), showing that d is a descent direction for f at x̂. �



Chapter 9

Quadratic optimization:
no constraints

Definition 9.1. A function f : Rn → R is called a quadratic function if

f(x) =
1

2
x⊤Hx+ c⊤x+ c0 (x ∈ R

n), (9.1)

where H ∈ R
n×n is a symmetric matrix, c ∈ R

n, c0 ∈ R.

Example 9.2. The function f given by f(x1, x2, x3) = −2x1x2 + x3 + 1, is a quadratic function

since it has the form (9.1), with

H =




0 −2 0

−2 0 0

0 0 0


 , c =




0

0

1


 , c0 = 1.

♦

Definition 9.3. Let f : Rn → R be a quadratic function.

A point x̂ ∈ R
n is said to be a minimizer of f if for all x ∈ R

n, f(x̂) ≤ f(x).

f is said to be bounded from below if there exists a l ∈ R such that f(x) ≥ l for all x ∈ R
n.

Example 9.4. The function f given by f(x1, x2, x3) = −2x1x2 + x3 + 1, is not bounded from

below. Indeed, for t > 0, we have f(t, t, 0) = −2t2 + 1, and so as t ր +∞, f(t, t, 0) → −∞. ♦

If f is not bounded from below, then there is no minimizer of f , since for any x̂ ∈ R
n, there

is a x ∈ R
n such that f(x) < f(x̂) (otherwise with l := f(x̂), f would be bounded from below!).

9.1. The Taylor expansion of a quadratic
function

Lemma 9.5. Let f : Rn → R be a quadratic function, given by

f(x) =
1

2
x⊤Hx+ c⊤x+ c0 (x ∈ R

n),

where H ∈ R
n×n is a symmetric matrix, c ∈ R

n, c0 ∈ R. Then for all x ∈ R
n, all d ∈ R

n and all

t ∈ R,

f(x+ td) = f(x) + t(Hx+ c)⊤d+
1

2
t2d⊤Hd.

83
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Proof. This is a straightforward calculation:

f(x+ td) =
1

2
(x+ td)⊤H(x+ td) + c⊤(x + td) + c0

=
1

2
(x⊤Hx+ td⊤Hx+ tx⊤Hd+ t2d⊤Hd) + c⊤x+ tc⊤d+ c0

=

[
1

2
x⊤Hx+ c⊤x+ c0

]
+ t

(
1

2
d⊤Hx+

1

2
x⊤Hd+ c⊤d

)
+

1

2
t2d⊤Hd

= f(x) + t(Hx+ c)⊤d+
1

2
t2d⊤Hd.

This completes the proof. �

In particular, with t = 1 and d = y − x in the above, we obtain that for all x, y ∈ R
n,

f(y) = f(x) + (Hx+ c)⊤(y − x) +
1

2
(y − x)⊤H(y − x). (9.2)

Remark 9.6. It is not hard to verify that the gradient of f at x is given by

∇f(x) =

[
∂f

∂x1
(x) . . .

∂f

∂xn

(x)

]
= (Hx+ c)⊤.

The Hessian of f at x is the derivative of the gradient function at x, and can be identified with

the n× n matrix whose entry in the ith row and jth column is equal to

∂2f

∂xi∂xj

(x),

where i, j range from 1 to n, and it can be checked that this is equal to H . Since the Hessian

does not change with x, all further derivatives of f are identically 0. Hence (9.2) is just the Taylor

expansion of the quadratic function f , and all terms beyond order 2 are zero.

9.2. Convex and strictly convex quadratic
functions

When is a quadratic function convex? When is it strictly convex? The following lemma answers

these questions.

Lemma 9.7. Let f : Rn → R be a quadratic function, given by

f(x) =
1

2
x⊤Hx+ c⊤x+ c0 (x ∈ R

n),

where H ∈ R
n×n is a symmetric matrix, c ∈ R

n, c0 ∈ R. Then

(1) f is convex iff H is positive semi-definite.

(2) f is strictly convex iff H is positive definite.

Proof. For all x, y ∈ R
n and all t ∈ (0, 1), we have

(1− t)f(x) + tf(y)− f((1− t)x+ ty)= f(x) + t(f(y)− f(x))− f(x+ t(y − x))

= f(x) + t

(
(Hx+ c)⊤(y − x) +

1

2
(y − x)⊤H(y − x)

)

−
(
f(x) + t(Hx+ c)⊤(y − x) +

1

2
t2(y − x)⊤H(y − x)

)

=
1

2
(t− t2)(y − x)⊤H(y − x).
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Consequently, we have for all x, y ∈ R
n and all t ∈ (0, 1),

(1− t)f(x) + tf(y)− f((1− t)x+ ty =
1

2
t(1− t)(y − x)⊤H(y − x). (9.3)

(1) If f is convex, then (9.3) implies that for all x, y ∈ R
n and all t ∈ (0, 1), there holds that

1
2 t(1− t)(y− x)⊤H(y− x) ≥ 0. In particular with x = 0 and t = 1

2 , we obtain that for all y ∈ R
n,

y⊤Hy ≥ 0, and so H is positive semi-definite.

Conversely, if H is positive semi-definite, then it follows that (y − x)⊤H(y − x) ≥ 0 for all

x, y ∈ R
n. Also for all t ∈ (0, 1), clearly 1

2 t(1 − t) > 0. Hence for all x, y ∈ R
n and all t ∈ (0, 1),

1
2 t(1− t)(y−x)⊤H(y−x) ≥ 0. But now from (9.3), we obtain f((1− t)x+ ty) ≤ (1− t)f(x)+ tf(y)

for all x, y ∈ R
n and all t ∈ (0, 1), showing that f is convex.

(2) Suppose f is strictly convex. Let y 6= 0 =: x and t = 1
2 . Then by the strict convexity of f ,

f((1− t)x+ ty) < (1 − t)f(x) + tf(y), and so by (9.3), 1
8y

⊤Hy > 0. But the choice of y 6= 0 was

arbitrary, and so H is positive definite.

Conversely, let H be positive definite. Then for y 6= x, we have (y − x)⊤H(y − x) > 0.

Also for all t ∈ (0, 1), clearly 1
2 t(1 − t) > 0. Hence for all x, y ∈ R

n with x 6= y and all t ∈ (0, 1),
1
2 t(1− t)(y−x)⊤H(y−x) > 0. But now from (9.3), we obtain f((1− t)x+ ty) < (1− t)f(x)+ tf(y)

for all x, y ∈ R
n with x 6= y and all t ∈ (0, 1), showing that f is strictly convex. �

Exercise 9.8. Show that in each of the following two cases, f : R3 → R is convex. In which of the cases
is f strictly convex?

(1) f(x) = x2
1 + 2x2

2 + 5x2
3 + 3x2x3.

(2) f(x) = 2x2
1 + x2

2 + x2
3 − 2x1x2 + 2x1x3.

Exercise 9.9. For which values of a is the function f : R2 → R, given by f(x) = x2
1 + 2x2

2 + 2ax1x2

convex? Strictly convex?

9.3. Descent directions

For all quadratic functions (convex as well as non-convex), the following holds.

Lemma 9.10. Let f : Rn → R be a quadratic function, given by

f(x) =
1

2
x⊤Hx+ c⊤x+ c0 (x ∈ R

n),

where H ∈ R
n×n is a symmetric matrix, c ∈ R

n, c0 ∈ R.

If x ∈ R
n and d ∈ R

n are such that (Hx+ c)⊤d < 0, then d is a descent direction at x.

Proof. Let t > 0. We have

f(x+ td) = f(x) + t(Hx+ c)⊤d+
1

2
t2d⊤Hd = f(x) +

1

2
t(2(Hx+ c)⊤d+ td⊤Hd) < f(x)

for all t > 0 such that

t(d⊤Hd) < −2(Hx+ c)⊤d︸ ︷︷ ︸
>0

.

Note that this is guaranteed for all t > 0 if d⊤Hd ≤ 0. On the other hand, if d⊤Hd > 0, then this

is guaranteed for all small enough t > 0 (in fact for all 0 < t < −2(Hx+c)⊤d

d⊤Hd
). This shows that d is

a descent direction for f at x. �

For a convex quadratic function, also the converse of the above result holds.
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Lemma 9.11. Let f : Rn → R be a convex quadratic function, given by

f(x) =
1

2
x⊤Hx+ c⊤x+ c0 (x ∈ R

n),

where H ∈ R
n×n is a symmetric positive semi-definite matrix, c ∈ R

n, c0 ∈ R.

The vector d ∈ R
n is a descent direction at x ∈ R

n iff (Hx+ c)⊤d < 0.

Proof. In light of the previous lemma, we only need to show that ‘only if’ part. That is, we want

to show that if d ∈ R
n is a descent direction at x ∈ R

n, then (Hx + c)⊤d < 0. Equivalently, we

will prove that if (Hx + c)⊤d ≥ 0, then d is not a descent direction at x. Suppose therefore that

(Hx+ c)⊤d ≥ 0. Then for all t ≥ 0, we have

f(x+ td) = f(x) + t (Hx+ c)⊤d︸ ︷︷ ︸
≥0

+
1

2
t2 d⊤Hd︸ ︷︷ ︸

≥0

≥ f(x),

since H is positive semi-definite. This shows that d cannot be a descent direction for f at x. �

Exercise 9.12. Let f : Rn → R be a quadratic function, given by

f(x) =
1

2
x⊤Hx+ c⊤x+ c0 (x ∈ R

n),

where H ∈ R
n×n is a symmetric matrix, c ∈ R

n, c0 ∈ R. Show that if the vector d ∈ R
n is a descent

direction at x ∈ R
n, then (Hx+ c)⊤d ≤ 0.

9.4. Minimizing non-convex quadratics on R
n

Let f : Rn → R be a quadratic function, given by

f(x) =
1

2
x⊤Hx+ c⊤x+ c0 (x ∈ R

n),

where H ∈ R
n×n is a symmetric matrix, c ∈ R

n, c0 ∈ R. Suppose that the quadratic function f

is not convex, that is H is not positive semi-definite. Then there exists a vector d ∈ R
n such that

d⊤Hd < 0. Define x(t) = td, where t ∈ R. We have

f(x(t)) = f(td) =
1

2
t2d⊤Hd+ tc⊤d+ c0.

Since d⊤Hd < 0, as t → +∞, we have f(x(t)) → −∞. This means that f is not bounded below,

and so there is no minimizer of f .

In light of the discussion in this section, we will assume in the rest of this chapter that f is

convex, that is,

H is positive semi-definite.

9.5. Minimizing convex quadratics on R
n

Now suppose that H is positive semi-definite, that is, f is convex. Note that since there are no

constraints, the feasible set F = R
n, which is convex. So we have a convex optimization problem,

namely

minimize
1

2
x⊤Hx+ c⊤x+ c0,

subject to x ∈ R
n.

(9.4)

Theorem 9.13. Let H be positive semi-definite. The point x̂ ∈ R
n is an optimal solution to (9.4)

iff Hx̂ = −c.
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Proof. The problem is a convex optimization problem. So by Theorem 8.14, x̂ is an optimal

solution to the problem (9.4) iff there does not exist a feasible descent direction for f at x̂. But

the feasible set is Rn, and so every vector d ∈ R
n is feasible at x̂. Also by Lemma 9.11, d ∈ R

n is

a descent direction for f at x̂ iff (Hx̂+ c)⊤d < 0. Combining these facts, we conclude that x̂ is an

optimal solution to the problem (9.4) iff for every d ∈ R
n, (Hx̂+ c)⊤d ≥ 0. But (Hx̂+ c)⊤d ≥ 0

for every d ∈ R
n iff Hx̂+ c = 0. (Why?) Consequently, x̂ is an optimal solution iff Hx̂ = −c. �

So the above result implies that if H is positive semi-definite, then every minimizer of f is

a solution to the system Hx = −c. This solution has at least one solution iff −c ∈ ranH . So if

−c 6∈ ranH , then there is no minimizer of f . The following result says that one can say more.

Theorem 9.14. Suppose that H is positive semi-definite and that −c 6∈ ranH. Then there is a

vector d ∈ R
n such that f(td) → −∞ as t ր +∞. (That is, f is not bounded from below.)

Proof. Since H is symmetric, the two subspaces kerH and ranH are orthogonal to each other1,

and so the vector −c ∈ R
n can be uniquely decomposed as −c = d + p, where d ∈ kerH and

p ∈ ranH . The fact that −c 6∈ ranH implies that d 6= 0, and so

c⊤d = −(d+ p)⊤d = −d⊤d− p⊤d︸︷︷︸
=0

= −d⊤d = −‖d‖2 < 0.

Also Hd = 0. Thus

f(td) =
1

2
t2d⊤Hd+ tc⊤d+ c0 = 0− t‖d‖2 + c0.

So f(td) → −∞ as t ր +∞. �

9.5.1. The strictly convex case. If H is positive definite, then the system Hx = −c has a

unique solution (since every positive definite matrix is invertible). Thus there is a unique x̂ ∈ R
n

which is optimal solution to (9.4), given by x̂ = −H−1c.

Exercise 9.15. Find a symmetric H ∈ R
3 such that

1

2
x⊤Hx = (x1 − x2)

2 + (x2 − x3)
2 + (x3 − x1)

2, x ∈ R
3.

Is H positive semi-definite? What is the kernel of H?

Let c ∈ R
3 be given, and consider the problem of minimizing f on R

3, where

f(x) =
1

2
x⊤Hx+ c⊤x, x ∈ R

3.

Show that there exists a vector v ∈ R
3 such that:

[f has at least one minimizer] ⇔ [v⊤c = 0].

Find a vector c such that f has at least one minimizer. Find a vector c such that f is not bounded from
below.

Exercise 9.16. Let L1, L2 be two given lines in parametric form in R
3 as follows:

L1 = {x ∈ R
3 : x = a+ α · u, for some α ∈ R},

L2 = {x ∈ R
3 : x = b+ β · u, for some β ∈ R},

where a, b and u, v are fixed given vectors in R
3. We also assume that the direction vectors u and v of the

lines are normalized, that is, u⊤u = v⊤v = 1, and that they are not parallel (and so u⊤v < 1).

We would like to connect these lines with a thread having the shortest length, that is, we would like
to determine points x̂ ∈ L1 and ŷ ∈ L2 such that the when the taut thread is tied at these two points,
then its length is the smallest possible one.

(1) Formulate the given problem as a quadratic optimization problem in two variables (α and β).

(2) Show that the problem is convex.

(3) Suppose that u⊤v = 0. Find the optimal x̂ and ŷ in terms of the given data.

1See Exercise 24.2.
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9.6. Summary

Let f(x) = 1
2x

⊤Hx+ c⊤x+ c0, where H is symmetric. Then:

x̂ is a minimizer of f iff H is positive semi-definite and Hx̂ = −c. In particular, if H is positive

definite, then there is a unique minimizer of f , given by x̂ = −H−1c.

If H is positive semi-definite and −c 6∈ ranH , then f is not bounded from below and f does

not have a minimizer.

If H is not positive semi-definite, then f is not bounded from below and f does not have a

minimizer.

As a corollary, we have obtained the following interesting property of quadratic functions: f

has a minimizer iff it is bounded below.



Chapter 10

Quadratic optimization:
equality constraints

In this chapter we will consider the following quadratic optimization problem with linear equality

constraints:

minimize
1

2
x⊤Hx+ c⊤x+ c0,

subject to Ax = b.
(10.1)

Here A ∈ R
m×n, H ∈ R

n×n is symmetric, b ∈ R
m, c ∈ R

n and c0 ∈ R. The vector x ∈ R
n is the

vector of variables. The feasible set is F = {x ∈ R
n : Ax = b}, and the objective function is the

function f , given by

f(x) =
1

2
x⊤Hx+ c⊤x+ c0.

If the system Ax = b does not have any solution (that is, b 6∈ ranA), then the feasible set F is

empty, and the optimization problem is trivial.

Also, if the system Ax = b has exactly one solution, then this solution is also the unique

optimal solution to the problem (10.1), since there is no other feasible solution which is better!

Thus this case is trivial as well.

So the only interesting case is when the system Ax = b has many different solutions, which

is equivalent to the condition that b ∈ ranA and kerA 6= {0}. This is fulfilled for example if the

matrix A has more columns than rows, that is, n > m, and the columns of A span R
m. Indeed,

then kerA has dimension n −m > 0, and then ranA = R
m implies that the system Ax = b has

many different solutions for any given b ∈ R
m.

Thus in the remainder of the chapter, it will be assumed that

b ∈ ranA, and kerA 6= {0}.

10.1. Representation of the feasible solutions

Let x ∈ R
n be a feasible solution, that is, Ax = b. The other feasible solutions x are then

characterized by x − x ∈ kerA: Indeed, first of all if x ∈ F , then Ax = b, and so we have that

A(x− x) = Ax−Ax = b− b = 0, that is, x− x ∈ kerA. On the other hand, if x− x ∈ kerA, then

A(x− x) = 0, and so Ax = A(x− x+ x) = A(x− x) +Ax = 0 + b = b.

Now let k be the dimension of kerA, and let z1, . . . , zk form a basis for kerA. Define the n×k

matrix Z as follows:

Z =
[
z1 . . . zk

]
.

89
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Then x− x ∈ kerA iff x− x = Zv for some v ∈ R
k, and so we obtain the following representation

of the feasible solutions:

x ∈ F iff x = x+ Zv for some v ∈ R
k.

Since z1, . . . , zk are linearly independent, it follows that for every x ∈ F , there is a unique v ∈ R
k.

10.2. When is the problem convex?

The feasible set is always convex. Indeed, suppose that x, y ∈ F and t ∈ (0, 1). Then Ax = b and

Ay = b, and so

A((1 − t)x+ ty) = (1− t)Ax + tAy = (1− t)b + tb = b.

Thus (1 − t)x+ ty ∈ F as well.

We will now give a necessary and sufficient condition for f to be convex on F .

Lemma 10.1. Let F = {x ∈ R
n : Ax = b}, and f : F → R be given by

f(x) =
1

2
x⊤Hx+ c⊤x+ c0 (x ∈ F).

Then f is convex iff Z⊤HZ is positive semi-definite. (Here Z is a matrix of the type described in

the previous section.)

Proof. (If) Let Z⊤HZ be positive semi-definite, and let x, y ∈ F , t ∈ (0, 1). Then x− y ∈ kerA,

and so x − y = Zv for some v ∈ R
k. With the same calculation as done earlier in the beginning

of the proof of Lemma 9.7, we see that

(1− t)f(x) + tf(y)− f((1− t)x+ ty) =
1

2
(t− t2)(y − x)⊤H(y − x).

Thus we have (1− t)f(x)+ tf(y)−f((1− t)x+ ty) = 1
2 t(1− t)v⊤(Z⊤HZ)v ≥ 0. Hence f is convex.

(Only if) Suppose that f is convex. Let v ∈ R
k. Take x = x and y = x + Zv, where x ∈ R

n is

such that Ax = b. Set t = 1
2 . Then we have

0 ≤ (1 − t)f(x) + tf(y)− f((1− t)x + ty) =
1

2
(t− t2)(y − x)⊤H(y − x) =

1

8
v⊤Z⊤HZv,

and so v⊤(Z⊤HZ)v ≥ 0. But the choice of v ∈ R
k was arbitrary, and this means that Z⊤HZ is

positive semi-definite. �

A sufficient (but not necessary1) condition for Z⊤HZ to be positive semi-definite is that H is

positive semi-definite, that is, that f is convex in the whole space.

One can also show the following in the same manner as the proof of Lemma 10.1 above (more

or less simply by swapping ≥ 0 by > 0), and we leave this verification as an exercise.

Exercise 10.2. Let F = {x ∈ R
n : Ax = b} and let f : F → R be given by

f(x) =
1

2
x⊤Hx+ c⊤x+ c0 (x ∈ F).

Show that f is strictly convex iff Z⊤HZ is positive definite. (With Z as described previously.)

In the rest of this chapter we make the standing assumption that the problem (10.1) is convex,

that is,

Z⊤HZ is positive semi-definite.

1For example, take Z =

[
1
0

]
and H =

[
0 0
0 −1

]
.
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10.3. Optimal solution by the nullspace method

Based on the representation of feasible solutions given in Section 10.1, we can replace x by x+Zv

(where x is fixed, and v ∈ R
k is unconstrained). Then the objective function becomes a quadratic

function in the new variable vector v:

f(x+ Zv) = f(x) + (Hx+ c)⊤Zv +
1

2
(Zv)⊤H(Zv)

(using Lemma 9.5 with t = 1 and d = Zv)

= f(x) + (Z⊤(Hx+ c))⊤v +
1

2
v⊤(Z⊤HZ)v.

The problem (10.1) is thus equivalent to the following unconstrained problem in v:

minimize f(x) + (Z⊤(Hx+ c))⊤v +
1

2
v⊤(Z⊤HZ)v,

subject to v ∈ R
k.

(10.2)

Since Z⊤HZ is positive semi-definite, it follows from Theorem 9.13 that v̂ ∈ R
k is an optimal

solution to the problem (10.2) iff

(Z⊤HZ)v̂ = −Z⊤(Hx+ c).

Consequently, x̂ ∈ F is an optimal solution to the problem (10.1) iff

(Z⊤HZ)v̂ = −Z⊤(Hx+ c) and x̂ = x+ Zv̂.

In the special case that Z⊤HZ is positive definite (and not just positive semi-definite), the system

(Z⊤HZ)v̂ = −Z⊤(Hx + c) has a unique solution v̂, and then x̂ = x + Zv̂ is the unique optimal

solution to the problem (10.1).

10.4. Optimal solution by the Lagrange method

There is another way to solve the problem (10.1), which does not involve the null space matrix Z.

Sometimes, this leads to a more efficient method than the one considered in the previous section.

Furthermore, this alternative method is important for generalizations of the theory and it can also

give important insights in specific applications.

The set of feasible descent directions for f at a given point x ∈ F can be characterized in a

simple and explicit way for the (convex) problem (10.1).

Lemma 10.3. Consider the problem (10.1) where f is convex. Then d ∈ R
n is a feasible descent

direction for f at x ∈ F iff d ∈ kerA and (Hx+ c)⊤d < 0.

Proof. (If) Suppose first that x ∈ F , d ∈ kerA and (Hx+c)⊤d < 0. For every t ∈ R, A(x+ td) =

Ax+ tAd = Ax = b, and so d is a feasible direction at x. Now let t > 0. We have

f(x+ td) = f(x) + t(Hx+ c)⊤d+
1

2
t2d⊤Hd = f(x) +

1

2
t(2(Hx+ c)⊤d+ td⊤Hd) < f(x)

for all t > 0 such that

t(d⊤Hd) < −2(Hx+ c)⊤d︸ ︷︷ ︸
>0

.

Note that this is guaranteed for all t > 0 if d⊤Hd ≤ 0. On the other hand, if d⊤Hd > 0, then this

is guaranteed for all small enough t > 0 (in fact for all 0 < t < −2(Hx+c)⊤d

d⊤Hd
). This shows that d is

a descent direction for f at x.

(Only if) Suppose now that x ∈ F and that d is a feasible descent direction for f at x. If d 6∈ kerA,

then Ad 6= 0. Hence for all t 6= 0, A(x+ td) = Ax+ tAd 6= b, which means that d is not a feasible



92 10. Quadratic optimization: equality constraints

direction at x, a contradiction. So we conclude that d ∈ kerA. Now suppose that (Hx+ c)⊤d ≥ 0.

For all t ≥ 0, we have

f(x+ td) = f(x) + t (Hx+ c)⊤d︸ ︷︷ ︸
≥0

+
1

2
t2 d⊤Hd︸ ︷︷ ︸

≥0

≥ f(x),

since (Hx + c)⊤d ≥ and d⊤Hd ≥ 0 (convexity of f !). But this means that d is not a feasible

descent direction for f at x, a contradiction. So (Hx+ c)⊤d < 0. �

Lemma 10.4. Consider the problem (10.1), where f is convex. Then x̂ ∈ F is an optimal solution

iff (Hx̂+ c)⊤d = 0 for all d ∈ kerA.

Proof. Theorem 8.14 and the previous lemma yield that a point x̂ is an optimal solution to the

problem (10.1) iff

for all d ∈ kerA, (Hx̂+ c)⊤d ≥ 0,

which in turn is satisfied iff

for all d ∈ kerA, (Hx̂+ c)⊤d = 0

(since d ∈ kerA ⇔ −d ∈ kerA). �

Theorem 10.5. Consider the problem (10.1), where f is convex. Then x̂ ∈ R
n is an optimal

solution iff Ax̂ = b and there exists a u ∈ R
m such that Hx̂+ c = A⊤u.

Proof. By the previous lemma, x̂ ∈ R
n is an optimal solution to the problem (10.1) iff Ax̂ = b

and Hx̂+ c ∈ (kerA)⊥. So the result follows using the fact that (kerA)⊥ = ranA⊤. �

Remark 10.6. The above result says that x̂ ∈ R
n is an optimal solution to the (convex) problem

(10.1) iff x̂ is the “x-part” of a solution to the system
[

H −A⊤

A 0

] [
x

u

]
=

[ −c

b

]
. (10.3)

Why is this method referred to as the Lagrange method? This comes from the fact that (10.3)

can be viewed as a special case of the more general Lagrange conditions for nonlinear optimization

with equality constraints, and u is then a vector of Lagrange multipliers.

Exercise 10.7. Let a be a nonzero vector in R
n and b be a nonnegative number. Consider the hyperplane

P := {x ∈ R
n : a⊤x = b}. Let y ∈ R

n be given. Suppose we want to find the distance d(y,P ) of the point
y to the plane P , where d(y,P ) := inf

x∈P
‖x− y‖.

Formulate a quadratic optimization problem subject to linearity constraints that enables one to find
d(y,P ). Solve this quadratic optimization problem, and prove that the unique point x̂ in P that is closest
to y is given by

x̂ =
b− a⊤y

‖a‖2 a+ y.

Also show that d(y,P ) =
|b− a⊤y|

‖a‖ .

Exercise 10.8. Let f be given by f(x) = (x1 − x2)
2 + (x2 − x3)

2 + (x3 − x1)
2.

Let A =

[
1 2 3
3 2 1

]
and b =

[
10
14

]
.

(1) Find one solution x to the system of equations Ax = b.

(2) Determine a basis for kerA.

(3) Find an optimal solution x̂ to the problem
{

minimize f(x)
subject to Ax = b.

using the nullspace method.
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Exercise 10.9. Consider the quadratic optimization problem
{

minimize
1

2
x⊤Hx,

subject to Ax = b

where H =




2 1 0 0 0
1 2 1 0 0
0 1 2 1 0
0 0 1 2 1
0 0 1 2 1



, A =




1 0 1 0 0
0 1 0 1 0
0 0 1 0 1



 , b =




2
2
2



 .

(1) Show that a feasible solution for the problem is given by x =
[
1 1 1 1 1

]⊤
.

(2) Show that the vectors z1, z2 form a basis for kerA, where z1 =
[
0 −1 0 1 0

]⊤
and

z2 =
[
1 0 −1 0 1

]⊤
.

(3) Find an optimal solution x̂ to the problem.

Exercise 10.10. Let A =

[
1 1 −1 −1
1 −1 1 −1

]
and q =




4
2
0
−2


 .

(1) Consider the problem of determining a vector x in the kernel of A which is closest to q, that is,

(P1) :

{
minimize ‖x− q‖2
subject to x ∈ kerA.

Find an optimal x.

(2) Next consider the problem of determining a vector x in the range of A⊤ which is closest to q,
that is,

(P2) :

{
minimize ‖x− q‖2
subject to x ∈ ran (A⊤).

Find an optimal x.

10.5. Summary

Consider the quadratic optimization problem

minimize
1

2
x⊤Hx+ c⊤x+ c0,

subject to Ax = b.

Let x be a solution of the system Ax = b, and let Z be a matrix whose columns form a basis for

kerA. Suppose that Z⊤HZ is positive semi-definite. Then the following are equivalent:

(1) x̂ is an optimal solution to this problem.

(2) x̂ = x+ Zv̂, where v̂ satisfies (Z⊤HZ)v̂ = −Z⊤(Hx+ c).

(3) There exists a u such that

[
H −A⊤

A 0

] [
x̂

u

]
=

[ −c

b

]
.

10.6. Some remarks

10.6.1. What if f is not convex? We have throughout assumed that the quadratic optimization

problem (10.1) is convex, that is, that Z⊤HZ is positive semi-definite. If this is not the case, then

the objective function in (10.2) is not bounded below and it does not have a minimizer. Thus

the original problem (10.1) also does not have an optimal solution if Z⊤HZ is not positive semi-

definite.
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10.6.2. Is there always an optimal solution? Even if Z⊤HZ is positive semi-definite, it is

not guaranteed that there is an optimal solution to the problem (10.2). A necessary and sufficient

condition for the existence of at least one optimal solution to (10.2), and thereby also to the

problem (10.1), is that the system (Z⊤HZ)v = −Z⊤(Hx+ c) should have at least one solution v,

that is, −Z⊤(Hx+ c) ∈ ran (Z⊤HZ).

10.6.3. Nullspace method versus Lagrange method. Suppose for simplicity that the rows

of A are linearly independent. Then the dimension of kerA is n−m, and the system (Z⊤HZ)v =

−Z⊤(Hx+c) has the size (n−m)×(n−m), while the system (10.3) has the size (n+m)×(n+m).

If for instance n ≈ 2m, then n + m ≈ 3(n − m), so that the “Lagrange system” has about

three times as many equations (and unknowns) as the “nullspace system”.

If on the other hand, m ≪ n, then both system are of about the same size, but then the

Lagrange method has the advantage that we don’t need the matrix Z. Moreover, the sparsity

(that is a large number of zeroes) in H and A is used more efficiently in the Lagrange method,

since Z is typically dense even if A is sparse.

So which of the two methods is best depends on the problem at hand, and it is safest to master

them both!



Chapter 11

Least-squares problems

Consider the system of equations Ax = b, where A ∈ R
m×n, b ∈ R

m and x ∈ R
n. In many

applications, b 6∈ ranA, and then the system does not have a solution. Nevertheless, one might

want to find an x ∈ R
n which is “closest” in satisfying Ax = b. A natural measure used to

determine if x “almost” satisfies Ax = b is to see how small the error ‖Ax − b‖2 is. Hence we

arrive at the following least-squares problem:
{

minimize
1

2
(Ax− b)⊤(Ax− b),

subject to x ∈ R
n.

(11.1)

Thus we want to minimize the square of the length of the “error vector” Ax − b. The factor 1
2 is

introduced in order to simplify some of the expressions that occur in this chapter.

11.1. A model fitting example

Let us see an instance where a problem of the type discussed above appears naturally.

Suppose that s is a quantity that depends on the variable t, that is, s = g(t), where g is not

entirely known. Suppose moreover that based on some given measured data, we want to estimate

the function g. The measured data consists of m given points:

(t1, s1), . . . , (tm, sm),

where si is a measurement of s for t = ti, that is, si is the measurement of g(ti). A common

approach to estimate g is then to do a parameterization of the form

g(t) ≈ α1ϕ1(t) + · · ·+ αnϕn(t) =
n∑

j=1

αjϕj(t), (11.2)

where the ϕj are given “basis functions”, and the αj are unknown coefficients. The basis functions

can be for instance, polynomials ϕj(t) = tj−1, or trigonometric functions ϕj(t) = sin 2πjt
T

, or

something else, depending on the context. Ideally, we would like to choose the coefficients so that

n∑

j=1

αjϕj(ti) = si for all i ∈ {1, . . . ,m}. (11.3)

However, in practice, it typically happens that

(1) the number of measurements is larger than the number of coefficients αj , that is, m > n,

(2) the approximation in (11.2) is not exact, and

(3) the measurements of s contain measurement noise.

95
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As a consequence of these, we cannot solve the system (11.3). Instead, we seek coefficients αj that

make the following “error” as small as possible:

m∑

i=1




n∑

j=1

αjϕj(ti)− si




2

. (11.4)

By defining

A =




ϕ1(t1) . . . ϕn(t1)
...

...

ϕ1(tm) . . . ϕn(tm)


 , b =




s1
...

sm


 , x =




α1

...

αn


 ,

the system (11.3) can be written as Ax = b, while the problem of minimizing (11.4) can be written

in the form (11.1) above.

11.2. Existence of optimal solutions

Consider the least-squares problem (11.1). Let f be the objective function, that is,

f(x) =
1

2
(Ax − b)⊤(Ax− b) =

1

2
x⊤A⊤Ax− b⊤Ax+

1

2
b⊤b.

We see that f is a quadratic function of the form (9.1), namely,

f(x) =
1

2
x⊤Hx+ c⊤x+ c0

with H = A⊤A and c = −A⊤b.

A nice fact associated with the least-squares problem (11.1) is that there always exists at least

one minimizer x̂ of f . Indeed, according to Theorem 9.13, the quadratic function f has at least

one minimizer if H is positive semi-definite and c ∈ ranH . In our special case above, H = A⊤A is

indeed positive semi-definite and c = −A⊤b = A⊤(−b) ∈ ran A⊤ = ran (A⊤A) = ran H . (From

Exercise 24.2, it follows that ran A⊤ = ran A⊤A.)

11.3. Normal equations

By Theorem 9.13, x is a minimizer for f iff Hx = −c, and in our special case, this becomes:

A⊤Ax = A⊤b. (11.5)

This system is called the set of normal equations for the least-squares problem (11.1).

Since we have already seen that the least-squares problem (11.1) always has at least one

solution, it follows that the system (11.5) always has at least one solution.

Even if it so happens that there are infinitely many solutions to the normal equations, Ax is the

same for any solution x. Indeed, if x1 and x2 are two solutions, that is, if A
⊤Ax1 = A⊤b = A⊤Ax2,

then A⊤A(x1 − x2) = 0. This means that with y := A(x1 − x2),

y⊤y = (x1 − x2)
⊤ A⊤A(x1 − x2)︸ ︷︷ ︸

=0

= (x1 − x2)
⊤0 = 0,

and so y = 0. Thus Ax1 = Ax2.
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11.4. Geometric interpretation

There is a natural geometric interpretation of the least-squares problem (11.1) and of the corre-

sponding normal equations (11.5).

The problem (11.1) can be interpreted as the problem of deciding the point in the subspace

ranA that lies closest to the point b ∈ R
m, since it can be written equivalently as

{
minimize 1

2‖y − b‖2,
subject to y ∈ ranA.

(11.6)

See Figure 1.

ranA

b

ŷ = Ax̂

y

Figure 1. Geometric interpretation of the least squares problem (11.1) and of the corresponding
normal equations (11.5).

The normal equations (11.5) can be written as A⊤(b−Ax) = 0, which is equivalent to saying

that b−Ax ∈ kerA⊤, which in turn is equivalent to b−Ax ∈ (ranA)⊥. Thus the normal equations

say that the “error vector” b−Ax should be orthogonal to ranA. See Figure 1.

So the optimal solution ŷ (= Ax̂) to the problem (11.6) is determined by ŷ ∈ ranA and

b− ŷ ∈ (ranA)⊥, that is b− ŷ is orthogonal to ranA. As we have already seen above (at the end

of the previous section), the point ŷ = Ax̂ is unique, even if x̂ is not.

11.5. Case 1
◦: A has independent columns

If A has linearly independent columns, then A⊤A is invertible. Thus the normal equations (11.5)

have a unique solution x̂.

11.6. Case 2
◦: A has dependent columns

If A has linearly dependent columns, then A⊤A is not invertible, and then there are infinitely

many solutions to the normal equations (11.5). A common way of selecting one amongst these

solutions is to take one which is the “shortest”, that is, one with the least norm.

Let x be a solution to (11.5). Then any x is another solution to (11.5) iff Ax = Ax. We have

already shown the ‘only if’ part earlier. The ‘if’ part can be checked as follows: if Ax = Ax, then

A⊤Ax = A⊤(Ax) = A⊤(Ax) = A⊤b.

Thus the problem of determining the least-norm solution to the normal equations can be written

as: {
minimize 1

2‖x‖2,
subject to Ax = Ax.

(11.7)
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This is a problem of the form (10.1), with H = I, c = 0, c0 = 0, A = A and b = Ax.

According to Theorem 10.5, x̂ is an optimal solution to the problem (11.7) iff there exists a u

such that

Ix̂−A⊤u = 0, (11.8)

Ax̂ = Ax. (11.9)

The first equation (11.8) says that x̂ = A⊤u, and if we substitute this in the second equation

(11.9) above, we obtain AA⊤u = Ax. Since Ax ∈ ranA = ran (AA⊤), the system AA⊤u = Ax

always has at least one solution û. And then x̂ := A⊤û clearly satisfies (11.8) and (11.9). Thus x̂

found in this manner is an optimal solution to the problem (11.7).

Even if it so happens that there are infinitely many solutions u to AA⊤u = Ax, it turns out

that the vector A⊤u is the same. Indeed, if u1, u2 are such that AA⊤u1 = Ax = AA⊤u2, then

AA⊤(u1 − u2) = 0. So with v := A⊤(u1 − u2),

v⊤v = (u1 − u2)
⊤ AA⊤(u1 − u2)︸ ︷︷ ︸

=0

= (u1 − u2)
⊤0 = 0,

and so v = 0. Thus A⊤u1 = A⊤u2.

This implies that x̂ = A⊤û is the unique optimal solution to the problem (11.7), even if the

system AA⊤u = Ax does not have a unique solution.

11.7. Optimal solution in terms of the pseudo
inverse

Suppose we want to determine the least-norm solution to the least-squares problem as described

in the previous section. Then one can proceed as follows. Suppose that A has the singular value

decomposition

A = USV ⊤,

where the m× r matrix U has orthogonal columns and the n× r matrix V has orthogonal rows,

that is, U⊤U = I and V ⊤V = I, while the r×r matrix S is diagonal with strictly positive diagonal

elements. (See Section 11.9 for a proof of this.) Since A⊤ = V SU⊤, we obtain

A⊤A = V S2V ⊤ and AA⊤ = US2U⊤.

So the normal equations (11.5) take the form V S2V ⊤x = V SU⊤b, which is equivalent to the

system V ⊤x = S−1U⊤b. If x is a solution to V ⊤x = S−1U⊤b, then the system AA⊤u = Ax takes

the form

US2U⊤u = USV ⊤x,

which is equivalent to SU⊤u = V ⊤x. If û is a solution to the system SU⊤u = V ⊤x, then the

least-norm solution to the least-squares problem (11.1) is thus given by

x̂ = A⊤û = V SU⊤û = V V ⊤x = V S−1U⊤b = A+b,

where the matrix A+ := V S−1U⊤ is called the pseudo inverse of A.

Exercise 11.1. Verify that AA+A = A and A+AA+ = A+.

Exercise 11.2. Let A =

[
1 −1
−1 1

]
and b =

[
b1
b2

]
, where b1 and b2 are given numbers.

(1) Determine all optimal solutions x to the following problem:

(P1) :

{
minimize ‖Ax− b‖2
subject to x ∈ R

2.
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(2) Let X(b) be the set of all optimal solutions to the problem (P1) above. Determine the unique
optimal solution to the following problem:

(P2) :

{
minimize ‖x‖2
subject to x ∈ X(b).

(3) Let x̂(b) denote the optimal solution to the problem (P2) above. Show that x̂(b) = A+b for a
certain matrix A+. Find A+.

(4) Let ǫ > 0. Determine the unique optimal solution to the following problem:

(P3) :

{
minimize ‖Ax− b‖2 + ǫ‖x‖2
subject to x ∈ R

2.

(5) Let x̃(b, ǫ) denote the optimal solution to the problem (P3) above. Show that x̃(b, ǫ) = Ãǫ for

a certain matrix Ãǫ (which has entries depending on ǫ). Prove that as ǫ → 0, each entry of Ãǫ

goes to the corresponding entry of A+.

Exercise 11.3. Let U, V be subsets of R4, given by U = {u ∈ R
4 : Ru = p} and V = {v ∈ R

4 : Sv = q},
where

R =




1 0 0 1
0 1 0 1
0 0 1 1


, S =




1 1 0 0
1 0 1 0
1 0 0 1


, p =




1
1
1


, q =




2
2
2


 .

Determine the distance d(U,V ) between U and V , that is, the smallest possible distance between u ∈ U
and v ∈ V . Also find points û ∈ U and v̂ ∈ V for which the distance between û and v̂ is d(U,V ).

Exercise 11.4. Consider the optimization problem in the variable x ∈ R
2:

minimize
1

2
(Ax− b)⊤(Ax− b),

where A =




2 −1
−1 2
1 1


 and b =




2
1
4


. Find an optimal solution.

Exercise 11.5. A civil engineer is assigned the task of determining the heights above sea level of three
hills, H1, H2, H3. He stands at sea level and measures the heights (in meters) of H1, H2, H3 as 1236, 1941,
2417, respectively. Then to check his work, he climbs hill H1 and measures the height of H2 above H1 as
711m, and the height of H3 above H1 as 1177m. Noting that these latter measurements are not consistent
with those made at sea level, he climbs hill H2, and measures the height of H3 to be 474m above H2.
Again he notes the inconsistency of this measurement with those made earlier. As he drives back to his
office, he suddenly remembers his days as a student in the Optimization course, and he decides to solve a
quadratic optimization problem associated with this problem by considering the problem of mimimizing
the least squares error associated with the measurements. Compute the optimal solution for him so that
he can keep both hands on the steering wheel.

11.8. Summary

The least-squares problem is the problem of minimizing

1

2
‖Ax− b‖2 =

1

2
(Ax− b)⊤(Ax − b).

A vector x̂ is an optimal solution to the least-squares problem iff x̂ is a solution to the normal

equations

A⊤Ax = A⊤b,

which always has at least one solution.

If the columns of A are linearly independent, then the normal equations have a unique solution.

If the columns of A are linearly dependent, then the normal equations have infinitely many

solutions. Amongst these, there is a unique one with least norm. The least norm solution x̂ is

given by x̂ = A⊤û, where û is a solution to AA⊤u = Ax. Here x is an arbitrary solution to the

normal equations.
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11.9. Appendix: singular value decomposition

In this appendix, we will prove the following result.

Theorem 11.6 (Singular value decomposition). Let A ∈ R
m×n. Then there exists an integer r

and there exist matrices U ∈ R
m×r, S ∈ R

r×r and V ∈ R
n×r such that

(1) A = USV ⊤,

(2) U⊤U = I and V ⊤V = I,

(3) S is a diagonal matrix with positive diagonal entries.

Definition 11.7. LetA ∈ R
m×n and let λ1, . . . , λn be the eigenvalues of A⊤A. Then

√
λ1, . . . ,

√
λn

are called the singular values of A.

Proof of Theorem 11.6. Suppose that σ1, . . . , σr are the nonzero singular values of A. This

means that σj = 0 for j > r. By the definition of singular values, σ2
1 , . . . , σ

2
n are the eigenvalues

of A⊤A. Let us denote the corresponding basis1 of orthogonal eigenvectors of A⊤A by v1, . . . , vn,

that is, A⊤Avj = σ2
j vj , j = 1, . . . , n.

The vectors wj :=
1
σj
Avj , j = 1, . . . , r, form an orthonormal system. Indeed, we have

(Avj , Avk) = (A⊤Avj , vk) = (σ2
j vj , vk) = σ2

j (vj , vk) =

{
0 if j 6= k,

σ2
j if j = k,

since v1, . . . , vr is an orthonormal system. This proves the claim.

If j ∈ {1, . . . , r}, then Avj = σjwj = σjwjv
⊤
j vj =

r∑

k=1

σkwkv
⊤
k vj =

(
r∑

k=1

σkwkv
⊤
k

)
vj .

On the other hand, if j ∈ {r + 1, . . . , n}, then Avj = 0 =

r∑

k=1

σkwkv
⊤
k vj =

(
r∑

k=1

σkwkv
⊤
k

)
vj .

So for all vj , j = 1, . . . , n, we have Avj =

(
r∑

k=1

σkwkv
⊤
k

)
vj .

Since v1, . . . , vn forms a basis for Rn, it follows that for all x ∈ R
n, we have

Ax =

(
r∑

k=1

σkwkv
⊤
k

)
x,

that is, A =
r∑

k=1

σkwkv
⊤
k = USV ⊤, where

U :=
[
w1 . . . wr

]
∈ R

m×r,

S :=




σ1

. . .

σr


 ∈ R

r×r,

V :=
[
v1 . . . vr

]
∈ R

n×r.

The relations U⊤U = I and V ⊤V = I follow from the orthonormality of the systems w1, . . . , wr

and v1, . . . , vr, respectively. �

1The existence of such a basis follows from the Spectral Theorem applied to the symmetric matrix A⊤A.
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Chapter 12

Introduction

We will now consider the following very general optimization problem in R
n:

minimize f(x),

subject to x ∈ F ,

where x ∈ R
n is a vector of variables, F is a given subset of Rn, and f is a real-valued function

that is defined (at least) on the set F . The function f is called the objective function and F is

called the feasible set.

Example 12.1. Consider for example, that we want to determine what the length, height and

breadth of a box should be so that the total surface area of the box’s six faces is as small as possible,

but so that the box’s volume is at least 100 cubic decimeters and the box’s spatial diagonal is at

least 9 decimeters.

B

A

If we denote the length, height and breadth of the box by x1, x2 and x3, respectively, then

the problem can be formulated as follows:

minimize 2x1x2 + 2x2x3 + 2x3x1,

subject to x1x2x3 − 100 ≥ 0,

x2
1 + x2

2 + x2
3 − 92 ≥ 0,

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

Here x =
[
x1 x2 x3

]⊤
, the objective function f is given by f(x) = 2x1x2 + 2x2x3 + 2x3x1,

and the feasible set is

F =



x ∈ R

3 :

x1x2x3 − 100 ≥ 0,

x2
1 + x2

2 + x2
3 − 92 ≥ 0,

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0



 .

♦
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The example above falls under a special subclass of optimization problems called nonlinear op-

timization1. In this class of problems, we will assume that the objective function f is continuously

differentiable, and the feasible set is described by a set of constraints of the type

gi(x) ≤ 0 (inequality constraints) and/or

hi(x) = 0 (equality constraints),

where gi and hi are given continuously differentiable functions. The nonlinear optimization prob-

lem thus has the following form:

minimize f(x),

subject to gi(x) ≤ 0, i = 1, . . . ,m1,

hj(x) = 0, j = 1, . . . ,m2,

where at least one of the functions f , g1, · · · gm1
, h1, . . . , hm2

are nonlinear. (Otherwise we would

just have a linear programming problem, which we have already learnt to solve in Part I of this

course!) The feasible set is given by
{
x ∈ R

n :
gi(x) ≤ 0 for i = 1, . . . ,m1, and

hj(x) = 0 for j = 1, . . . ,m2

}
.

It is not unusual that one has the special case when there are no constraints and that F = R
n.

In this case, we say that it is a nonlinear optimization problem without constraints, or that it is

an unconstrained nonlinear optimization problem. Otherwise it is called a constrained nonlinear

optimization problem.

1or nonlinear programming



Chapter 13

The one variable case

In this chapter f will be a real-valued function of a real variable x, that is, f : R → R. We will

assume that the (first) derivative f ′ and the second derivative f ′′ exist and are continuous on R:

f ′ and f ′′ exist and are continuous.

Definition 13.1. A point x̂ ∈ R is called a local minimizer of f if there exists a δ > 0 such that

for all x ∈ R that satisfy1 |x − x̂| < δ, we have f(x̂) ≤ f(x). A point x̂ ∈ R is called a global

minimizer of f if for all x ∈ R, f(x̂) ≤ f(x). See Figure 1.

P QA B

Figure 1. The point P is a global minimizer. The point Q and all points in the interior of the
line segment AB are all local minimizers.

It is obvious that every global minimizer is also a local minimizer, but it can happen (for

non-convex functions) that there exist local minimizers which are not global minimizers.

Recall that the derivative of f at a point x̂ is by definition

f ′(x̂) = lim
x→x̂

f(x)− f(x̂)

x− x̂
,

which means that for every ǫ > 0, there exists a δ > 0 such that for all x ∈ R with 0 < |x− x̂| < δ,

there holds that ∣∣∣∣
f(x)− f(x̂)

x− x̂
− f ′(x̂)

∣∣∣∣ < ǫ,

or equivalently that −ǫ <
f(x)− f(x̂)

x− x̂
− f ′(x̂) < ǫ.

1equivalently, x̂ − δ < x < x̂ + δ

105
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Lemma 13.2. Let f ′(x̂) > 0. Then there exists a δ > 0 such that:

(1) for all x ∈ (x̂, x̂+ δ), f(x̂) < f(x),

(2) for all x ∈ (x̂− δ, x̂), f(x) < f(x̂).

x̂− δ x̂ x̂+ δ

f

slope f ′(x̂) > 0

Proof. Let ǫ = 1
2f

′(x) > 0. Then there is a δ > 0 such that for all x ∈ R satisfying 0 < |x−x̂| < δ,

−ǫ <
f(x)− f(x̂)

x− x̂
− f ′(x̂) < ǫ,

and in particular,
1

2
f ′(x) <

f(x)− f(x̂)

x− x̂
. (13.1)

For all 0 < x− x̂ < δ, (13.1) gives 0 < 1
2f

′(x)(x − x̂) < f(x)− f(x̂), and so f(x̂) < f(x).

On the other hand, if −δ < x − x̂ < 0, then from (13.1), 0 > 1
2f

′(x)(x − x̂) > f(x) − f(x̂),

and so f(x) < f(x̂). �

By replacing f by −f in the above result, we obtain the following:

Lemma 13.3. Let f ′(x̂) < 0. Then there exists a δ > 0 such that:

(1) for all x ∈ (x̂, x̂+ δ), f(x̂) > f(x),

(2) for all x ∈ (x̂− δ, x̂), f(x) > f(x̂).

Theorem 13.4. If x̂ is a local minimizer of f , then f ′(x̂) = 0.

Proof. By the previous two lemmas, we know that if f ′(x̂) > 0, then x̂ is not a local minimizer

of f (because for example f(x̂− δ
2n ) < f(x̂) for all n ∈ N and some δ > 0), and also if f ′(x̂) < 0,

then x̂ is not a local minimizer of f . So the only remaining case is that f ′(x̂) = 0. �

Recall Taylor’s formula: if x, x̂ ∈ R then

f(x) = f(x̂) + f ′(x̂)(x − x̂) +
1

2
f ′′(ξ)(x− x̂)2, (13.2)

for some ξ between x and x̂, that is, ξ = x̂ + θ · (x − x̂) for some θ ∈ (0, 1). The exact value of

θ depends on what f is and what x and x̂ are. But we will not need to know this. It suffices to

know that θ ∈ (0, 1) and that ξ lies between x and x̂.

In Theorem 13.4 we learnt that the vanishing of the derivative at a point is a necessary

condition for that point to be a local minimizer. Now we will see that this condition is also

sufficient if in addition we also have that the second derivative at that point is positive. In fact

we then have a “strict” local minimum at that point.

Lemma 13.5. If f ′(x̂) = 0 and f ′′(x̂) > 0, then there exists a δ > 0 such that for all x ∈ R such

that 0 < |x− x̂| < δ, we have f(x) > f(x̂).
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x̂− δ x̂ x̂+ δ

f

slope f ′(x̂) = 0

Proof. Since f ′′ is continuous, and since f ′′(x̂) > 0, there exists a δ > 0 such that f ′′(x) > 0 for

all x in the interval (x̂− δ, x̂+ δ). (Why?)

But for x ∈ (x̂− δ, x̂+ δ), we have by Taylor’s formula that

f(x) = f(x̂) + f ′(x̂)(x − x̂) +
1

2
f ′′(ξ)(x − x̂)2 = f(x̂) + 0 +

1

2
f ′′(ξ)︸ ︷︷ ︸
>0

(x− x̂)2 > f(x̂)

if x̂ 6= x. (Note that ξ = x̂+θ ·(x−x̂) lies between x and x̂ and so it lies in the interval (x̂−δ, x̂+δ);

but we know that on this interval f ′′ takes positive values.) �

By replacing f by −f in the above result, we obtain the following.

Lemma 13.6. If f ′(x̂) = 0 and f ′′(x̂) < 0, then there exists a δ > 0 such that for all x ∈ R such

that 0 < |x− x̂| < δ, we have f(x) < f(x̂).

Theorem 13.7.

(1) A necessary (but not sufficient) condition for x̂ to be a local minimizer of f is that

f ′(x̂) = 0 and f ′′(x̂) ≥ 0.

(2) A sufficient (but not necessary) condition for x̂ to be a local minimizer of f is that

f ′(x̂) = 0 and f ′′(x̂) > 0.

Proof. (1) If x̂ is a local minimizer, then by Theorem 13.4, f ′(x̂) = 0. Also, Lemma 13.6 shows

that if f ′′(x̂) < 0, then x̂ cannot be a local minimizer (for example because f(x̂+ δ
2n ) < f(x̂) for

all n ∈ N and some δ > 0). So f ′′(x̂) ≥ 0.

The fact that this condition is not sufficient can be seen by considering the example f(x) = x3

(x ∈ R) and x̂ = 0. Then f ′(x̂) = f ′(0) = 3x2|x=0 = 0 and f ′′(x̂) = f ′′(0) = 6x|x=0 = 0 ≥ 0, but

x̂ = 0 is not a local minimizer. See Figure 2.

00

x3
x4

Figure 2. 0 is not a local minimizer for x 7→ x3, but is a global minimizer for x 7→ x4.

(2) Now if f ′(x̂) = 0 and f ′′(x̂) > 0, then from Lemma 13.5, it follows that x̂ is a local minimizer

of f .
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The fact that this condition is not necessary can be seen by considering the example f(x) = x4

(x ∈ R) and x̂ = 0. Then x̂ = 0 is a global minimizer of f , and although there holds that

f ′(x̂) = f ′(0) = 4x3|x=0 = 0, we have that f ′′(x̂) = f ′′(0) = 12x2|x=0 = 0 and so f ′′(x̂) is not

positive in this case. See Figure 2. �

Exercise 13.8. Let f : R → R be given by f(x) = ex
2

. Show that 0 is a global minimizer of f .

Exercise 13.9. Consider g : R → R given by g(x) = 3x4 − 4x3 + 1. Find all local minimizers of g.



Chapter 14

The multivariable case

In this chapter, we will consider the problem of minimizing a given multivariable function without

any constraints, that is, the problem of the form

minimize f(x),

subject to x ∈ R
n,

where f is a given real-valued function on R
n. We shall assume henceforth that

f is twice continuously differentiable.

To say that f is twice continuously differentiable means that the n partial derivatives of f , namely

the functions
∂f

∂xj

(j = 1, . . . , n)

all exist, and are continuous in R
n, and moreover their n2 partial derivatives, namely

∂2f

∂xi∂xj

(i, j ∈ {1, . . . , n})

all exist and are continuous in R
n.

Then one can define the gradient of f at x ∈ R
n to be the following row vector:

∇f(x) =

[
∂f

∂x1
(x) . . .

∂f

∂xn

(x)

]
.

Furthermore, the Hessian1 of f at x ∈ R
n is defined as the n× n symmetric matrix F (x), which

has

∂2f

∂xi∂xj

(x)

as the entry in the ith row and jth column, that is,

F (x) =




∂2f

∂x1∂x1
(x) . . .

∂2f

∂x1∂xn

(x)

...
. . .

...
∂2f

∂xn∂x1
(x) . . .

∂2f

∂xn∂xn

(x)



.

1This was introduced in the 19th century by the German mathematician Ludwig Otto Hesse and it was later named
after him. (Hesse himself had used the term “functional determinants”.)
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Note that F (x) is symmetric, since by our assumption that the partial derivatives of f are contin-

uous, we have that

∂2f

∂xi∂xj

(x) =
∂2f

∂xj∂xi

(x).

Definition 14.1. A point x̂ ∈ R
n is called a local minimizer of f if there exists a δ > 0 such that

for all x ∈ R
n that satisfy ‖x − x̂‖ < δ, we have f(x̂) ≤ f(x). A point x̂ ∈ R

n is called a global

minimizer of f if for all x ∈ R
n, f(x̂) ≤ f(x).

It is obvious that every global minimizer is also a local minimizer, but it can happen (for

non-convex functions) that there exist local minimizers which are not global minimizers.

Let x̂ ∈ R
n be a given point. Suppose we want to determine whether or not x̂ is a minimizer

for f . In order to do so, let us see how the objective function changes along a line passing through

x̂. Thus let us take a nonzero vector d ∈ R
n, and let

x(t) = x̂+ td, t ∈ R,

This defines a line in R
n (in parametric form) passing through x̂ and having direction d. In

particular, x(0) = x̂. See Figure 1.

x̂

(t=0)

x(t) = x̂+ td

0

d

Figure 1. The line passing through x̂ having direction d.

We will study the objective function f along this line, and so we define the function ϕ of one

variable by

ϕ(t) = f(x(t)) = f(x̂+ td) (t ∈ R).

Since f is twice differentiable on R, so is ϕ. Indeed, by the chain rule, one has that

ϕ′(t) = ∇f(x(t))d and ϕ′′(t) = d⊤F (x(t))d. (14.1)

In particular,

ϕ′(0) = ∇f(x̂)d and ϕ′′(0) = d⊤F (x̂)d. (14.2)

The number ϕ′(0) = ∇f(x̂)d is called the directional derivative of f at x̂ in the direction d.

Lemma 14.2. If ∇f(x̂)d < 0, then there exists a δ > 0 such that for all t ∈ (0, δ), f(x̂+td) < f(x̂).

Proof. This follows immediately by an application of Lemma 13.3 to the function ϕ. �

Lemma 14.3. If x̂ is a local minimizer of f , then for all d ∈ R
n, t = 0 is a local minimizer of

the function ϕ given by

ϕ(t) = f(x(t)) = f(x̂+ td) (t ∈ R). (14.3)
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Proof. Suppose that δ > 0 is such that for all x ∈ R
n satisfying ‖x− x̂‖ < δ, we have f(x) ≥ f(x̂).

Define ǫ = δ/‖d‖. Then for all t ∈ R such that |t| < ǫ, we have that

‖x(t)− x̂‖ = ‖x̂+ td− x̂‖ = ‖td‖ = |t|‖d‖ < ǫ‖d‖ =
δ

‖d‖‖d‖ = δ.

Consequently, for such t’s, ϕ(t) = f(x(t)) ≥ f(x̂) = ϕ(0). �

Observe that the converse to the above result does not hold2! Even if for every vector d ∈ R
n,

there holds that t = 0 is a local minimizer for the function ϕ defined via (14.3), it can happen

that x̂ is not a local minimizer of f . This is illustrated in the following example.

Example 14.4. Let n = 2. Consider the function f : R2 → R given by

f(x) = (x2 − x2
1)(x2 − 3x2

1) (x ∈ R
2).

Take x̂ = 0.
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P

Q

R

+

+ −−

Figure 2. The parabolas P and Q given by x2 = x2
1 and x2 = 3x2

1, respectively.

Note that in the (x1, x2)-plane, f(x) = 0 precisely on the two parabolas P and Q shown in Figure

2. Also, the function f is positive above P and below Q, while it is negative between P and

Q. With this information, we see that 0 cannot be a local minimizer of f . After all, we can

take points x between the two parabolas P and Q, which are arbitrarily close to 0, but for which

f(x) < 0 = f(0). (For example, points x of the type x = (ǫ, 2ǫ2) on the dotted parabola R between

P and Q shown in Figure 2, with ǫ small enough.)

On the other hand, if we fix any direction d, we see that as we approach 0 along this line,

eventually we lie in the region where f is positive; see Figure 2. This shows that ϕ does have a

minimum at 0. ♦

Theorem 14.5. A necessary (but not sufficient) condition for x̂ to be a local minimizer of f is

that ∇f(x̂) = 0 and that F (x̂) is positive semi-definite.

Proof. From Lemma 14.3, we know that for every d ∈ R
n, the corresponding ϕ defined by

(14.3) has a local minimum at t = 0. But by the first half of Theorem 13.7, it follows that

ϕ′(0) = 0 and ϕ′′(0) ≥ 0. From (14.2), it follows that for all d ∈ R
n, ϕ′(0) = ∇f(x̂)d = 0 and

ϕ′′(0) = d⊤F (x̂)d ≥ 0. Consequently, ∇f(x̂) = 0 and that F (x̂) is positive semi-definite. �

We had seen an example of the non-sufficiency claim above in Theorem 13.7. Another instance

illustrating this is our Example 14.4 above; see the exercise below.

Exercise 14.6. Calculate ∇f(0) and the Hessian F (0) in Example 14.4.

2if n > 1
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In order to derive sufficient conditions for x̂ to be a local minimizer of f , we will first give the

multi-variable analogue of Taylor’s formula (13.2).

Let x ∈ R
n. We want to compare f(x) with f(x̂), without explicitly calculating f(x). Set

d = x− x̂ and let

ϕ(t) := f(x̂+ td) = f(x̂+ t(x− x̂)).

Then ϕ(0) = f(x̂) and ϕ(1) = f(x). A special case of (the one-variable) Taylor’s formula (13.2)

is:

ϕ(1) = ϕ(0) + ϕ′(0) +
1

2
ϕ′′(θ) for some θ ∈ (0, 1).

This gives, using (14.1) and (14.2), that

f(x) = f(x̂) +∇f(x̂)d+
1

2
d⊤F (x̂+ θd)d for some θ ∈ (0, 1).

Equivalently, for some θ ∈ (0, 1),

f(x) = f(x̂) +∇f(x̂)(x− x̂) +
1

2
(x− x̂)⊤F (x̂+ θ(x− x̂))(x− x̂). (14.4)

This is the multi-variable analogue of (13.2).

We will need the following result.

Lemma 14.7. If the Hessian F (x̂) of f at x̂ is positive definite, that is, if for all nonzero d ∈ R
n,

d⊤F (x̂)d > 0, then there exists a δ > 0 such that for all x ∈ R
n satisfying ‖x − x̂‖ < δ, F (x) is

positive definite.

Proof. Consider the compact setK = {d ∈ R
n : ‖d‖ = 1}. The continuous function d 7→ d⊤F (x̂)d

has a minimum value m on K, and since F (x̂) is positive definite, m > 0. Let ǫ := m
2n2 > 0. Since

the maps x 7→ Fij(x) are all continuous, there exists a δ > 0 such that for all x ∈ R
n satisfying

‖x− x̂‖ < δ, max
i,j

|Fij(x) − Fij(x̂)| < ǫ.

For x ∈ R
n satisfying ‖x− x̂‖ < δ, and any d ∈ K, we then have

d⊤F (x)d = d⊤F (x̂)d+ d⊤(F (x)−F (x̂))d ≥ m− |d⊤(F (x) −F (x̂))d|

= m−
∣∣∣∣

n∑

i=1

di

n∑

j=1

(Fij(x)− Fij(x̂))dj

∣∣∣∣

≥ m−
n∑

i=1

|di|
n∑

j=1

|Fij(x) − Fij(x̂)||dj |

≥ m−
n∑

i=1

|di|
n∑

j=1

ǫ|dj | = m− ǫ

n∑

i=1

|di|
n∑

j=1

|dj |

≥ m− ǫ

n∑

i=1

1

n∑

j=1

1 = m− ǫn2

= m− m

2n2
· n2 = m− m

2
=

m

2
> 0.

But every nonzero d ∈ R
n can be written as d = ‖d‖d, where d ∈ K. Hence by the above, for x’s

satisfying ‖x− x̂‖ < δ, we have

d⊤F (x)d = ‖d‖2d⊤F (x)d > ‖d‖2m
2

> 0.

This completes the proof. �

Theorem 14.8. A sufficient (but not necessary) condition for x̂ to be a local minimizer of f is

that ∇f(x̂) = 0 and F (x̂) is positive definite.
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Proof. Suppose that ∇f(x̂) = 0 and F (x̂) is positive definite. By Lemma 14.7, there exists a

δ > 0 such that for all x ∈ R
n satisfying ‖x− x̂‖ < δ, F (x) is positive definite. For these x’s, there

also holds that F (x̂+ θ(x− x̂)) is positive definite for every θ ∈ (0, 1), since

‖(x̂+ θ(x− x̂))− x̂‖ = ‖θ(x− x̂))‖ = θ‖x− x̂‖ ≤ ‖x− x̂‖ < δ.

Using (14.4), we have for all x ∈ R
n satisfying ‖x− x̂‖ < δ that

f(x) = f(x̂) +∇f(x̂)︸ ︷︷ ︸
=0

(x− x̂) +
1

2
(x− x̂)⊤F (x̂+ θ(x− x̂))(x− x̂) ≥ f(x̂),

with equality iff x = x̂. Thus x̂ is a (strict) local minimizer of f . �

We had seen an example of the non-necessity claim above in Theorem 13.7. Yet another

example is given in the exercise below.

Exercise 14.9. Let f(x) = x4
1 + x4

2 (x ∈ R
2). Clearly 0 ∈ R

2 is a global minimizer. Calculate ∇f(0) and
the Hessian F (0).

Exercise 14.10. Check that x̂ :=
[
2 1

]⊤
is a strict local minimizer of f , where f is given by

f(x1, x2) = x3
1 − 12x1x2 + 8x3

2.

Exercise 14.11. Find all global minimizers for the function g on R
2 given by

g(x1, x2) = x4
1 − 12x1x2 + x4

2, (x1, x2) ∈ R
2.





Chapter 15

Convexity revisited

An optimization problem is in a certain sense “well-posed” if the objective function which should

be minimized is a convex function and the feasible region over which the minimization is to take

place is a convex set. One of the many nice properties possessed by such problems is that every

local optimal solution is a global optimal solution. In this chapter we will list a few important

properties of convex functions.

The following result shows that for a continuously differentiable convex function, every tangent

plane to the function lies below the graph of the function. Thus every (first order) approximation

by a linear map of a convex function gives an underestimate.

Theorem 15.1. Suppose that C ⊂ R
n is a given convex set and that f is continuously differen-

tiable on C. Then f is convex on C iff

for all x, y ∈ C, f(y) ≥ f(x) +∇f(x)(y − x). (15.1)

Proof. (Only if) Suppose that f is convex. Let x, y ∈ C. By the convexity of f , for t ∈ (0, 1),

f(x+ t(y − x)) ≤ f(x) + t(f(y)− f(x)), that is,

f(x+ t(y − x)) − f(x)

t
≤ f(y)− f(x)

for all t ∈ (0, 1). Passing the limit as t ց 0 (and by the chain rule), ∇f(x)(y − x) ≤ f(y)− f(x).

(If) Suppose that (15.1) holds. Let u, v ∈ C and let t ∈ (0, 1). let x := (1 − t)u + tv ∈ C and

y := v ∈ C. Then by (15.1), we obtain

f(v) ≥ f(x) +∇f(x)(v − ((1− t)u+ tv)) = f(x) + (1− t)∇f(x)(v − u). (15.2)

Using the same x, but now with y = u, we obtain from (15.1) that

f(u) ≥ f(x) +∇f(x)(u − ((1− t)u + tv)) = f(x) + t∇f(x)(u − v). (15.3)

Multiplying (15.2) by t (> 0), multiplying (15.3) by 1 − t (> 0), and by adding the results, we

obtain (1 − t)f(u) + tf(v) ≥ f(x) = f((1− t)u + tv). Hence f is convex. �

We had seen that if f is a function of one variable such that f ′′(x) ≥ 0 for all x, then f is

convex. Observe that the condition f ′′(x) ≥ 0 for all x means that f ′ is an increasing function,

that is, f ′(y) ≥ f ′(x) whenever y ≥ x. Equivalently, (f ′(y)− f ′(x))(y − x) ≥ 0 for all x, y. In fact

a stronger result is true.

Theorem 15.2. Suppose that f is a continuously differentiable function on a convex set C ⊂ R
n.

Then f is convex on C iff

for all x, y ∈ C, (∇f(y)−∇f(x))(y − x) ≥ 0. (15.4)
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Proof. (Only if) Suppose that f is convex. Let x, y ∈ C. By Theorem 15.1, we have that

f(y) ≥ f(x)+∇f(x)(y−x). By interchanging x and y, we also obtain f(x) ≥ f(y)+∇f(y)(x−y).

Adding the two inequalities we have now obtained yields (15.4).

(If) Suppose that (15.4) holds. Let u, v ∈ C. Define the function ϕ(t) = f((1− t)u+ tv), t ∈ [0, 1].

Then ϕ(1) = f(v), ϕ(0) = f(u), and ϕ′(t) = ∇f((1− t)u+ tv)(v−u). By the mean value theorem

applied to ϕ, we obtain that
ϕ(1)− ϕ(0)

1− 0
= ϕ′(θ)

for some θ ∈ (0, 1), that is, f(v) = f(u)+∇f(w)(v−u), where w := u+θ(v−u). By (15.4), we have

(∇f(w)−∇f(u))(w−u) ≥ 0. But w−u = θ(v−u), and so we obtain (∇f(w)−∇f(u))(v−u) ≥ 0,

or equivalently, ∇f(w)(v − u) ≥ ∇f(u)(v − u). Consequently,

f(v) = f(u) +∇f(w)(v − u) ≥ f(u) +∇f(u)(v − u).

By Theorem 15.1, it follows that f is convex. �

In the case of twice differentiable functions, we also have the following test for convexity.

Theorem 15.3. Suppose that f is a twice continuously differentiable function on a convex set

C ⊂ R
n. Then f is convex on C iff

for all x, y ∈ C, (y − x)⊤F (x)(y − x) ≥ 0, (15.5)

where F (x) denotes the Hessian of f at x.

Proof. (Only if) Suppose that f is convex. Let x, y ∈ C be such that (y − x)⊤F (x)(y − x) < 0.

Let d := y−x. Then d⊤F (x)d < 0. Since f is twice continuously differentiable, it follows that the

map t 7→ d⊤F (x + td)d is continuous, and so there exists an ǫ ∈ (0, 1) such that for all t ∈ [0, ǫ],

d⊤F (x+ td)d < 0. Now let u := x and v = x+ ǫd. By Taylor’s formula,

f(v) = f(u) +∇f(u)(v − u) +
1

2
(v − u)⊤F (w)(v − u),

where w = u+θ(v−u) for some θ ∈ (0, 1). But v−u = ǫd and so w = u+θ(v−u) = x+θǫd = x+td,

where t ∈ (0, ǫ). Hence

1

2
(v − u)⊤F (w)(v − u) =

1

2
ǫ2d⊤F (x+ td)d < 0.

Consequently,

f(v) = f(u) +∇f(u)(v − u) +
1

2
(v − u)⊤F (w)(v − u) < f(u) +∇f(u)(v − u),

which by Theorem 15.1 implies that f is not convex, a contradiction. So (15.5) holds.

(If) Suppose that (15.5) holds. Let u, v ∈ C. By Taylor’s formula,

f(v) = f(u) +∇f(u)(v − u) +
1

2
(v − u)⊤F (w)(v − u),

where w = u+ θ(v − u) for some θ ∈ (0, 1). But v − w = (1 − θ)(v − u), and so

1

2
(v − u)⊤F (w)(v − u) =

1

2

1

(1 − θ)2
(v − w)⊤F (w)(v − w) ≥ 0,

where the last inequality follows from (15.5). Hence we have

f(v) = f(u) +∇f(u)(v − u) +
1

2
(v − u)⊤F (w)(v − u) ≥ f(u) +∇f(u)(v − u).

By Theorem 15.1, f is convex. �

From this result, it follows that a sufficient condition for f to be convex on C is that the

Hessian F (x) is positive semi-definite for all x ∈ C. But now consider the following example.
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Example 15.4. Consider the convex set C := {x ∈ R
2 : x1 = x2}; see Figure 1.

x1

x2

C

Figure 1. C◦ = ∅.

Let f(x) = x1x2 (x ∈ R
2). Then the Hessian is given by

F (x) =

[
0 1

1 0

]
, x ∈ R

2,

and this is a constant matrix which is not positive semi-definite. Indeed, if we take d =
[
1 −1

]⊤
,

then d⊤F (x)d < 0.

However, the condition (15.5) is satisfied. Indeed, if x, y ∈ C, then

(y − x)⊤F (x)(y − x) = 2(y1 − x1)(y2 − x2) = 2(y1 − x1)
2 ≥ 0.

So the function is convex. ♦

The convex set C in the above example was “thin”, and it had no “interior” points. See

Figure 1. We will now see that if this is not the case, then the point-wise positive-definiteness of

F (x) on C is enough to guarantee that (15.5) holds, which in turn guarantees the convexity of f .

Definition 15.5. Let S ⊂ R
n. A point y ∈ S is called an interior point of S, if there exists a

ǫ > 0 such that the ball with centre y and radius ǫ is contained in S, that is, for all x ∈ R
n such

that ‖x− y‖ < ǫ, we have that x ∈ S. See Figure 2. The interior of S, denoted by S◦, is the set

of all interior points of S.

ǫy

S

Figure 2. y is an interior point of S.

Exercise 15.6. Find the interior of each of the following subsets of R2:

{x ∈ R
2 : x1 = x2}, R

2, ∅, {x ∈ R
2 : x2

1 + x2
2 ≤ 1}.

First we will prove the following result about convex sets and their interiors.
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Lemma 15.7. Let C ⊂ R
n be a convex set such that C◦ 6= ∅. If x ∈ C and y ∈ C◦, then

x+ t(y − x) ∈ C◦ for all t ∈ (0, 1].

x

yC

In particular, it follows that C◦ is a convex set as well. Note that we do not demand that

x ∈ C◦ in the lemma.

Proof. Let x ∈ C, y ∈ C◦, t ∈ (0, 1] and set u := x+ t(y− x). We must show that u ∈ C◦. Since

y ∈ C◦, there exists an ǫ > 0 such that v ∈ C for all v ∈ R
n satisfying ‖v − y‖ < ǫ.

We will show that the ball with centre u and radius ǫt is contained in C, which implies that

u ∈ C◦. Let w ∈ R
n satisfy ‖w− u‖ < ǫt. We want to show w ∈ C. Let v := x+

1

t
(w− x). Then

w = x+ t(v − x), and if we show that v ∈ C, then we will obtain that w ∈ C. We have

v − y = x− y +
1

t
(w − x) =

1

t
(x− u) +

1

t
(w − x) =

1

t
(w − u),

and so ‖v − y‖ =
1

t
‖w − u‖ <

1

t
ǫt = ǫ. Hence v ∈ C. �

Theorem 15.8. Let C ⊂ R
n be a convex set having a nonempty interior, and f : C → R be twice

continuously differentiable on C. Then f is convex iff

for all x ∈ C, F (x) is positive semi-definite, (15.6)

where F (x) denotes the Hessian of f at x.

Proof. (Only if) Suppose that f is convex. Suppose that F (x) is not positive semi-definite

for some x ∈ C. Thus there exists a d ∈ R
n such that d⊤F (x)d < 0. Let y be an interior

point of C. Since f is twice continuously differentiable, the map t 7→ d⊤F (x + t(y − x))d is

continuous, and so there exists a t ∈ (0, 1), small enough such that d⊤F (x + t(y − x))d < 0.

Let u := x + t(y − x). Then d⊤F (u)d < 0. By Lemma 15.7, u ∈ C◦, which implies that there

exists a γ > 0 such that v := u + γd ∈ C. Then we have u ∈ C, v ∈ C and γd = v − u. Thus

(v − u)⊤F (u)(v − u) = γ2d⊤F (u)d < 0. By Theorem 15.3, we arrive at the contradiction that f

is not convex.

(If) Suppose that (15.6) holds. But then (15.5) holds for all x, y ∈ C, and by Theorem 15.3, it

follows that f is convex. �

A special case of the above result is the case when C = R
n.

Corollary 15.9. Let f : Rn → R be a twice continuously differentiable function on R
n. Then f

is convex iff the Hessian F (x) of f at x is positive semi-definite for all x ∈ R
n.

Finally, we end this chapter with an application of Theorem 15.1 to optimization.

Theorem 15.10. Suppose that the function f is convex and continuously differentiable on R
n.

Then x̂ ∈ R
n is a global minimizer of f iff ∇f(x̂) = 0.
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Proof. (Only if) Suppose that x̂ ∈ R
n is a global minimizer of f . Then x̂ ∈ R

n is a local minimizer

of f . By Theorem 14.5, it follows that ∇f(x̂) = 0.

(If) Let ∇f(x̂) = 0. By Theorem 15.1, for all x ∈ R
n, f(x) ≥ f(x̂) +∇f(x̂)(x− x̂) = f(x̂). Hence

x̂ ∈ R
n is a global minimizer of f . �

Exercise 15.11. Show that in each of the following cases, the function f is convex:

(1) f(x1, x2) = log(ea1x1 + ea2x2), where the a1, a2 are real constants.

(2) f(x1, x2) =
x2
1

x2
, for x2 > 0.

(3) f(x) = −√
x1x2, for x1 > 0 and x2 > 0.

Exercise 15.12.

(1) Let I ⊂ R be an interval.
(a) Let f : I → R be an increasing convex function, and let g : C → I be a convex function on

the convex set C ⊂ R
n. Prove that f ◦ g : C → R is a convex function on C.

(b) If on the other hand f : I → R is a decreasing convex function, and g : C → I is a concave1

function on the convex set C ⊂ R
n, then show that f ◦ g : C → R is a convex function on

C.

(2) Show that if g : C → R is concave and positive, then
1

g
is convex.

(3) Show that in each of the following cases, the function f is convex:

(a) f(x) = log

(
n∑

i=1

eaixi

)

(b) f(x) =

√√√√
n∑

i=1

x2
i

(c) f(x) = −
(

n∏

i=1

xi

) 1
n

(xi > 0).

Exercise 15.13. Prove the arithmetic mean-geometric mean inequality for positive numbers x1, . . . , xn:

x1 + · · ·+ xn

n
≥ n

√
x1 . . . xn.

Exercise 15.14. Let f, g be two given real-valued convex functions on R
n, and consider the following

convex optimization problem (in the variable x ∈ R
n), which we denote by (P ):

(P ) :

{
minimize f(x)
subject to g(x) ≤ 0.

This exercise is about determining an upper bound on the optimal value of (P ) by solving an associated
linear programming problem.

Given K points x(1), . . . , x(K) in R
n, consider the following linear programming problem (in the

variables w1, . . . , wK), which we denote by (LP ):

(LP ) :






minimize
K∑

k=1

wkf(x
(k))

subject to
K∑

k=1

wkg(x
(k)) ≤ 0,

K∑

k=1

wk = 1, wk ≥ 0 (k = 1, . . . ,K).

Suppose that x̂ is an optimal solution to (P ) and that ŵ=
[
ŵ1 . . . ŵK

]⊤
is an optimal basic solution to

(LP ).

(1) Show that
K∑

k=1

ŵkf(x
(k)) ≥ f(x̂).

(So the optimal value to (LP ) gives an upper bound for the optimal value of (P ).)

1that is, −g is convex
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(2) Assume that one of the given points x(k∗) is an optimal solution to (P ). Find an optimal solution
to (LP ), and show that the optimal values to (P ) and (LP ) are then the same.

Exercise 15.15. For which real values of a is the following function convex on R
3?

f(x1, x2, x3) = x2
1 + 5x2

2 + ax2
3 + 2x1x2 + 4x2x3 + x4

2, (x1, x2, x3) ∈ R
3.



Chapter 16

Newton’s method

In this chapter we assume that

f : Rn → R is twice continuously differentiable, and

its Hessian F (x) at x is positive definite for all x ∈ R
n.

This implies that f is (strictly) convex with a global minimizer x̂ ∈ R
n characterized by

∇f(x̂) = 0.

In this chapter we will learn how one can determine x̂ numerically using Newton’s method. This

method is iterative, and so it suffices to describe how from an iteration point x(k), one generates

the next iteration point x(k+1). The user can choose the starting point x(1) as best as possible.

The basic idea behind this method is the following. Given a starting point, we construct a

quadratic approximation to the objective function of second order, that is, the first and second

derivatives of the quadratic approximation match the respective ones of the original function at the

starting point. We then minimize this approximation, instead of the original objective function.

We use the minimizer of the approximation as the starting point in the next step, and repeat

the procedure. If the objective function is quadratic, then the approximation is exact, and the

method yields the true minimizer in just one step. If, on the other hand, the objective function

is not quadratic, then the approximation will produce only an estimate of the position of the true

minimizer. Figure 1 illustrates this idea.

x(k)

x(k+1)

x̂

f

q

Figure 1. The quadratic approximation q of f at x(k) is used to determine the estimate x(k+1)

of the true minimizer x̂ of f .

Given the iteration point x(k), we can first calculate the gradient∇f(x(k)) and the Hessian F (x(k)).

If ∇f(x(k)) = 0, then we have found the sought after minimizer x̂, and we terminate our

search.
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Suppose that ∇f(x(k)) 6= 0. The second order Taylor-approximation of the function f at the

point x(k), expressed in terms of the vector d = x− x(k) ∈ R
N is given by

f(x(k) + d) ≈ f(x(k)) +∇f(x(k))d+
1

2
d⊤F (x(k))d.

The right hand side above is a strictly convex quadratic function, which is minimized by the unique

solution to the following system in the unknown d ∈ R
n:

F (x(k))d = −(∇f(x(k)))⊤. (16.1)

Denote the unique solution to this by d(k). Since ∇f(x(k)) 6= 0, also d(k) 6= 0. Furthermore, the

directional derivative of f at x(k) in the direction of d(k) is

∇f(x(k))d(k) = −(d(k))⊤F (x(k))d(k) < 0.

Thus in the direction d(k), f decreases (see Lemma 14.2) that is, it is a descent direction for f at

x(k). Note that in order to arrive at this conclusion, we have used the fact that F (x(k)) is positive

definite.

The natural candidate for the next iteration point is x(k)+d(k), which minimizes the quadratic

Taylor approximation of f at x(k).

In the special case when n = 1 (so that f is a function of one variable), the system of equations

(16.1) collapses to just the single equation

f ′′(x(k))d = −f ′(x(k)),

and then

x(k+1) = x(k) − f ′(x(k))

f ′′(x(k))
.

Exercise 16.1. Using Newton’s method, find a minimizer (up to, say, two decimal places) of f given by

f(x) = x2 − sin x, x ∈ R.

Start with x(0) = 1.

Exercise 16.2. We want to use Newton’s method for finding a minimizer of the function f : R2 → R

given by
f(x1, x2) = x4

1 + 2x2
1x

2
2 + x4

2.

Show that if the current iterate x is of the form (a, a) with a 6= 0, then the next iterate is ( 2
3
a, 2

3
a). Based

on this observation, what do you think x̂ is?

Exercise 16.3. Let n be a given (large) integer. Consider the function f given by

f(x) =
n∑

j=1

(x4
j − x3

j + x2
j − xj),

where x = (x1, . . . , xn) ∈ R
n.

(1) Show that f is convex.

(2) Suppose want to use Newton’s method to find a minimizer of f in R
n. Suppose we start from

x(1) = (1, . . . , 1) ∈ R
n. Perform one iteration of Newton’s algorithm, and find x(2).



Chapter 17

Nonlinear least squares
problem: Gauss-Newton

In this chapter we shall consider the so-called nonlinear least-squares problem. This problem arises

in many different applications, among others when we want to fit a mathematical model to given

measurement data. Here one needs to determine the values of certain parameters in the model,

and this must be done so that the difference between the model and the measured data is made

as small as possible, that is, one wants to minimize the sum of the squares of the differences.

If the parameters enter the model linearly, then one obtains a linear least-squares problem.

This is a relatively simple type of problem, and we have already considered this in Part II of this

course; see Chapter 11.

If the parameters enter the model in a nonlinear manner, which is not unusual, then one

obtains a nonlinear least-squares problem. This type of problem has the form

minimize f(x) =
1

2

m∑

i=1

(hi(x))
2, (17.1)

where h1, . . . , hm are given functions from R
n to R. The factor

1

2
is introduced so that some of the

expressions are simplified below. Usually m is significantly larger than n, that is, the number of

functions hi is significantly larger than the number of variables xj . In the context of model fitting,

this corresponds to the fact that the number of measured observations is significantly larger than

the number of parameters to be determined.

An often relevant interpretation of the optimization problem (17.1) is that we actually want

to solve the nonlinear equation system





h1(x) = 0,
...

hm(x) = 0,

(17.2)

but since the number of equations (m) is larger than the number of variables (n), typically this

system has no solution. Then it is natural to ask for a solution x which fails to satisfy (17.2)

“as little as possible”, for example, an optimal solution to the problem (17.1). (Note that if the

system (17.2) has a solution x̂, then x̂ is a global optimal solution to the problem (17.1).)

Here is a concrete example of a nonlinear least-squares problem.
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Example 17.1. Suppose that we want to determine the coordinates (x1, x2) of a point P0 by

measuring the distances b1, . . . , bm from P0 to m reference points P1, . . . , Pm with known coordi-

nates.

P1

P2

P3

P4

P0
?

?

Figure 1. Estimating the coordinates of P0.

Consider the special case when m = 4, and the points P1, P2, P3, P4 have the following coor-

dinates:

P1 ≡ (−40, 30)

P2 ≡ (40, 30),

P3 ≡ (−30,−40)

P4 ≡ (30,−40).

Suppose that the measured distances of P0 to the points P1, P2, P3, P4, are equal to b1 = 51,

b2 = 52, b3 = 48, b4 = 49, respectively. Ideally, we want to determine x1, x2 such that

h1(x) :=
√
(x1 + 40)2 + (x2 − 30)2 − 51 = 0,

h2(x) :=
√
(x1 − 40)2 + (x2 − 30)2 − 52 = 0,

h3(x) :=
√
(x1 + 30)2 + (x2 + 40)2 − 48 = 0,

h4(x) :=
√
(x1 − 30)2 + (x2 + 40)2 − 49 = 0.

But since the measured distances bi’s are not exact owing to measurement errors, one doesn’t

really want an x = (x1, x2) that satisfies the above four equations exactly. Instead, we consider

the least-squares problem

minimize f(x) =
1

2

(
(h1(x))

2 + (h2(x))
2 + (h3(x))

2 + (h4(x))
2

)
.

Since the functions hi’s are nonlinear functions of x1 and x2, this is a nonlinear least-squares

problem. ♦

Even if in principle one could use Newton’s method for minimizing f given by (17.1), it is

most often both simpler and more efficient to use the so-called Gauss-Newton method, which uses

the special structure that the problem has. This method can be interpreted in two different ways.

We shall give both these interpretations here, and begin with the technically easier one.

17.1. First interpretation

The method is iterative, so it is enough to describe how one moves from an iteration point x(k) to

the next iteration point x(k+1).
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We linearize each function hi at the iteration point x(k), that is, approximate each hi by its

first order Taylor polynomial at x(k):

hi(x) ≈ hi(x
(k)) +∇hi(x

(k))(x− x(k)), i = 1, . . .m.

With d := x− x(k), that is, x = x(k) + d, we can rewrite the above as

hi(x
(k) + d) ≈ hi(x

(k)) +∇hi(x
(k))d, i = 1, . . .m.

Let h(x) ∈ R
m be the column with components h1(x), . . . , hm(x), and let ∇h(x) be the m × n

matrix with the rows ∇h1(x), . . . ,∇hm(x), that is,

h(x) =




h1(x)
...

hm(x)


 and ∇h(x) =




∂h1

∂x1
(x) . . .

∂h1

∂xn

(x)

...
. . .

...
∂hm

∂x1
(x) . . .

∂hm

∂xn

(x)



.

Then the objective function can be written compactly as

f(x) =
1

2
‖h(x)‖2,

while the first order approximations above can be written as

h(x(k) + d) ≈ h(x(k)) +∇h(x(k))d.

The corresponding approximation of the objective function f is then given by

f(x(k) + d) =
1

2
‖h(x(k) + d)‖2

≈ 1

2
‖h(x(k)) +∇h(x(k))d‖2

=
1

2
‖A(k)d− b(k)‖2, (17.3)

where we introduce the the matrix A(k) := ∇h(x(k)) and the vector b(k) := −h(x(k)). In the

Gauss-Newton method, we minimize the right hand side of (17.3) in the variable vector d ∈ R
n:

minimize
1

2
‖A(k)d− b(k)‖2. (17.4)

But this is a linear least-squares problem, which we have learnt to solve in Part II of this course.

It has a solution given by the normal equations (A(k))⊤A(k)d = (A(k))⊤b, that is,

(∇h(x(k)))⊤∇h(x(k))d = −(∇h(x(k)))⊤h(x(k)). (17.5)

Let d(k) be a solution to these normal equations.

Then the next iteration point is given by

x(k+1) = x(k) + d(k).

If the columns of ∇h(x(k)) are linearly independent (which is usually the case, since m > n),

then the matrix (∇h(x(k)))⊤∇h(x(k)) is positive definite, and so there is a unique solution to the

normal equations.
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17.2. Second interpretation

The second interpretation of the Gauss-Newton’s method stems from the observation that the

gradient and Hessian of the objective function f(x) =
1

2
‖h(x)‖2 can be written in the following

form:

∇f(x) = h(x)⊤∇h(x), (17.6)

F (x) = (∇h(x))⊤∇h(x) +

m∑

i=1

hi(x)Hi(x), (17.7)

where Hi(x) denotes the Hessian of the function hi at x.

Let x(k) be the current iteration point. If F (x(k)) is positive definite, then one can use Newton’s

method, that is, determine a direction d(k) via the equation system:

F (x(k)) = −∇f(x(k)). (17.8)

Furthermore, in many cases it is also possible to do the approximation

F (x(k)) ≈ ∇(h(x(k)))⊤∇h(x(k)), (17.9)

and ignore the term
m∑

i=1

hi(x
(k))Hi(x

(k)).

For example, in model fitting problems, it is reasonable that every hi(x) is “rather small”, at

least after a couple of iterations, if the model fits well to the data. It can also be the case that

the functions hi are “almost linear”, so that the second derivatives are small. If we use the

approximation (17.9) in (17.8), then we obtain the equation

(∇h(x(k)))⊤∇h(x(k))d = −(∇h(x(k)))⊤h(x(k)), (17.10)

which is the same as the equation (17.5) obtained in the preceding section.

An important advantage of the Gauss-Newton method (17.5), when compared with Newton’s

method (17.8), is that one doesn’t need to calculate any second derivatives.

We now revisit Example 17.1 considered at the beginning of this chapter and solve it using

the Gauss-Newton method.

Example 17.2. We start with

x(1) =

[
0

0

]
.

Then

h(x(1)) =




−1

−2

2

1


 ,

and f(x(1)) = 5. Also,

∇h(x(1)) =




0.8 −0.6

−0.8 −0.6

0.6 0.8

−0.6 0.8


 .

Thus

(∇h(x(1)))⊤∇h(x(1)) =

[
2 0

0 2

]
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and

(∇h(x(1)))⊤h(x(1)) =

[
1.4

4.2

]
.

Equation (17.10), namely

(∇h(x(1)))⊤∇h(x(1))d = −(∇h(x(1)))⊤h(x(1)),

then becomes [
2 0

0 2

]
d = −

[
1.4

4.2

]
,

which has the solution

d(1) =

[ −0.7

−2.1

]
.

We set

x(2) = x(1) + d(1) =

[ −0.7

−2.1

]
.

Thus we have completed one whole iteration. The subsequent calculations are cumbersome to

carry out by hand, and so we stop here. ♦

We should bear in mind that the problem (17.1) is in general not a convex problem. Thus

one cannot be sure of finding a global optimal solution to (17.1).

Exercise 17.3. Verify (17.6) and (17.7).

Exercise 17.4. Let δ1, δ2, δ3, δ4 be four given numbers which typically are quite “small”. Consider the
nonlinear least squares problem in the variable x ∈ R

2:

minimize f(x) =
1

2

(
(h1(x))

2 + (h2(x))
2 + (h3(x))

2 + (h4(x))
2

)
,

where the functions hi, i = 1, 2, 3, 4, are given as follows:

h1(x) = x2
1 − x2 − δ1,

h2(x) = x2
1 + x2 − δ2,

h1(x) = x2
2 − x1 − δ3,

h1(x) = x2
2 + x1 − δ4.

(1) First assume that δ1 = δ2 = δ3 = δ4 = 0. Show that x̂ := 0 ∈ R
2 is a global minimizer of f .

(This motivates the choice of x(0) as the starting point below.)

(2) Now suppose that δ1 = −0.1, δ2 = 0.1, δ3 = −0.2, δ4 = 0.2. Perform one iteration of the

Gauss-Newton algorithm starting with x(0) = 0 ∈ R
2. Determine if the x(1) you find is a local

minimizer of f .





Chapter 18

Optimization with
constraints:
Introduction

So far we have considered optimization problems where all the variables xj were free, and could

take arbitrarily large or small values. In many (most!) applications one doesn’t have this freedom.

So we now consider the problems where the variables satisfy constraints, that is, we consider

optimization problems that have the following general form:
{

minimize f(x),

subject to x ∈ F ,
(18.1)

where F is a subset of Rn and f is a given real-valued function defined (at least) on the set F .

The set F is called the feasible set for the problem (18.1). Soon we will consider F ’s having a

more explicit form, for example a problem with equality constraints:

F = {x ∈ R
n : hi(x) = 0, i = 1, . . . ,m},

where h1, . . . , hm are given functions from R
n to R, or a problem with inequality constraints:

F = {x ∈ R
n : gi(x) ≤ 0, i = 1, . . . ,m},

where g1, . . . , gm are given functions from R
n to R.

Definition 18.1. A point x ∈ R
n is called a feasible solution to the problem (18.1) if x ∈ F .

A point x̂ ∈ F is called a local optimal solution to the problem (18.1) if there exists a δ > 0

such that for all x ∈ F that satisfy ‖x− x̂‖ < δ, we have f(x̂) ≤ f(x).

A point x̂ ∈ F is called a global optimal solution to the problem (18.1) if for all x ∈ F ,

f(x̂) ≤ f(x).

It is obvious that every global optimal solution is also a local optimal solution, but it can

happen for some problems that that there exist local optimal solutions which are not global

optimal solutions.

Definition 18.2. A vector d ∈ R
n is called a feasible direction at x ∈ F for the problem (18.1) if

there exists an ǫ > 0 such that x+ td ∈ F for all t ∈ (0, ǫ).

A vector d ∈ R
n is called a feasible descent direction at x ∈ F for the problem (18.1) if there

exists an ǫ > 0 such that x+ td ∈ F and f(x+ td) < f(x) for all t ∈ (0, ǫ).

Lemma 18.3. Suppose that x̂ ∈ F is a local optimal solution to the problem (18.1). Then there

does not exist a feasible descent direction at x̂ ∈ F for the problem (18.1).

129
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Proof. Suppose, on the contrary, that there exists a feasible descent direction d ∈ R
n at x̂ ∈ F

for the problem (18.1). Then exists an ǫ > 0 such that

x̂+ td ∈ F and f(x̂+ td) < f(x̂) for all t ∈ (0, ǫ). (18.2)

On the other hand, since x̂ is a local optimal solution to the problem (18.1), exists a δ > 0 such

that

for all x ∈ F such that ‖x− x̂‖ < δ, f(x̂) ≤ f(x). (18.3)

Now take x = x̂+ td, where t =
1

2
min

{
δ

‖d‖ , ǫ
}
. Then x ∈ F and

‖x− x̂‖ = t‖d‖ ≤ 1

2

δ

‖d‖‖d‖ =
1

2
δ < δ.

Thus we arrive at the conclusion that both f(x) < f(x̂) (from (18.2)) and f(x̂) ≤ f(x) (from

(18.3)) must hold, a contradiction. �



Chapter 19

Optimality conditions:
equality constraints

In this chapter we suppose that the set F is defined via a bunch of equality constraints, that is,

F = {x ∈ R
n : hi(x) = 0, i = 1, . . . ,m},

where h1, . . . , hm are given functions from R
n to R. Thus the problem (18.1) now takes the

following form:
{

minimize f(x),

subject to hi(x) = 0, i = 1, . . . ,m.
(19.1)

We will assume that

f and the hi’s are continuously differentiable.

Usually, m < n, which means that the constraints are given by a nonlinear equation system with

more unknowns (n) than the number of equations (m). Most often, this equation system has

infinitely many solutions, and the optimization problem consists of determining that solution x

for which the objective function f takes the least possible value.

Let h(x) ∈ R
m denote the column vector having the components h1(x), . . . , hm(x), and let

∇h(x) be the m× n matrix with the rows ∇h1(x), . . . ,∇hm(x), that is,

h(x) =




h1(x)
...

hm(x)


 and ∇h(x) =




∂h1

∂x1
(x) . . .

∂h1

∂xn

(x)

...
. . .

...
∂hm

∂x1
(x) . . .

∂hm

∂xn

(x)



.

Definition 19.1. A feasible solution x ∈ F is called a regular point for the problem (19.1)

if the rows of the matrix ∇h(x) above are linearly independent, that is, the gradient vectors

∇h1(x), . . . ,∇hm(x) are linearly independent, that is, there do not exist scalars u1, . . . , um, such

that (u1, . . . , um) 6= (0, . . . , 0) and
m∑

i=1

ui∇hi(x) = 0.

Since the matrix ∇h(x) usually has fewer rows than columns (m < n), the rows are “almost

always” linearly independent. So in a certain sense, one would have to be particularly “unlucky”

to encounter a nonregular point. But sometimes one has such bad luck!

131
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Lemma 19.2. Suppose that x̂ ∈ F is both a regular point and a local optimal solution to the

problem (19.1). Then there cannot exist a vector d ∈ R
n which satisfies

∇f(x̂)d < 0 and

∇h(x̂)d = 0.

The proof of the above result is somewhat technical, relying on the Implicit Function Theorem.

So we relegate the proof to the appendix.

Using Lemma 19.2, it is rather easy to prove the following important result:

Theorem 19.3. Suppose that x̂ ∈ F is both a regular point and a local optimal solution to the

problem (19.1). Then there exists a vector û ∈ R
m such that

∇f(x̂) + û⊤∇h(x̂) = 0. (19.2)

Proof. Suppose that x̂ ∈ F is both a regular point and a local optimal solution to the problem

(19.1). Then by Lemma 19.2, there cannot exist a vector d such that ∇f(x̂)d < 0 and ∇h(x̂)d = 0.

But then there cannot exist a vector d such that ∇f(x̂)d > 0 and ∇h(x̂)d = 0 either. (Since

otherwise, we would have ∇f(x̂)(−d) < 0 and ∇h(x̂)(−d) = 0, which contradicts Lemma 19.2!)

Hence

∇f(x̂)d = 0 for all d satisfying ∇h(x̂)d = 0.

This means that (∇f(x̂))⊤ ∈ (ker∇h(x̂))⊥ = ran ((∇h(x̂)⊤), that is, there exists a vector û such

that (∇f(x̂))⊤ = (∇h(x̂))⊤(−û), that is, ∇f(x̂) + û⊤∇h(x̂) = 0. �

Note that (19.2) is a system of n equations. Together with the m constraint equations

hi(x̂) = 0, i = 1, . . . ,m,

we have totally a system of m+ n (nonlinear) equations in the unknowns x̂1, . . . , x̂n, û1, . . . , ûm.

These can be written in a compact form as follows:
{ ∇f(x̂)⊤ + (∇h(x̂))⊤û = 0,

h(x̂) = 0.
(19.3)

Example 19.4. Let us revisit the quadratic optimization problem with linear equality constraints:

minimize
1

2
x⊤Hx+ c⊤x+ c0,

subject to Ax = b,

where A ∈ R
m×n, c ∈ R

n, c0 ∈ R and the matrix H ∈ R
n×n is symmetric.

This is a special case of the problem (19.1), where

f(x) =
1

2
x⊤Hx+ c⊤x+ c0 and

h(x) = b−Ax.

Thus we have (∇f(x))⊤ = Hx + c and ∇h(x) = −A, so that the system (19.3) reduces to the

following linear system of equations in x̂ and û:
[

H −A⊤

A 0

] [
x̂

û

]
=

[ −c

b

]
,

which is precisely the system (10.3) which we had obtained in Chapter 10 earlier. ♦

Exercise 19.5. Let Q ∈ R
n×n be positive semidefinite and P ∈ R

n×n be positive definite. Consider the
problem in the variable x ∈ R

n:
maximize x⊤Qx,

subject to x⊤Px = 1.

(1) Show that every feasible point is a regular point.
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(2) Prove that if an optimal solution x̂ exists, then it is an eigenvector of P−1Q, and the maximum
value of the objective function is then the corresponding eigenvalue.

Exercise 19.6. Consider the following optimization problem:

maximize x+ y,

subject to

(
a

x

)2

+

(
b

y

)2

= 1.

Find candidate solutions. What does this say about the possibility of carrying a ladder round a corner of
two corridors, with widths a and b? (See Figure 1.)

a

b

x

y

Figure 1. The ladder problem.

Exercise 19.7. Solve the following optimization problem:

maximize x4 + y4 + z4,
subject to x2 + y2 + z2 = 1,

x+ y + z = 1.

Exercise 19.8. Consider the following optimization problem:

minimize x,
subject to h(x) = 0,

where h is given by

h(x) =





x2 if x < 0,
0 if 0 ≤ x ≤ 1,
(x− 1)2 if x > 1.

Check that:

(1) the feasible set is [0, 1],

(2) that x̂ := 0 is a local minimizer,

(3) f ′(x̂) = 1 and h′(x̂) = 0.

So it is not true that there exists a û such that ∇f(x̂)+ û⊤∇h(x̂) = 0. Does this mean that the statement
of Theorem 19.3 is wrong?

Exercise 19.9. A cylindrical tin can with a bottom and a lid is required to have a volume of 1000 cubic
centimeters. Find the dimensions of the can that will require the least amount of metal.

Exercise 19.10. Prove that among all triangles with a given perimeter P , the equilateral triangle has

the largest area. (The area of a triangle with sides a, b, c is given by
√

s(s− a)(s− b)(s− c), where s is
the semiperimeter, that is, s = P/2.)

Exercise 19.11. The output of a manufacturing operation is a quantity Q = Q(x, y) which is a function
of the capital equipment x and the hours of labour y. Suppose that the price of labour is p (per hour)
and price of investment in equipment is q (per unit). The plan is to spend the total amount b on the
manufacturing operation. For optimal production, we want to minimize Q(x, y) subject to qx + py = b.
Show that at the optimum (x̂, ŷ), there holds that

1

q

∂Q

∂x
=

1

p

∂Q

∂y
.

(In other words, at the optimum, the marginal change in the output per “dollar’s worth” of additional
capital equipment is equal to the marginal change in the output per dollar’s worth of additional labour.)
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Exercise 19.12. Suppose that x1, x2, x3, x4, x5 are real numbers such that

x1 + x2 + x3 + x4 + x5 = 8, and

x2
1 + x2

2 + x2
3 + x2

4 + x2
5 = 16.

We want to determine the largest possible value of x5. Pose this as an optimization problem, and solve it
using the method of Lagrange multipliers. Explain why your solution is a global maximizer.

19.1. Appendix: proof of Lemma 19.2

Proof of Lemma 19.2. Let d be such that ∇h(x̂)d = 0.

Step 1. We will show that for a suitable choice of u : [−ǫ, ǫ] → R
m, the map x : [−ǫ, ǫ] → R

n

defined by

x(t) = x̂+ td+ (∇h(x̂))⊤u(t) (t ∈ [−ǫ, ǫ]), (19.4)

has the following properties:

(1) x(t) ∈ F for all t ∈ [−ǫ, ǫ],

(2) t 7→ x(t) is continuously differentiable,

(3) x(0) = x̂.

To construct this curve t 7→ u(t), we consider the system of equations h(x̂+ td+(∇h(x̂))⊤u) = 0,

where for a fixed t ∈ R, we consider u ∈ R
m to be the unknown. This is a nonlinear system of

m equations in m unknowns, parameterized continuously by t. When t = 0, there is a solution,

namely u(0) := 0. The Jacobian matrix of the system with respect to u at t = 0 is the m × m

matrix ∇h(x̂)(∇h(x̂))⊤, and since ∇h(x̂) has full row rank (x̂ is regular!), it follows that the

matrix ∇h(x̂)(∇h(x̂))⊤ is invertible. So by the Implicit Function Theorem (recalled in Subsection

19.1.1 below), it follows that for each t in a small enough interval [−ǫ, ǫ] with ǫ > 0, there is a

solution u(t) ∈ R
m that satisfies

(1′) h(x̂+ td+ (∇h(x̂))⊤u(t)) = 0,

(2′) the map t 7→ u(t) is continuously differentiable, and

(3′) u(0) = 0.

It is now immediate that x defined by (19.4) has the desired properties (1), (2), (3) listed above.

Step 2. Since x̂ is a local minimum, we know that for all ξ’s in F close enough to x̂, f(x̂) ≤ f(ξ).

Now we will take the ξ’s to be x(t) with t > 0 small enough. Then

0 ≤ f(x(t)) − f(x̂) = f(x(t)) − f(x(0)),

for all t ∈ [0, δ] with a small enough δ > 0. But by the Mean Value Theorem applied to the

function t 7→ f(x(t)), it follows that there is a τ ∈ (0, t) such that

0 ≤ f(x(t)) − f(x(0)) = t∇f(x(τ))d,

and so ∇f(x(τ))d ≥ 0. But as t → 0, τ → 0 as well. Hence ∇f(x(0))d = ∇f(x̂)d ≥ 0. This

completes the proof. �

Finally, we remind the reader of the precise statement of the Implicit Function Theorem that

we used in the proof above.
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19.1.1. Implicit Function Theorem. Suppose we have a set of m equations in n > m variables

hi(u, t) = 0, i = 1, . . . ,m.

Here u ∈ R
m and t ∈ R

n−m. The implicit function theorem addresses the following question:

If n − m of the variables are fixed, then can the equations be solved for the remaining m

variables?

Thus, if we select the m variables u1, . . . , um, then we are interested in finding out if these can

be expressed in terms of the remaining variables, that is, if there are ‘nice’ functions ϕi such that

ui = ϕi(t1, . . . , tn−m), i = 1, . . . ,m.

The functions ϕi, if they exist, are called implicit functions. As usual, we denote by h(u, t) ∈ R
n

the column vector having the components h1(u, t), . . . , hm(u, t).

Theorem 19.13 (Implicit Function Theorem). Let (u0, t0) ∈ R
n be such that:

(1) h is continuously differentiable in a neighbourhood of (u0, t0),

(2) h(u0, t0) = 0, and

(3) the Jacobian matrix with respect to u at (u0, t0), namely


∂h1

∂u1
(u0, t0) . . .

∂h1

∂um

(u0, t0)

...
. . .

...
∂hm

∂u1
(u0, t0) . . .

∂hm

∂um

(u0, t0)



, is invertible.

Then there is a neighbourhood N of t0 in R
n−m such that for every t in this neighbourhood N ,

there is a corresponding vector u(t) ∈ R
m such that

(1) h(u(t), t) = 0,

(2) t 7→ u(t) : N → R
m is continuously differentiable, and

(3) u(t0) = u0.

Proof. See for example [R, Theorem 9.28, page 224-227]. �





Chapter 20

Optimality conditions:
inequality constraints

In this chapter we suppose that the set F is defined via a bunch of inequality constraints, that is,

F = {x ∈ R
n : gi(x) ≤ 0, i = 1, . . . ,m},

where g1, . . . , gm are given functions from R
n to R. Thus the problem (18.1) now takes the

following form:

{
minimize f(x),

subject to gi(x) ≤ 0, i = 1, . . . ,m.
(20.1)

We will assume that

f and the gi’s are continuously differentiable.

In the previous chapter, when we considered equality constraints, we assumed that usually we

have that m < n. In this chapter when we consider inequality constraints, we cannot make a

corresponding similar assumption. This is because it can very well happen that m > n without it

being the case that the problem is concocted in a contrived or artificial way. It can also equally

well happen that m < n, or that m = n. Thus we will not distinguish between these three cases

in the following treatment, and make no assumption concerning the relative magnitude of m and

n.

Definition 20.1. If x ∈ F , then we denote by Ia(x) (⊂ {1, . . . ,m}) the active index set, that is,

Ia(x) = {i : gi(x) = 0}.

In particular if x ∈ F and Ia(x) = ∅, then gi(x) < 0 for all i, that is, all the inequalities are

satisfied with a strict inequality. Such points lie in the interior of the feasible set F , and it is often

the easiest situation for analysis from the optimization point of view, than the case of boundary

points x of F for which Ia(x) 6= ∅.
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g 1
=
0 g

2
=

0

g3 = 0

x̂F

Figure 1. Local extremizer in the interior of the feasible region.

Theorem 20.2. Suppose that x̂ ∈ F with Ia(x̂) = ∅ is a local optimal solution to (20.1). Then

∇f(x̂) = 0.

Proof. When Ia(x̂) = ∅, then every vector d ∈ R
n is a feasible direction for (20.1) at x̂. Indeed

for every i, we have gi(x̂) < 0, and owing to the continuity of gi, it follows that for all sufficiently

small t > 0, g(x̂+ td) < 0.

Now suppose that ∇f(x̂) 6= 0. Let d := −(∇f(x̂))⊤ 6= 0. From the above, we know that this

special d is also a feasible direction for (20.1) at x̂. The directional derivative of f at x̂ in the

direction d is then given by

∇f(x̂)d = −∇f(x̂)(∇f(x̂))⊤ = −‖(∇f(x̂))⊤‖2 < 0,

which implies that (see Lemma 14.2) for sufficiently small t > 0, f(x̂ + td) < f(x̂). Thus this d

is a feasible descent direction for (20.1) at x̂, and by Lemma 18.3, x̂ cannot be a local optimal

solution. �

In the sequel we analyze points x̂ for which Ia(x̂) 6= ∅.

Lemma 20.3. Suppose that x̂ ∈ F with Ia(x̂) 6= ∅ is a local optimal solution to (20.1). Then

there does not exist a d ∈ R
n such that

∇f(x̂)d < 0, and (20.2)

∇gi(x̂)d < 0 for all i ∈ Ia(x̂). (20.3)

Proof. Suppose that the vector d ∈ R
n satisfies (20.2) and (20.3). Then for each i ∈ Ia(x̂),

we have gi(x̂ + td) < gi(x̂) = 0 for all sufficiently small t > 0, since the directional derivative

∇gi(x̂)d < 0 for all i ∈ Ia(x̂); see Lemma 14.2.

But also for each i 6∈ Ia(x̂), we have gi(x̂ + td) < 0 for all sufficiently small t > 0. This is

because gi is continuous and gi(x̂) < 0 for i 6∈ Ia(x̂).

From the above, we conclude that d is a feasible direction for (20.1) at x̂.

Furthermore, f(x̂+ td) < f(x̂) for all sufficiently small t > 0, since the directional derivative

∇f(x̂)d < 0 (again using Lemma 14.2).

Consequently, d is a feasible descent direction for (20.1) at x̂. Finally, by Lemma 18.3, x̂

cannot be a local optimal solution. �

Recall Farkas’ Lemma (Lemma 6.17):
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Lemma 20.4. Suppose that the m + 1 vectors q, p1, . . . , pm in R
n are given. Then exactly one

of the following two systems in x ∈ R
n and y ∈ R

m have at least one solution:

(L) :





q⊤x < 0,

p⊤1 x ≥ 0,
...

p⊤mx ≥ 0.

(R) :





q = y1p1 + · · ·+ ympm,

y1 ≥ 0,
...

ym ≥ 0.

We will now prove a consequence of this, which we will use.

Lemma 20.5. Suppose that vectors a1, . . . , am ∈ R
n are given. Then exactly one of the following

systems in d ∈ R
n and v ∈ R

m has at least one solution:

(L′) : a⊤i d < 0, i = 1, . . . ,m (R′) :





m∑

i=1

viai = 0,

m∑

i=1

vi > 0,

vi ≥ 0, i = 1, . . . ,m.

Proof. Introduce an extra variable t, taking values in R. To say that (L′) has a solution is the

same as saying that the following system in d and t has a solution:
{

t < 0,

−a⊤i d+ t ≥ 0, i = 1, . . .m.

We see that this is the same as (L) in Farkas’ Lemma if

x :=

[
d

t

]
, q :=

[
0

1

]
, and




p⊤1
...

p⊤m


 =




−a⊤1 1
...

...

−a⊤m 1


 .

With this in mind, (R) in Farkas’ Lemma takes the form in v ∈ R
m:





m∑

i=1

viai = 0,

m∑

i=1

vi = 1,

vi ≥ 0, i = 1, . . . ,m.

But it is clear that this system has a solution iff (R′) has a solution. (Why?) So the claim follows

from Farkas’ Lemma. �

Lemma 20.6. Let x̂ ∈ F with Ia(x̂) 6= ∅ be a local optimal solution to (20.1). Then there exist

scalars v0 ≥ 0 and vi ≥ 0 (i ∈ Ia(x̂)) such that

v0 +
∑

i∈Ia(x̂)

vi > 0, and

v0∇f(x̂) +
∑

i∈Ia(x̂)

vi∇gi(x̂) = 0.

Proof. This follows from Lemmas 20.3 and 20.5. �
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Definition 20.7. A feasible solution x ∈ F with Ia(x) 6= ∅ is called a regular point for the problem

(20.1) if there do not exist scalars vi ≥ 0, i ∈ Ia(x), such that
∑

i∈Ia(x)

vi > 0, and

∑

i∈Ia(x)

vi∇gi(x) = 0.

A feasible solution x ∈ F with Ia(x) = ∅ is always a regular point for the problem (20.1).

In light of Lemma 20.5, an equivalent way of expressing this definition is the following:

A feasible solution x ∈ F with Ia(x) 6= ∅ is a regular point for the problem (20.1) if there

exists at least one vector d ∈ R
n such that ∇gi(x)d < 0 for all i ∈ Ia(x).

Remark 20.8. From the Definition 20.7, we observe that for x ∈ F to be a regular point for

the problem (20.1), it is sufficient (but not necessary) that the gradients ∇gi(x), i ∈ Ia(x), are

linearly independent.

Lemma 20.9. Suppose that x̂ ∈ F with Ia(x̂) 6= ∅ is both a regular point and a local optimal

solution to (20.1). Then there exist scalars yi ≥ 0, i ∈ Ia(x̂) such that

∇f(x̂) +
∑

i∈Ia(x̂)

yi∇gi(x̂) = 0.

Proof. From the Definition 20.7, it follows that the v0 in Lemma 20.6 cannot be 0 since x̂ is a

regular point. Since v0 must then be strictly positive, one can divide the equation

v0∇f(x̂) +
∑

i∈Ia(x̂)

vi∇gi(x̂) = 0

throughout by v0, and set yi :=
vi
v0

(≥ 0) to obtain the desired conclusion. �

Lemma 20.10. Suppose that x̂ ∈ F with Ia(x̂) 6= ∅ is both a regular point and a local optimal

solution to (20.1). Then there does not exist a vector d ∈ R
n such that

∇f(x̂)d < 0, and

∇gi(x̂)d ≤ 0 for all i ∈ Ia(x̂).

Proof. This follows from Lemma 20.9 and Farkas’ Lemma (with q = (∇f(x̂))⊤, pi = −(∇gi(x̂))
⊤).

�

The following result is the main result in this chapter. The optimality conditions (1)-(4) given

below are called the Karush-Kuhn-Tucker conditions, and are abbreviated as “KKT-conditions”.

Theorem 20.11. Suppose that x̂ ∈ F is both a regular point and a local optimal solution to (20.1).

Then there exists a vector ŷ ∈ R
m such that:

(1) ∇f(x̂) +

m∑

i=1

ŷi∇gi(x̂) = 0,

(2) gi(x̂) ≤ 0, i = 1, . . . ,m,

(3) ŷi ≥ 0, i = 1, . . . ,m,

(4) ŷigi(x̂) = 0, i = 1, . . . ,m.



20. Optimality conditions: inequality constraints 141

Proof. Suppose first that Ia(x̂) 6= ∅. Then by Lemma 20.9, there exist scalars yi ≥ 0, i ∈ Ia(x̂),

such that

∇f(x̂) +
∑

i∈Ia(x̂)

yi∇gi(x̂) = 0.

Define ŷ ∈ R
m, having components ŷ1, . . . , ŷm, by setting

ŷi =

{
yi if i ∈ Ia(x̂),

0 if i 6∈ Ia(x̂).

Then (1)-(4) are satisfied.

Now suppose that Ia(x̂) = ∅. Then by Theorem 20.2, ∇f(x̂) = 0. By setting ŷ = 0 ∈ R
m,

clearly (1)-(4) are satisfied. �

Lemma 20.12. In the statement of Theorem 20.11, the condition (4) that ŷigi(x̂) = 0, i =

1, . . . ,m, can be replaced by the condition

(4′)

m∑

i=1

ŷigi(x̂) = 0.

Proof. Suppose first that ŷigi(x̂) = 0, i = 1, . . . ,m. Then obviously also (4′) holds.

On the other hand, if (1), (2), (3) and (4′) hold, then

m∑

i=1

(−ŷigi(x̂))︸ ︷︷ ︸
≥0

= 0,

and so −ŷigi(x̂) = 0 for each i, that is, (4) holds. �

Let g(x) ∈ R
m denote the column vector having the components g1(x), . . . , gm(x), and let

∇g(x) be the m× n matrix with the rows ∇g1(x), . . . ,∇gm(x), that is,

g(x) =




g1(x)
...

gm(x)


 and ∇g(x) =




∂g1
∂x1

(x) . . .
∂g1
∂xn

(x)

...
. . .

...
∂gm
∂x1

(x) . . .
∂gm
∂xn

(x)



.

Then using Lemma 20.12, we can write Theorem 20.11 in a compact manner:

Theorem 20.13. Suppose that x̂ ∈ F is both a regular point and a local optimal solution to (20.1).

Then there exists a vector ŷ ∈ R
m such that:

(1) ∇f(x̂) + ŷ⊤∇g(x̂) = 0,

(2) g(x̂) ≤ 0,

(3) ŷ ≥ 0,

(4) ŷ⊤g(x̂) = 0.

Example 20.14. Let us now consider a quadratic optimization problem with linear inequality

constraints:

minimize
1

2
x⊤Hx+ c⊤x+ c0,

subject to Ax ≥ b,

where A ∈ R
m×n, c ∈ R

n, c0 ∈ R and the matrix H ∈ R
n×n is symmetric. This is a special case

of the problem (20.1), where

f(x) =
1

2
x⊤Hx+ c⊤x+ c0 and g(x) = b−Ax.
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Thus we have (∇f(x))⊤ = Hx+c and ∇g(x) = −A, so that the KKT-conditions in Theorem 20.13

reduces to the following system:

(1) Hx+ c = A⊤ŷ,

(2) Ax̂ ≥ b,

(3) ŷ ≥ 0,

(4) ŷ⊤(Ax̂ − b) = 0.

♦

Exercise 20.15. In R
2 consider the constraints




x1 ≥ 0,
x2 ≥ 0,
x2 − (x1 − 1)2 ≤ 0.

Find the active index set at the point x = (1, 0) ∈ R
2. Show that the point x = (1, 0) is feasible but not

a regular point.

Exercise 20.16. Sketch the region in R
2 determined by the following constraints:




1− x− y ≥ 0,
5− x2 − y2 ≥ 0,
x ≥ 0.

Use the Karush-Kuhn-Tucker conditions to obtain the condition satisfied by ∇f at the point x̂ = (2,−1)
in R

2 if the function f has a maximum at x̂ subject to the given constraints. Explain the geometric
significance of your condition and sketch ∇f in your diagram.

Exercise 20.17. Consider the following optimization problem:

(NP ) :





minimize x1

subject to x2 − x3
1 ≤ 0,

−x2 − x3
1 ≤ 0.

(1) Depict the feasible region graphically. In the same figure, show the level curves of the objective
function using dotted lines. Hence conclude that the origin (0, 0) ∈ R

2 is a global minimizer.

(2) Write the KKT optimality conditions corresponding to the problem (NP ), and show that they
are not satisfied at the point (0, 0). Explain this by considering the regularity of the point (0, 0).



Chapter 21

Optimality conditions
for convex optimization

In this chapter we shall consider an extremely well-posed class of optimization problems, namely

the so-called convex problems. For these one can derive much stronger optimization conditions

than for general nonlinear problems.

First consider the general formulation of the optimization problem from Chapter 18:
{

minimize f(x),

subject to x ∈ F ,
(21.1)

where the feasible set F is a given subset of Rn and the objective function f is a given real-valued

function on F .

Definition 21.1. The problem (21.1) is called a convex optimization problem if F is a convex set

and f is a convex function on F .

For convex functions, one has the following nice equivalences:

Lemma 21.2. Suppose that (21.1) is a convex optimization problem, and that x̂ ∈ F . Then the

following are equivalent:

(1) x̂ is a global optimal solution to (21.1).

(2) x̂ is a local optimal solution to (21.1).

(3) There is no feasible descent direction d for (21.1) at x̂.

Proof. That (1)⇒(2) follows from the definitions. Lemma 18.3 gives (2)⇒(3). So the lemma

follows once we show that (3)⇒(1), which we prove below.

We will show that if x̂ is not a global optimal solution, then there exists a feasible descent

direction d for (21.1) at x̂.

Suppose that x̂ ∈ F is not a global optimal solution. Then there exists (at least one) x ∈ F
such that f(x) < f(x̂). Let x(t) = x̂+ td for t ∈ (0, 1), where d := x− x̂. So x(t) = x̂+ t(x − x̂).

Since F is a convex set, it follows that x(t) ∈ F for all t ∈ (0, 1), which implies in turn that d is a

feasible direction for (21.1) at x̂. Also, the convexity of f implies that

f(x(t)) = f(x̂+ t(x− x̂)) ≤ f(x̂) + t(f(x) − f(x̂))

for all t ∈ (0, 1). Thus d is a feasible descent direction for (21.1) at x̂. �

Since local and global optimal solutions are the same thing for convex problems, one can

simply say “optimal solution” without the adjective “local” or “global”. This is reminiscent of the

143
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terminology used in the first part of this course, when we dealt with linear optimization (where

all problems were convex, although we did not always stress this) and we also encountered this in

second part of the course when we dealt with convex quadratic optimization.

In the remainder of this chapter, we will consider problems having the form
{

minimize f(x),

subject to gi(x) ≤ 0, i = 1, . . . ,m,
(21.2)

where the objective function f and all the constraint functions gi are convex functions. Also, we

assume that f and all gi’s are continuously differentiable.

f and the gi’s are convex and continuously differentiable.

The feasible set F for the problem (21.2) is given by

F = {x ∈ R
n : gi(x) ≤ 0, i = 1, . . . ,m}. (21.3)

The verification that (21.2) is a convex optimization problem is left as an exercise.

Exercise 21.3. F defined by (21.3) is a convex set if the gi’s are convex.

The following important result shows that for convex problems of the form (21.2), the KKT-

conditions are sufficient for a global optimal solution.

Theorem 21.4. Consider the problem (21.2), where f and the gi’s are convex and continuously

differentiable. Suppose that x̂ ∈ R
n and ŷ ∈ R

m satisfy the following KKT-conditions:

(1) ∇f(x̂) +

m∑

i=1

ŷi∇gi(x̂) = 0,

(2) gi(x̂) ≤ 0, i = 1, . . . ,m,

(3) ŷi ≥ 0, i = 1, . . . ,m,

(4) ŷigi(x̂) = 0, i = 1, . . . ,m.

Then x̂ is a (global) optimal solution to the problem (21.2).

Proof. Consider the function ℓ : Rn → R defined by

ℓ(x) = f(x) +

m∑

i=1

ŷigi(x) (x ∈ R
n).

Observe that here ŷ is fixed, while x is the variable vector. By (3), ŷi ≥ 0, which, together with the

convexity of f and the gi’s, implies that ℓ is a convex function. Also ℓ is continuously differentiable

since f and the gi’s are continuously differentiable.

The condition (1) above gives ∇ℓ(x̂) = 0, and by Theorem 15.10, it follows that x̂ is a global

optimal solution for ℓ, that is, ℓ(x̂) ≤ ℓ(x) for all x ∈ R
n.

The condition (2) implies that x̂ ∈ F . Now let x ∈ F , that is, gi(x) ≤ 0 for all i = 1, . . . ,m.

We will now show that f(x̂) ≤ f(x). Indeed, we have

f(x̂)
(4)
= ℓ(x̂) ≤ ℓ(x) = f(x) +

m∑

i=1

ŷigi(x̂) ≤ f(x),

where the last inequality follows using (3) and the fact that gi(x) ≤ 0 for all i = 1, . . . ,m (x ∈ F).

This completes the proof. �

Thus the KKT-conditions are sufficient for optimality in the case of convex problems. We will

soon show that if the convex problem is also “regular”, then the KKT-conditions are also in fact

necessary.
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Definition 21.5. The convex problem (21.2) is said to regular if there exists an x0 ∈ R
n such

that gi(x0) < 0 for all i = 1, . . . ,m.

Lemma 21.6. If the problem (21.2) is regular and convex, then every feasible solution x ∈ F is

a regular point (in the sense of Definition 20.7) for the problem (21.2).

Proof. Let x ∈ F be a feasible solution for the problem (21.2).

If Ia(x) = ∅, the x is a regular point by definition; see Definition 20.7.

Now suppose that Ia(x) 6= ∅. We will show that there exists a d ∈ R
n such that ∇gi(x)d < 0

for all i ∈ Ia(x). Let d := x0 − x, where x0 is a vector as in the Definition 21.5. Then we know

that gi(x0) < 0 for each i. Now by the characterization of convexity given by Theorem 15.1, we

obtain for all i’s that

0 > gi(x0) ≥ gi(x) +∇gi(x)(x0 − x) = gi(x) +∇gi(x)d.

In particular, for i ∈ Ia(x), we have gi(x) = 0, and so the above yields that ∇gi(x)d < 0 for

all i ∈ Ia(x). But this implies that x is a regular point for the problem (21.2) in the sense of

Definition 20.7. (Why?) �

In light of the previous lemma, Theorem 20.11, and also 21.4, we have the following:

Theorem 21.7. Suppose that the problem (21.2) is regular and convex. Then x̂ is an (global)

optimal solution to (21.2) iff there exists a ŷ ∈ R
m such that the KKT-conditions are satisfied:

(1) ∇f(x̂) +
m∑

i=1

ŷi∇gi(x̂) = 0,

(2) gi(x̂) ≤ 0, i = 1, . . . ,m,

(3) ŷi ≥ 0, i = 1, . . . ,m,

(4) ŷigi(x̂) = 0, i = 1, . . . ,m.

Example 21.8. Consider the following problem in the variable vector x ∈ R
n:

minimize ‖x− p‖2,
subject to ‖x− q‖2 ≤ 1,

where p, q ∈ R
n are vectors satisfying

‖p‖2 = 1, ‖q‖2 = 1, p⊤q = 0.

See Figure 1 for a geometric interpretation when n = 2.

Let

f(x) := ‖x− p‖2 = (x− p)⊤(x − p) = x⊤x− 2p⊤x+ 1, and

g(x) := ‖x− q‖2 − 1 = (x − q)⊤(x− q)− 1 = x⊤x− 2q⊤x.

Then the given problem can be rewritten as:

minimize f(x),

subject to g(x) ≤ 0.

We have

∇f(x) = 2x⊤ − 2p⊤, and

∇g(x) = 2x⊤ − 2q⊤.
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Figure 1. The case when n = 2.

Moreover, the Hessians of f and g at x, respectively, are given by

F (x) = 2I, and

G(x) = 2I.

Since these Hessians are positive semi-definite for all x ∈ R
n, it follows from Corollary 15.9 that

f and g are convex. So the problem is convex.

Moreover, if we take x0 := q, then g(x0) = ‖q − q‖2 − 1 = −1 < 0, and so the problem is also

regular.

By Theorem 21.7, the KKT-conditions are necessary and sufficient for a global optimizer!

Since the problem has just one constraint, the KKT-conditions are the following, where x̂ is

the sought-after optimal solution and ŷ ∈ R:

KKT-1: ∇f(x̂) + ŷ∇g(x̂) = 0,

KKT-2: g(x̂) ≤ 0,

KKT-3: ŷ ≥ 0,

KKT-4: ŷg(x̂) = 0.

Thus:

KKT-1: x̂− p+ ŷ(x̂ − q) = 0,

KKT-2: x̂⊤x̂− 2q⊤x̂ ≤ 0,

KKT-3: ŷ ≥ 0,

KKT-4: ŷ(x̂⊤x̂− 2q⊤x̂) = 0.

We will consider the two possible cases: ŷ = 0 and ŷ > 0. (The case ŷ < 0 is prohibited by

KKT-3.)

1◦ ŷ = 0. Then KKT-1 implies that x̂ = p. Substituting this in KKT-2, we obtain x̂⊤x̂− 2q⊤x̂ =

p⊤p− 2q⊤p = 1− 0 = 1, which is not ≤ 0. Hence there cannot exist x̂ ∈ R
n and ŷ ∈ R satisfying

the KKT-conditions with ŷ = 0.

2◦ ŷ > 0. From KKT-1 we have x̂ =
p+ ŷq

1 + ŷ
.
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Since ŷ > 0, KKT-4 gives x̂⊤x̂− 2q⊤x̂ = 0, that is,

0 = x̂⊤x̂− 2q⊤x̂ =
(p+ ŷq)⊤(p+ ŷq)

(1 + ŷ)2
− 2q⊤(p+ ŷq)

1 + ŷ

=
1 + ŷ2

(1 + ŷ)2
− 2ŷ

1 + ŷ
=

1− 2ŷ − ŷ2

(1 + ŷ)2
.

Thus 1 − 2ŷ − ŷ2 = 0, and so ŷ ∈ {−1 +
√
2,−1−

√
2}. But since ŷ > 0, we have ŷ = −1 +

√
2.

The corresponding optimal x̂ is given by

x̂ =
p+ ŷq

1 + ŷ
=

p+ q(
√
2− 1)√
2

= q +
p− q√

2
.

These x̂ and ŷ satisfy the KKT-conditions above. Consequently, this x̂ is a global optimal solution

to the problem. ♦

Exercise 21.9. Suppose that G = {M1, . . . ,Mk} ⊂ R
n is a group (that is, it is closed under multiplication

and taking inverses). A function f : Rn → R is called G-invariant if f(Mix) = f(x) for all x ∈ R
n and all

i = 1, . . . , k. If x ∈ R
n, then define

x =
1

k

k∑

i=1

Mix.

Set S = {x ∈ R
n : Mix = x for i = 1, . . . , k}.

(1) Show that S is a subspace of Rn.

(2) If x ∈ R
n, then prove that x ∈ S .

(3) If f is convex and G-invariant, then show that for all x ∈ R
n, f(x) ≤ f(x).

Now consider the following optimization problem:

(P ) :

{
minimize f(x)
subject to gi(x) ≤ 0, i = 1, . . . ,m.

Here the gi are given functions from R
n to R. The problem (P ) is called G-invariant if f is G-invariant

and the feasible set F := {x ∈ R
n : gi(x) ≤ 0 for i = 1, . . . ,m} is G-invariant, that is, x ∈ F implies that

Mjx ∈ F for all j.

(4) Show that if (P ) is convex and G-invariant, and if there exists a local optimal solution to (P ),
then there exists a global optimal solution to (P ) which belongs to S .

(5) As an example, suppose that the f and gi are convex and symmetric. A symmetric function
h : Rn → R satisfies h(Px) = h(x) for all x and all permutation matrices P . Given a permutation
π of n elements π : {1, . . . n} → {1, . . . , n}, the corresponding permutation matrix

Pπ =




eπ(1)

...
eπ(n)


 ,

where ei is the row vector in R
n with 1 in the ith position and zeros elsewhere. Then it can be

checked that

Pπ




x1

...
xn


 =




xπ(1)

...
xπ(n)


 .

Show that if (P ) has a local optimal solution, then it has a global optimal solution of the form
(a, . . . , a) ∈ R

n.

(6) Solve the following optimization problem:

maximize x4 + y4 + z4,
subject to x2 + y2 + z2 ≤ 1,

x+ y + z ≤ 1.

Compare your solution with that obtained in Exercise 19.7.

Exercise 21.10. Let f(x) = x2
1x

4
2x

6
3, where x = (x1, x2, x3) ∈ R

3.
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(1) Is the function f convex?

(2) Determine if x̂ = 0 ∈ R
3 is a global optimal solution to the following problem:

minimize f(x),
subject to x2 + y2 + z2 ≤ 1.

(3) Find all global optimal solutions to the following problem:

maximize f(x),
subject to x2 + y2 + z2 ≤ 1.

Exercise 21.11. Let

f(x) = (x1 + x2)
2 + (x2 + x3)

2 + (x3 + x1)
2 − 12x1 − 8x2 − 4x3,

where x = (x1, x2, x3) ∈ R
3.

(1) Determine if x̂ = (2, 1, 0) ∈ R
3 is a global optimal solution to the following problem:

minimize f(x),
subject to 0 ≤ xj ≤ 2, j = 1, 2, 3.

(2) Determine the values of the three constants c1, c2, c3 such that x̂ = (2, 1, 0) ∈ R
3 is a global

optimal solution to the following problem:

minimize f(x),
subject to (x1 − c1)

2 + (x2 − c2)
2 + (x3 − c3)

2 ≤ 1.

Exercise 21.12. Let c be a constant. Consider the following optimization problem:

minimize 1
2
x2
1 +

1
2
x2
2 +

1
2
x2
3 − x1 − x2 + cx3

subject to x1 + x2 ≥ 4,
x2 + x3 ≥ 4,
x3 + x1 ≥ 4.

(1) Are there any values of c which make the point x̂ = (2, 2, 2) ∈ R
3 a global optimal solution to

the problem? If yes, find all such values of c.

(2) Also answer the same question as above when x̂ = (2, 2, 4).

Exercise 21.13. Consider the following optimization problem:

minimize 1
2
x⊤x

subject to Ax ≥ b,
x ≥ 0,

where A =

[
2 −2 1 1
1 1 2 −2

]
and b =

[
20
30

]
.

(1) Is there a global optimal solution x̂ satisfying Ax̂ = b and x̂ > 0?

(2) Is there a global optimal solution x̂ satisfying Ax̂ = b and moreover x̂3 = x̂4 = 0?

Exercise 21.14. The three points A, B, C in R
2 have coordinates (1, 0), (−1,

√
3), (−

√
3,−3) respectively.

(1) (Steiner’s problem) We want to find a point P in R
2 such that sum of the distances of P to

A, B, C, is minimized. Formulate this as an optimization problem. Verify that (0, 0) is the
required point. What is the measure of the angles APB, BPC, CPA? (This can be explained:
Imagine that the triangle ABC lies in a horizontal plane, and there are three pulleys at A,B,C.
Suppose three threads of long enough but equal lengths are tied at together at one end, and the
three free ends have a weight of 1kg attached. The three free ends with weights are passed over
the three pulleys, so that they hang under gravity’s influence and eventually come to rest. Now
nature chooses to minimize the potential energy. But this means that point where the ends of
the strings are tied together will precisely be at that point P that minimizes the sum of the
distances to the three points A, B, C. We know that the three equal vector forces (tensions
in the string) must add up to zero, and so the sin of the angles APB, BPC, CPA must be
the same. Hence these angles must be equal. But they add up to 360◦, and so each must be
120◦. The point P is referred to as the Toricelli point of the triangle ABC. Alternately, it
is also possible to prove that the Toricelli point is the minimizer using elementary Euclidean
geometry.)
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(2) Now we want to find a point P in R
2 such that maximum of the distances of P to A, B, C, is

minimized. Formulate this as an optimization problem. Find out if the solution to the previous
part, namely x̂ = (0, 0), is an optimal solution to your optimization problem.

Exercise 21.15. Let f and g be two real-valued convex and continuously differentiable functions on R
n.

Consider the following optimization problem:

(P ) :

{
minimize f(x)
subject to g(x) ≤ 0.

Given K points x(1), . . . , x(K) in R
n, consider the following linear programming problem in the variables

x ∈ R
n and z ∈ R:

(LP ) :





minimize z

subject to z −∇f(x(k))x ≥ f(x(k))−∇f(x(k))x(k),

−∇g(x(k))x ≥ g(x(k))−∇g(x(k))x(k),
for k = 1, . . . ,K.

Suppose that (LP ) has an optimal solution (x̂, ẑ).

(1) Show that ẑ is a lower bound for the optimal value of (P ), that is, f(x) ≥ ẑ for every feasible
solution x to (P ).

(2) Suppose that the optimal solution (x̂, ẑ) to (LP ) is such that x̂ = x(k) for a particular k ∈
{1, . . . ,K}. Prove that x̂ is then an optimal solution to (P ). Moreover, show that the optimal
values of (LP ) and (P ) are the same.

Exercise 21.16. Let g1, . . . , gm and f be real-valued convex and differentiable functions on R
n. Consider

the following optimization problem:

(P ) :

{
minimize f(x)
subject to gi(x) ≤ 0, i = 1, . . . ,m.

Suppose that the problem is regular. Suppose also that we have a guess x̂ ∈ R
n for an optimal solution

to (P ). One way of finding out whether x̂ is indeed optimal or not is the following.

First we linearize the functions f and g1, . . . , gm at the point x̂ (that is compute the first order
Taylor polynomials at x̂ for each of these functions). Now we consider a new optimization problem (LP )
obtained by replacing the functions in (P ) by their respective linearizations. Observe that (LP ) is a linear
programming problem.

Show that x̂ is am optimal solution to (P ) if and only if x̂ is an optimal solution to (LP ).

Hint: First write the dual to (LP ), and then use the duality theory of linear programming and the
KKT-conditions.

Exercise 21.17. Consider the optimization problem in the variable x ∈ R
2:

minimize 1
2
(Ax− b)⊤(Ax− b),

subject to Ax ≥ b,

where A =




2 −1
−1 2
1 1


 and b =




2
1
4


.

(So this problem is similar to the one considered in Exercise 11.4, but now we demand all the com-
ponents in the error vector Ax− b must be nonnegative.)

Show that (13/6, 11/6) is an optimal solution.

Exercise 21.18. Consider the problem

(P ) :






minimize cx1 − 4x2 − 2x3,
subject to x2

1 + x2
2 ≤ 2,

x2
2 + x2

3 ≤ 2,
x2
3 + x2

1 ≤ 2,

where c is a constant.

(1) Verify that (P ) is a convex optimization problem.

(2) Write the KKT-conditions for the problem (P ).
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(3) Are there any values of c which make the point x = ( 7
5
, 1
5
, 1
5
) an optimal solution to the problem?

If so, find all of these possible values of c.

(4) Are there any values of c which make the point x = (1, 1, 1) an optimal solution to the problem?
If so, find all of these possible values of c.

Exercise 21.19. Let

f(x) = x2
1 − x1x2 + x2

2 + x2
3 − 2x1 + 4x2,

g1(x) = −x1 − x2,

g2(x) = 1− x3.

(1) Consider the problem

(Pd) :

{
minimize f(x),
subject to x ∈ R

3.

Determine a global minimizer to (Pd). Justify your answer.

(2) Consider the problem

(Pc) :





minimize f(x),
subject to g1(x) ≤ 0,

g2(x) ≤ 0.

Write the KKT-conditions for the problem (Pc). Show that the vector x̂ = (1,−1, 1) satisfies
the KKT-conditions for (Pc). Conclude that x̂ is a global optimal solution to (Pc).

Exercise 21.20. Consider the following nonlinear optimization problem:

(NP ) :






minimize e−(x1+x2)

subject to ex1 + ex2 ≤ 20,
x1 ≥ 0.

(1) Show that (NP ) is a regular convex optimization problem.

(2) Write the KKT optimality conditions and solve them. Is there a globally optimal solution to
the problem (NP )? Justify your answer.



Chapter 22

Lagrange relaxation

An important tool for handling certain types of optimization problems under constraints is the so-

called Lagrange relaxation method. This chapter presents some underlying basic concepts behind

this method.

We consider the following optimization problem, labelled (P ):

(P ) :





minimize f(x),

subject to gi(x) ≤ 0, i = 1, . . . ,m,

x ∈ X.

(22.1)

Here X is a given subset of Rn, while g1, . . . , gm and f are given real-valued functions defined (at

least) on X . The constraints gi(x) ≤ 0, i = 1, . . . ,m, can be written compactly as g(x) ≤ 0, where

g(x) denotes the column vector having the components g1(x), . . . , gm(x). The constraints in (P )

are of two types:

(1) the explicit constraints g(x) ≤ 0, and

(2) the implicit constraints x ∈ X , which can be of the same type as the explicit ones, namely

X = {x ∈ R
n : hi(x) ≤ 0, i = 1, . . . , k},

where hi are given real-valued functions.

There exists a certain freedom in the choosing which constraints are regarded as explicit or implicit.

We shall comment below how the division of the constraints will be done in order to get the greatest

possible benefit of the results. However, first we will define the concept of Lagrange relaxation.

22.1. Definition of the relaxed Lagrange problem

Let y ∈ R
m be a given vector with nonnegative components, that is, y ≥ 0.

The following problem (PRy) constitutes a relaxed Lagrange problem with respect to the

explicit constraints g(x) ≤ 0 of the original problem (P ) above given by (22.1):

(PRy) :

{
minimize f(x) + y⊤g(x),

subject to x ∈ X,
(22.2)

where y⊤g(x) naturally means the sum
m∑

i=1

yigi(x).

On can interpret (PRy) as if one has put nonnegative “prices” yi on the explicit constraints

in (P ) and transferred them to the objective function. The yi’s are usually called Lagrange

multipliers.

151
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The Lagrange relaxation method is usable in practice if the (PRy) is substantially simpler to

solve than (P ).

Thus the basic rule, somewhat simplified, for determining which constraints should be explicit

and which ones implicit is that the “hard” constraints must be explicit, while the “easy” constraints

must be implicit. Then (PRy) is a problem with only “easy” constraints.

Example 22.1. Consider that the original problem (P ) is of the following form:

P :





minimize

n∑

j=1

fj(xj),

subject to

n∑

j=1

gij(xj) ≤ bi, i = 1, . . . ,m,

xmin

j ≤ xj ≤ xmax

j , j = 1, . . . , n,

where the fj and gij are given convex functions and the xmin

j , xmax

j , bi are given constants. If we

define

X = {x ∈ R
n : xmin

j ≤ xj ≤ xmax

j , j = 1, . . . , n},
then the relaxed Lagrange problem is:

(PRy) :





minimize

n∑

j=1

fj(xj) +

m∑

i=1

yi




n∑

j=1

gij(xj)− bi


 ,

subject to x ∈ X,

which can equivalently be also written as

(PRy) :





minimize

n∑

j=1

(
fj(xj) +

m∑

i=1

yigij(xj)

)
− y⊤b,

subject to x ∈ X.

It can be seen that (PRy) can be transformed to the following n one variable problems for j =

1, . . . , n:

minimize fj(xj) +

m∑

i=1

yigij(xj),

subject to x ∈ [xmin

j , xmax

j ].

Minimizing n convex one variable functions over a given interval is usually much easier than solving

the original problem (P ). ♦

22.2. Global optimality conditions

What is the use of Lagrange relaxation? The underlying motivation is the hope that by choosing

a “right” price vector y, one can find an optimal solution to the (easy) problem (PRy), which is

also an optimal solution to the original (hard) problem (P ). We shall see later on that this is

actually possible in certain cases. However, first we need some additional definitions.

Definition 22.2. A function L : X × R
m → R, defined by

L(x, y) = f(x) + y⊤g(x) (x ∈ X, y ∈ R
m),

is called the Lagrangian associated with the problem (P ).
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Definition 22.3. A pair (x̂, ŷ) ∈ X × R
m is said to satisfy the global optimality conditions

associated with (P ) if

(1) L(x̂, ŷ) = min
x∈X

L(x, ŷ),

(2) g(x̂) ≤ 0,

(3) ŷ ≥ 0,

(4) ŷ⊤g(x̂) = 0.

The condition (1) means that x̂ is an optimal solution to the Lagrange relation problem (PRy).

The condition (4) (in combination with (2) and (3)) means that for i, ŷi = 0 or gi(x̂) = 0. The

terminology “global optimality conditions”, is motivated by the following result.

Theorem 22.4. If (x̂, ŷ) ∈ X × R
m satisfy the global optimality conditions associated with (P ),

then x̂ is an optimal solution to (P ).

Proof. The condition (2) guarantees that x̂ is a feasible solution to (P ). Let x be another feasible

solution to (P ), that is, x ∈ X and g(x) ≤ 0. Then we have

f(x) ≥ f(x) + ŷ⊤g(x) (g(x) ≤ 0 and using (3))

≥ f(x̂) + ŷ⊤g(x̂) (from (1))

= f(x̂) (from (4)).

Thus for all feasible solutions x to (P ), we have f(x) ≥ f(x̂), and so x̂ is an optimal solution to

the problem (P ). �

Thus the global optimality conditions are sufficient for x̂ to be an optimal solution to (P ).

However, they are not necessary, that is, if x̂ is an optimal solution to (P ), then it is not certain

that there exists some ŷ ∈ R
m such that (x̂, ŷ) satisfy the global optimality conditions associated

with (P ). For certain classes of problems, the global optimality conditions are also necessary, that

is x̂ is an optimal solution to (P ) iff there exists a vector ŷ such that (x̂, ŷ) satisfy the global

optimality conditions associated with (P ).

Example 22.5 (Convex, continuously differentiable functions). Suppose that X = R
n and the

functions g1, . . . , gm and f are convex and continuously differentiable. For a given ŷ ≥ 0, the

function

x 7→ L(x, ŷ) = f(x) + ŷ⊤g(x) (x ∈ R
n)

is also convex and continuously differentiable in x. Thus, by Theorem 15.10, the condition (1) in

the global optimality conditions is equivalent with

∇f(x̂) +
m∑

i=1

ŷi∇gi(x̂) = 0.

Consequently, in this case, the global optimality conditions are the same as the KKT-conditions.

So in addition to the assumptions above, if we assume also that there exists a point x0 ∈ R
n

such that gi(x0) < 0 for all i = 1, . . . ,m, then the global optimality conditions are also necessary

for x̂ to be an optimal solution to (P ); see Definition 21.5 and Theorem 21.7. ♦

22.3. The dual problem

According to the Theorem 22.4 one way to solve the problem (P ) is to find (x̂, ŷ) satisfying the

global optimality conditions associated with (P ). Despite the fact that one can’t always be sure

that there actually exists a pair (x̂, ŷ) satisfying the global optimality conditions, it can nevertheless
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be fruitful to seek such a pair. The search itself can give useful information about the original

problem (P ), for example it can yield lower bounds on the optimal value of (P ). The question then

arises: is there a systematic method for seeking a pair satisfying the global optimality conditions?

A partial answer is given by a result which we shall soon see, namely that the only y which can

appear as the “y-part” of a pair satisfying the global optimality conditions is the optimal solution

to a certain dual problem to (P ).

Let Rm
+ = {y ∈ R

m : y ≥ 0}. For a somewhat simplified account, so that the most important

ideas are highlighted, we shall assume in the remainder of this chapter that for each y ∈ R
m
+ , there

always exists at least one optimal solution to the relaxed Lagrange problem.

The dual objective function ϕ : Rm
+ → R is defined as follows:

ϕ(y) = min
x∈X

(
f(x) + y⊤g(x)

)
= min

x∈X
L(x, y).

Lemma 22.6. If x is a feasible solution to (P ) and y ≥ 0 then ϕ(y) ≤ f(x).

Proof. Let x be a feasible solution to (P ), that is, g(x) ≤ 0 and x ∈ X . Then we have

ϕ(y) ≤ f(x) + y⊤g(x) ≤ f(x),

where the first inequality follows from the definition of ϕ, while the second one is a result of the

facts that y ≥ 0 and g(x) ≤ 0. �

Thus for each y ≥ 0, ϕ(y) gives a lower bound for the optimal value of the problem (P ). The

dual problem to (P ) is the problem of finding the best (greatest) lower bound, that is, the following

maximization problem:

(D) :

{
maximize ϕ(y),

subject to y ≥ 0.
(22.3)

Lemma 22.7. If

(1) x̂ is a feasible solution to (P ),

(2) ŷ ≥ 0 and

(3) ϕ(ŷ) = f(x̂),

then x̂ is an optimal solution to (P ) and ŷ is an optimal solution to (D).

Proof. Let x be a feasible solution to (P ) and y be a feasible solution to (D). From Lemma 22.6,

we obtain ϕ(y) ≤ f(x̂) and ϕ(ŷ) ≤ f(x). If these are combined with ϕ(ŷ) = f(x̂), we obtain that

ϕ(y) ≤ f(x̂) = ϕ(ŷ) and

f(x̂) = ϕ(ŷ) ≤ f(x).

But this means that ŷ is an optimal solution to (D) and x̂ is an optimal solution to (P ). �

Now we can strengthen Theorem 22.4.

Theorem 22.8. (x̂, ŷ) ∈ X × R
m satisfy the global optimality conditions associated with (P) iff

(1) x̂ is an optimal solution to (P),

(2) ŷ is an optimal solution to (D), and

(3) ϕ(ŷ) = f(x̂).

Proof. Suppose first that (x̂, ŷ) ∈ X×R
m satisfy the global optimality conditions associated with

(P ). Then we have already seen in Theorem 22.4 that x̂ is an optimal solution to (P ). We also

have that

ϕ(ŷ) = min
x∈X

L(x, ŷ) = L(x̂, ŷ) = f(x̂) + ŷ⊤g(x̂) = f(x̂) + 0 = f(x̂),
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which proves (3). Also, by Lemma 22.7, ŷ is an optimal solution to (D).

Now suppose that x̂ is an optimal solution to (P ), ŷ is an optimal solution to (D), and

ϕ(ŷ) = f(x̂). Now x̂ and ŷ, being feasible solutions for (P ) and (D), respectively, the conditions

(2) and (3) of the global optimality conditions are satisfied. Also,

ϕ(ŷ) = min
x∈X

(
f(x) + ŷ⊤g(x)

)
≤ f(x̂) + ŷ⊤g(x̂) ≤ f(x̂),

where the last inequality is a result of the facts that ŷ ≥ 0 and g(x̂) ≤ 0. But we know that

ϕ(ŷ) = f(x̂), and so

ϕ(ŷ) = f(x̂) + ŷ⊤g(x̂) = f(x̂).

Consequently, ŷ⊤g(x̂) = 0, that is, condition (4) of the global optimality conditions is satisfied,

and also

min
x∈X

L(x, ŷ) = ϕ(ŷ) = f(x̂) + ŷ⊤g(x̂) = L(x̂, ŷ),

that is, condition (1) of the global optimality conditions is satisfied. �

The next result says that the dual objective function is well-suited for maximization.

Theorem 22.9. ϕ is a concave function (that is, −ϕ is a convex function) on R
m
+ .

Proof. Let y, z ∈ R
m
+ and t ∈ (0, 1). Then

ϕ((1 − t)y + tz)

= min
x∈X

(
f(x) + ((1 − t)y + tz)⊤g(x)

)

= min
x∈X

(
(1 − t)

(
f(x) + y⊤g(x)

)
+ t
(
f(x) + z⊤g(x)

))

≥ min
x∈X

(
(1 − t)

(
f(x) + y⊤g(x)

))
+ min

x∈X

(
t
(
f(x) + z⊤g(x)

))

= (1− t) min
x∈X

(
f(x) + y⊤g(x)

)
+ tmin

x∈X

(
f(x) + z⊤g(x)

)

= (1− t)ϕ(y) + tϕ(z).

Thus the result follows. �

Example 22.10. Consider the following problem in the variable vector x ∈ R
n:

minimize 1
2x

⊤x− c⊤x,

subject to 1
2x

⊤x− a⊤x ≤ 0,

where c, a ∈ R
n are given, and satisfy a⊤a = 1, c⊤c = 1, a⊤c = 0. The Lagrangian for this

problem is given by

L(x, y) =
1

2
x⊤x− c⊤x+ y

(
1

2
x⊤x− a⊤x

)

=
1 + y

2
x⊤x− (c+ ya)⊤x (x ∈ R

n, y ∈ R).

The relaxed Lagrange problem (PRy) is: given y ≥ 0, minimize the function x 7→ L(x, y) on R
n.

In our case, the optimal solution to (PRy) is given by

x̂(y) =
1

1 + y
(c+ ya).
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(See Theorem 9.13.) The dual objective function is given by

ϕ(y) = L(x̂(y), y) = − (c+ ya)⊤(c+ ya)

2(1 + y)
=

1 + y2

2(1 + y)
,

where we have used the relations a⊤a = 1, c⊤c = 1, and a⊤c = 0. The dual problem is that of

maximizing the map y 7→ ϕ(y) subject to y ≥ 0. But

ϕ′(y) =
1− 2y − y2

2(1 + y)2
.

If y ≥ 0, then ϕ′(y) = 0 iff y = ŷ :=
√
2− 1. Now let

x̂ := x̂(ŷ) =
1√
2
(c+ (

√
2− 1)a).

Then it can be verified that the following hold:

(1) x̂ minimizes the map x 7→ L(x, ŷ), since x̂ = x̂(ŷ).

(2) x̂ is a feasible solution to the primal problem.

(3) ŷ ≥ 0.

(4) ŷ
(
1
2 x̂

⊤x̂− a⊤x̂
)
= 0.

Thus (x̂, ŷ) satisfy the global optimality conditions, which implies that x̂ is an optimal solution to

the original (primal) problem. ♦

Exercise 22.11. Suppose that aj , j = 1, . . . , n, and b are given positive constants. Solve the following
optimization problem and explain why your solution is globally optimal.

minimize

n∑

j=1

x2
j ,

subject to
n∑

j=1

ajxj ≥ b,

xj ≥ 0, j = 1, . . . , n.

Exercise 22.12. Suppose that aj , j = 1, . . . , n, and b are given positive constants. Solve the following
optimization problem and explain why your solution is globally optimal.

maximize

n∑

j=1

log xj ,

subject to
n∑

j=1

ajxj ≤ b,

xj > 0, j = 1, . . . , n.

Exercise 22.13. Suppose that aj , bj , for j = 1, . . . , n, and b0 are given positive constants. Solve the
following optimization problem and explain why your solution is globally optimal.

minimize

n∑

j=1

ajxj ,

subject to
n∑

j=1

bj
xj

≤ b0,

xj > 0, j = 1, . . . , n.
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Exercise 22.14. Suppose that aj , cj , for j = 1, . . . , n, and b are given positive constants. Solve the
following optimization problem and explain why your solution is globally optimal.

minimize
n∑

j=1

ecjxj ,

subject to

n∑

j=1

ajxj ≥ b,

xj > 0, j = 1, . . . , n.

Exercise 22.15. Suppose that aj , j = 1, . . . , n, and b are given positive constants. Consider the following
optimization problem (P ):

(P ) :





minimize

n∑

j=1

x3
j ,

subject to
n∑

j=1

ajxj ≥ b,

xj ≥ 0, j = 1, . . . , n.

Find the Lagrange dual problem (D) to (P ) when the “sum constraint” is relaxed. Find an optimal
solution to (D). Hence find an optimal solution to (P ).

Exercise 22.16. Consider the following optimization problem (P ):

(P ) :





minimize x4
1 + 2x1x2 + x2

2 + x8
3,

subject to (x1 − 2)2 + (x2 − 2)2 + (x3 − 3)2 ≤ 6,
x1x2x3 ≤ 10,
x1 ≥ 1,
x2 ≥ 0,
x3 ≥ 0.

Use the Lagrange relaxation method to show that x̂ = (1, 1, 1) ∈ R
3 is a global optimal solution to (P ).

Hint: Take X = R
3. Find a ŷ such that the global optimality conditions are satisfied by the pair

(x̂, ŷ).

Exercise 22.17. Consider the following optimization problem:

(P ) :





minimize f(x),
subject to g(x) ≤ 0,

x ∈ X,

where g has m components g1, . . . , gm. Let ϕ : Rm
+ → (R ∪ {−∞}) be defined as follows:

ϕ(y) = inf
x∈X

(f(x) + y⊤g(x)) = inf
x∈X

L(x, y).

Check that Lemma 22.6 continues to hold with this ϕ.

Now consider the following dual optimization problem:

(D) :

{
maximize ϕ(y),
subject to y ≥ 0.

Verify that Lemma 22.7 and Theorem 22.8 still hold.

Consider the linear programming problem (LP )

(LP ) :






minimize c⊤x,
subject to Ax ≥ b,

x ≥ 0,

(where A ∈ R
m×n, b ∈ R

m and c ∈ R
n), as a special instance of the optimization problem (P ). Write the

dual optimization problem to (LP ) and check that you get the dual program (D) as in (6.2) of Chapter 6.
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Exercise 22.18. Consider the problem given in Exercise 21.18 with c = −6. Find the value ϕ(y) of
the objective function ϕ of the dual problem (D) to the given problem (P ) when y = (1, 1, 1). Is this y
optimal for the dual problem?

Hint: When c = −6 in the problem (P ) and x = (1, 1, 1) is optimal for (P ), what is the corresponding
value of y obtained from the KKT-conditions in Exercise 21.18?

Exercise 22.19. Consider the problem (Pc) given in Exercise 21.19. Show that the dual problem (Dc)
to the problem (Pc) is:

(Dc) :





maximize −y2
1 + 2y1 − y2

2

4
+ y2 − 4,

subject to y1 ≥ 0,
y2 ≥ 0.

Find a global optimal solution to (Dc). Justify your answer.

Hint: Use the solution to Exercise 21.19.
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Chapter 23

Subspaces

Recall that a vector space is, roughly speaking, a set of elements (called “vectors”), such that any

two vectors can be “added”, resulting in a new vector, and any vector can be multiplied by an

element from R so as to give a new vector. The precise definition is recalled below.

Definition 23.1. A vector space V is a set together with two functions, + : V × V → V , called

vector addition, and · : R× V → V , called scalar multiplication, such that the following hold:

(V1) For all v1, v2, v3 ∈ V , v1 + (v2 + v3) = (v1 + v2) + v3.

(V2) There exists an element 0 ∈ V such that for all v ∈ V , v + 0 = v = 0 + v. (The element

0 is called the zero vector.)

(V3) For each element v ∈ V , there exists a unique element in V , denoted by −v, such that

v + (−v) = 0 = −v + v.

(V4) For all v1, v2 ∈ V , v1 + v2 = v2 + v1.

(V5) For all v ∈ V , 1 · v = v.

(V6) For all α, β ∈ R and all v ∈ V , α · (β · v) = (αβ) · v.
(V7) For all α, β ∈ R and all v ∈ V , (α+ β) · v = α · v + β · v.
(V8) For all α ∈ R and all v1, v2 ∈ V , α · (v1 + v2) = α · v1 + α · v2.

23.1. Definition of a subspace

A subset S of a vector space V is called a subspace if

S1. 0 ∈ S.

S2. If v1, v2 ∈ S, then v1 + v2 ∈ S.

S3. If v ∈ S and α ∈ R, then α · v ∈ S.

From this definition, it follows that if the vectors v1, . . . , vk belong to a subspace S, then every

linear combination of these vectors also belongs to S.

Exercise 23.2. Show that if X ⊂ R
n, then the intersection of all subspaces containing X is a subspace

of Rn, and it is the smallest subspace of Rn that contains X. This subspace is called the span of X, and
is denoted by spanX. What is span ∅? If the set X = {v1, . . . , vk}, then show that

spanX = {α1v1 + · · ·+ αkvk : α1, . . . , αk ∈ R}.

Exercise 23.3. Show that the set S = {A ∈ R
n×n : A⊤ = A} of all symmetric n × n matrices is a

subspace of the vector space R
n×n.
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23.2. Basis for a subspace

A basis of a subspace S is a subset B of S such that spanB = S and B is linearly independent.

If B = {v1, . . . , vk} is a basis of S, then every vector v ∈ S can be written in a unique way

as a linear combination of the basis vectors v1, . . . , vk. The fact that every vector can be written

as a linear combination of the basis vectors follows from the spanning property of B, and the

uniqueness of the associated scalars follows from the linear independence of B.

Exercise 23.4. Show that B = ∅ is a basis for the subspace S = {0}.
Exercise 23.5. Find a basis for the subspace S of Rn×n consisting of all symmetric n× n matrices.

23.3. Dimension of a subspace

Although there can be many different bases for the same subspace, it turns out that the number

of vectors in each basis for the same subspace cannot change. Thus, if B = {v1, . . . , vk} and

B′ = {u1, . . . , up} are two different bases for the same subspace, then k = p. The number of

vectors in the basis (which is now a well-defined notion) of a subspace S is called the dimension

of the subspace, denoted by dimS.

Recall the following important result from linear algebra:

Theorem 23.6. Suppose that S is a subspace of dimension k. Let v1, . . . , vk be vectors from S.

Then the following are equivalent:

(1) v1, . . . , vk are linearly independent.

(2) The span of v1, . . . , vk is S.

(3) {v1, . . . , vk} is a basis for S.

Proof. See for example [T]. �

A consequence of this result is the following: if one wants to find a basis for a subspace S

which we know has dimension k, it suffices to find k linearly independent vectors in S.

Exercise 23.7. What is the dimension of the subspace S = {0}?
Exercise 23.8. What is the dimension of the subspace S of R

n×n consisting of all symmetric n × n
matrices.

Exercise 23.9. Suppose that S1, S2 are finite-dimensional subspaces of a vector space V . Show that
dim(S1 + S2) + dim(S1

⋂
S2) = dimS1 + dimS2.

23.4. Orthogonal complement

If X ⊂ R
n, then we define the orthogonal complement of X to be the set

X⊥ = {y ∈ R
n : y⊤x = 0 for all x ∈ X}.

It is easy to check that X⊥ is a subspace of Rn.

One can show the following important result:

Theorem 23.10. Let S be a subspace of Rn. Then:

(1) For each x ∈ R
n, there exists a unique z ∈ S and a unique y ∈ S⊥ such that x = z + y.

(2) (S⊥)⊥ = S.

(3) If dimS = k, then dim(S⊥) = n− k.

Proof. See for example [T]. �



Chapter 24

Four fundamental
subspaces

Let A ∈ R
m×n be a given matrix, and let cj denote the jth column of A and let ri denote the ith

row of A, that is,

A =




a11 . . . a1n
...

...

am1 . . . amn


 =

[
c1 . . . cn

]
=




r1
...

rm


 .

The transposed matrix A⊤ is then given by

A =




a11 . . . am1

...
...

a1n . . . amn


 =




c⊤1
...

c⊤n


 =

[
r⊤1 . . . r⊤m

]
.

There are four natural subspaces associated with A:

the column space of A (the range of A),

the row space of A (the range of A⊤),

the kernel of A,

the left kernel of A (the kernel of A⊤).

The row space and the kernel are subspaces of Rn, while the range space and the left kernel are

subspaces of Rm.

24.1. Column space of A

The column space or the range of A is the following subspace of Rm:

ranA = {Ax : x ∈ R
n}.

In other words, it is the range of the linear transformation given by matrix multiplication by A,

that is, the range of the map x 7→ Ax from R
n to R

m. An equivalent way of expressing this is

that y ∈ ranA iff the equation Ax = y has a solution x ∈ R
n.

Since Ax is the linear combination of the columns of the matrix A by scalars which are the

components of x, we have

ranA =





n∑

j=1

xjcj : xj ∈ R, j = 1, . . . , n



 .
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This is the reason behind calling ranA as the column space of A.

If the columns of A are linearly independent, then they form a basis for ranA. (Why?) In

this special case, dim (ranA) = n.

24.2. Row space of A

The row space of A is the column space of A⊤, that is, it is the range of A⊤. Hence the row space

of A is the following subspace of Rn:

ranA⊤ = {A⊤y : y ∈ R
m}.

An equivalent way of expressing this is that x ∈ ranA⊤ iff the equation A⊤y = x has a solution

y ∈ R
m.

Since A⊤y is the linear combination of the columns of the matrix A⊤ by scalars which are the

components of y, we have

ranA⊤ =

{
m∑

i=1

yir
⊤
i : yi ∈ R, i = 1, . . . ,m

}
.

Note that in the above, the r⊤i are the columns of A⊤ which are the same as the transposed rows

of A. This explains why we call ranA⊤ as the row space of A.

If the rows of A are linearly independent, then the columns of A⊤ are linearly independent,

and form a basis for ranA⊤. In this special case, dim (ranA⊤) = m.

24.3. Kernel of A

The kernel of A is the subspace of Rn given by

kerA = {x ∈ R
n : Ax = 0}.

Since the ith entry of Ax is (Ax)i = rix, it follows that kerA is the the set of vectors x which are

orthogonal to every row of A:

kerA = {x ∈ R
n : rix = 0, i = 1, . . . ,m}.

If the columns of A are linearly independent, then Ax = 0 iff x = 0. In this special case,

kerA = {0} and dim(kerA) = 0.

24.4. Left kernel of A

The left kernel of A is the kernel of A⊤, that is, it is the subspace of Rm given by

kerA⊤ = {y ∈ R
m : A⊤y = 0}.

By taking transposes, A⊤y = 0 iff y⊤A = 0. Thus

kerA⊤ = {y ∈ R
m : y⊤A = 0}.

So we see that y ∈ kerA⊤ iff the transpose of y when multiplied from the left with A, gives the

zero vector. This explains why kerA⊤ is called the left kernel of A.

Since the jth entry of A⊤y is (A⊤y)j = c⊤j y, it follows that kerA
⊤ is the the set of vectors y

which are orthogonal to every column of A:

kerA⊤ = {y ∈ R
m : c⊤j y = 0, j = 1, . . . , n}.

If the rows of A are linearly independent, then A⊤y = 0 iff y = 0. In this special case, kerA⊤ = {0}
and dim(kerA⊤) = 0.
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24.5. Orthogonality relations

Theorem 24.1. (ranA)⊥ = kerA⊤.

Proof. Suppose that z ∈ kerA⊤. Then A⊤z = 0, or equivalently z⊤A = 0. So for all x ∈ R
n,

z⊤Ax = 0x = 0. But this implies that for all y ∈ ranA, z⊤y = 0. In other words, z ∈ (ranA)⊥.

So we have proved that kerA⊤ ⊂ (ranA)⊥.

We now prove the reverse inclusion. So let z ∈ (ranA)⊥. Then for all y ∈ ranA, z⊤y = 0. In

other words, for all x ∈ R
n, z⊤Ax = 0. Taking successively x = ei, i = 1, . . . , n, where the ei’s

denote the standard basis vectors, we obtain that all the components (z⊤A)i = 0, for i = 1, . . . , n,

of z⊤A are zeros. Hence z⊤A = 0, or equivalently A⊤z = 0. So z ∈ kerA⊤. Consequently, also

(ranA)⊥ ⊂ kerA⊤. �

Taking orthogonal complements, we also have

ranA = ((ranA)⊥)⊥ = (kerA⊤)⊥.

Applying these results to A⊤, we obtain

(ranA⊤)⊥ = ker(A⊤)⊤ = kerA,

and

ranA⊤ = (ker(A⊤)⊤)⊥ = (kerA)⊥.

Summarizing, we have the following four relations:

(ranA)⊥ = kerA⊤,

(ranA⊤)⊥ = kerA,

ranA = (kerA⊤)⊥,

ranA⊤ = (kerA)⊥.

Exercise 24.2.

(1) If A ∈ R
m×n, then prove that ran A = ran AA⊤.

(2) If H ∈ R
n×n is symmetric, then show that kerH and ran H are orthogonal, that is, there holds

that (kerH)⊥ = ran H .

24.6. Dimension relations

There is an interesting connection between the dimensions of the four fundamental subspaces.

First of all, we recall the so-called rank-nullity theorem, saying that if A ∈ R
m×n, then

dim(ranA) + dim(kerA) = n.

See for example [T]. Applying this to A⊤, we obtain dim(ranA⊤) + dim(kerA⊤) = m. Using the

orthogonality relations established in the previous section, and the fact dimS⊥ = d − dimS for

any subspace S of Rd, we obtain the following: if r denotes the dimension of ranA (this is also

called the rank of A), then

dim(ranA) = r,

dim(ranA⊤) = r,

dim(kerA) = n− r,

dim(kerA⊤) = m− r.

A consequence of these relations are the following equivalences:

(1) The columns of A span R
m iff the columns of A⊤ are linearly independent (iff r = m).

(2) The columns of A⊤ span R
n iff the columns of A are linearly independent (iff r = n).
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Exercise 24.3. Prove the equivalences in (1) and (2) above.



Chapter 25

Bases for fundamental
subspaces

In this chapter, we will show how we can determine bases for the four fundamental subspaces. En

route we will see a factorization method based on the Gauss-Jordan method. However, we will

begin with a theoretical result.

25.1. Result on ranges in a factorization

Theorem 25.1. Let A ∈ R
m×n and A = BC, where B ∈ R

m×r has linearly independent columns

and C ∈ R
r×n has linearly independent rows. Then A and A⊤ both have ranges of dimension r.

Furthermore,

kerA = kerC, (25.1)

kerA⊤ = kerB⊤, (25.2)

ranA = ranB, (25.3)

ranA⊤ = ranC⊤. (25.4)

Proof. Let x ∈ kerA, that is, Ax = 0. Then BCx = 0, that is, B(Cx) = 0, and since B has

linearly independent columns, it follows that Cx = 0, that is, x ∈ kerC. Hence kerA ⊂ kerC.

On the other hand, if x ∈ kerC, then Cx = 0, so Ax = BCx = B0 = 0. Thus x ∈ kerA. Hence

kerC ⊂ kerA. This proves (25.1).

Since A = BC, we have A⊤ = C⊤B⊤, and (25.2) now follows from an application of (25.1),

with A⊤ replacing A, C⊤ replacing B, and B⊤ replacing C.

We have ranA = (kerA⊤)⊥ = (kerB⊤)⊥ = ranB, and so we obtain (25.3).

Similarly, ranA⊤ = (kerA)⊥ = (kerC)⊥ = ranC⊤, and so we obtain (25.4).

It remains to show that A and A⊤ have rank r. Since B has linearly independent columns,

and since these span ranB, these columns form a basis for ranB. Consequently, we have that

dim(ranA) = dim(ranB) = r, that is, A has rank r. But now apply this result to the factorization

A⊤ = C⊤B⊤, we also obtain that dim(ranA⊤) = r. �

Also the converse to the above theorem is true: If A ∈ R
m×n has rank r, then there is a

factorization A = BC, where B ∈ R
m×r has linearly independent columns and C ∈ R

r×n has

linearly independent rows. We will prove this in the next section, and we will also learn a method

for constructing such B and C starting from the matrix A.
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25.2. Factorization using Gauss-Jordan

In the Gauss-Jordan method, a sequence of elementary row operations is carried out, which trans-

form a matrix A ∈ R
m×n to a matrix T ∈ R

m×n which has a “staircase form”. We recall this

method quickly by carrying out an example.

Example 25.2 (The Gauss-Jordan method). Suppose that

A =




1 2 4 5 −3

2 4 3 5 −1

3 6 2 5 1

4 8 1 5 3


 .

We shall use the Gauss-Jordan method for constructing T .

We do the following:

(1) add −2 times the first row to the second row,

(2) add −3 times the first row to the third row, and

(3) add −4 times the first row to the fourth row.

We then obtain 


1 2 4 5 −3

0 0 −5 −5 5

0 0 −10 −10 10

0 0 −15 −15 15


 .

Multiplying the second row by − 1
5 , we obtain




1 2 4 5 −3

0 0 1 1 −1

0 0 −10 −10 10

0 0 −15 −15 15


 .

Now we do the following:

(1) add −4 times the second row to the first row,

(2) add 10 times the second row to the third row, and

(3) add 15 times the second row to the fourth row.

We then obtain

T =




1 2 0 1 1

0 0 1 1 −1

0 0 0 0 0

0 0 0 0 0


.

Now we see that A has been transformed by elementary row operations into a “staircase matrix

form” with two steps, namely the 1s in the first column and the third column. ♦

The sequence of allowed operations to take A into T corresponds to left multiplication by an

invertible matrix P : thus PA = T or A = P−1T . Let R be the number of “steps” in the matrix

T , and let ℓ := m− r and k := n− r. Each of the r special columns of T corresponding to these

steps have exactly one entry equal to 1 and the others are all 0’s. The other ℓ = m− r rows of T

consist of only zeros. Let U ∈ R
r×n be the matrix which is obtained by deleting these ℓ rows from

T , and let 0ℓ×n denote the zero matrix consisting of precisely these deleted rows of zeros. Then
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T can be written as a block matrix with the two blocks U and 0ℓ×n, that is:

T =

[
U

0ℓ×n

]
.

If A has the columns a1, . . . , an, then let β1 < · · · < βr be the indices of the columns corresponding

to the steps of T . Let ν1 < · · · < νk be the indices corresponding to the remaining columns. Let

u1, . . . , un be the columns of U . Define Aβ ∈ R
m×r to be the matrix with the columns aβ1

, . . . , aβr
.

Let Uβ ∈ R
r×r be the matrix with the columns uβ1

, . . . , uβr
and Uν ∈ R

r×r be the matrix with

the columns uν1 , . . . , uνk . That is,

Aβ =
[
aβ1

. . . aβr

]
, and

Uβ =
[
uβ1

. . . uβr

]
=
[
e1 . . . er

]
= Ir×r,

where e1, . . . , er denote the standard basis vectors of Rr. Furthermore, we have

PA = T =

[
U

0ℓ×n

]
,

and so

PAβ =

[
Uβ

0ℓ×n

]
=

[
Ir×r

0ℓ×n

]
.

From this, it follows that the columns of Aβ are linearly independent: indeed, if y is such that

Aβy = 0, then

0 = P0 = PAβy =

[
Ir×r

0ℓ×n

]
y =

[
y

0

]
,

which implies that y = 0.

Moreover, the rows of U are linearly independent, since if y is such that y⊤U = 0, then in

particular, y⊤Uβ = 0, that is, y⊤Ir×r = 0, and so y = 0.

We have

A = P−1T = P−1

[
U

0ℓ×n

]
.

Partition P−1 ∈ R
m×m into two blocks S1 ∈ R

m×r and S2 ∈ R
m×ℓ, consisting respectively of the

first r and the last ℓ columns of P−1. Then we obtain that

A = P−1

[
U

0ℓ×n

]
=
[
S1 S2

] [ U

0ℓ×n

]
= S1U + S20ℓ×n = S1U.

Since A = S1U , it follows in particular that

Aβ = S1Uβ = S1Ir×r = S1.

Hence

A = AβU. (25.5)

By the Theorem 25.1, this means that the matrix A and A⊤ have rank r. The rank of A thus

coincides with the number of steps in the staircase matrix T . The factorization (25.5) implies that

the converse of Theorem 25.1 is true:

Theorem 25.3. If A ∈ R
m×n has rank r, then A can be factorized as A = BC, where B ∈ R

m×r

has linearly independent columns and C ∈ R
r×n has linearly independent rows.

Proof. Just take B = Aβ and C = U as above. �

Exercise 25.4. Find a factorization A = BC as in the statement of Theorem 25.3 of A, when A is given
by:

A =

[
2 1 −1
3 1 2

]
, A =




1 1
2 0
3 −1



 .
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25.3. Basis for ranA and ranA
⊤

From the factorization given by (25.5), and the Theorem 25.1, it follows immediately that

ranA = ranAβ ,

ranA⊤ = ranU⊤.

This implies that the columns aβ1
, . . . , aβr

of the matrix Aβ is a basis for ranA, and the columns

of U⊤ form a basis for ranA⊤.

Exercise 25.5. Find a basis for ranA and a basis for ranA⊤ when A is given by:

A =

[
2 1 −1
3 1 2

]
, A =




1 1
2 0
3 −1


 .

25.4. Basis for kerA

We have that kerA = kerU by Theorem 25.1. Also, we know from the rank-nullity theorem that

dim(kerA) = n−r = k. So for determining a basis for kerA, we should find k linearly independent

vectors from (kerA =) kerU .

If x ∈ kerU , then Ux = 0, that is,

r∑

i=1

xβi
uβi

+

k∑

i=1

xνiuνi = 0. But since Uβ = Ir×r, this means

that xβ +Uνxν = 0, where xβ ∈ R
r denotes the column vector with the components xβ1

, . . . , xβr
,

and xν denotes the column vector with the components xν1 , . . . , xνk . So xβ = −Uνxν .

Now suppose that x ∈ R
n is such that xβ = −Uνxν . Then reversing the steps in the calculation

of the previous paragraph, we conclude that x ∈ kerU .

So we have shown that x ∈ kerA iff xβ = −Uνxν .

Now we determine for j = 1, . . . , k, a zj ∈ kerA as follows. We set xν := ej and

xβ := −Uνxν = −Uνej = −uνj .

And then, having determined xν and xβ , we write the corresponding x, which we define to be our

sought after zj . This zj now belongs to kerA, by construction.

Now we show that the vectors z1, . . . , zk are linearly independent. Let t1, . . . , tk be given

scalars and let w := t1z1 + · · · + tkzk. If wνj denotes the νjth component of the vector w ∈ R
n,

then we have for j = 1, . . . , k, that wνj = tj . (Why?) Hence it follows that if w = 0, then tj = 0

for j = 1, . . . , k.

Consequently, the vectors z1, . . . , zk form a basis for kerA.

Exercise 25.6. Find a basis for kerA when A is given by:

A =

[
2 1 −1
3 1 2

]
, A =




1 1
2 0
3 −1


 .

25.5. Basis for kerA
⊤

By now we know how we can find a basis for kerA by first transforming A into a matrix having a

staircase form with the Gauss-Jordan method, and then proceeding as described in the previous

section. But we can equally well begin with the matrix A⊤ instead of A, transform A⊤ into a

matrix having a staircase form with the Gauss-Jordan method, and then proceed as described in

the previous section to obtain a basis for kerA⊤. En route we get a new basis for ranA⊤ and also

a new basis for ran (A⊤)⊤ = ranA.



25.6. An example 171

Exercise 25.7. Find a basis for kerA⊤ when A is given by:

A =

[
2 1 −1
3 1 2

]
, A =




1 1
2 0
3 −1


 .

25.6. An example

We revisit Example 25.2, and determine bases for the four fundamental subspaces.

Example 25.8 (Example 25.2 continued). Recall that in Example 25.2,

A =




1 2 4 5 −3

2 4 3 5 −1

3 6 2 5 1

4 8 1 5 3


 .

By elementary row transformations, we had arrived at the following matrix T having a staircase

form:

T =




1 2 0 1 1

0 0 1 1 −1

0 0 0 0 0

0 0 0 0 0


.

Thus U =

[
1 2 0 1 1

0 0 1 1 −1

]
.

Basis for ranA. A basis for ranA can be obtained by taking as basis vectors those columns of A

which correspond to steps in T . In our case, these are the first and third columns, and so the set








1

2

3

4


 ,




4

3

2

1








constitutes a basis for ranA.

Basis for ranA⊤. A basis for ranA⊤ can be obtained by taking the columns of U⊤, namely it is

the set







1

2

0

1

1



,




0

0

1

1

−1








.

Basis for kerA. A basis for kerA can be determined as follows.

First note that k = n− r = 5− 2 = 3. Set xν = e1, that is, x2 = 1, x4 = x5 = 0, and calculate

xβ , that is, x1 and x3, by using xβ = −Uνxν , or equivalently Ux = 0. This yields the vector

z⊤1 =
[
−2 1 0 0 0

]⊤
.

Then set xν = e2, that is, x4 = 1, x2 = x5 = 0, and calculate x1 and x3, by using Ux = 0.

Thus we obtain the vector z⊤2 =
[
−1 0 −1 1 0

]⊤
.

Finally set xν = e3, that is, x5 = 1, x2 = x4 = 0, and calculate x1 and x3, by using Ux = 0.

Hence z⊤3 =
[
−1 0 1 0 1

]⊤
.
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Thus a basis for kerA is given by







−2

1

0

0

0



,




−1

0

−1

1

0



,




−1

0

1

0

1








.

Basis for kerA⊤. For determining a basis for kerA⊤ we should first use the Gauss-Jordan method

on the matrix

A⊤ =




1 2 3 4

2 4 6 8

4 3 2 1

5 5 5 5

−3 −1 1 3




in order to bring it to a staircase form using elementary row transformations.

We do the following:

(1) add −2 times the first row to the second row,

(2) add −4 times the first row to the third row,

(3) add −5 times the first row to the fourth row, and

(4) add 3 times the first row to the fifth row.

We then obtain 


1 2 3 4

0 0 0 0

0 −5 −10 −15

0 −5 −10 −15

0 5 10 15



.

We then interchange the second and the third row, giving us



1 2 3 4

0 −5 −10 −15

0 0 0 0

0 −5 −10 −15

0 5 10 15



.

Multiplying the second row by − 1
5 , we obtain




1 2 3 4

0 1 2 3

0 0 0 0

0 −5 −10 −15

0 5 10 15



.

Now we do the following:

(1) add −2 times the second row to the first row,

(2) add 5 times the second row to the fourth row, and

(3) add −5 times the second row to the fifth row.

We then obtain a matrix which has a staircase form, with two steps, namely the 1’s in the first

and the second columns:
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T̃ =




1 0 −1 −2

0 1 2 3

0 0 0 0

0 0 0 0

0 0 0 0



=

[
Ũ

03×4

]
,

where Ũ =

[
1 0 −1 −2

0 1 2 3

]
.

A basis for kerA⊤ can be determined as follows. First note that now k̃ = ñ− r = 4− 2 = 2.

Set xν = e1, that is, x3 = 1, x4 = 0, and calculate xβ , that is, x1 and x2, by using xβ = −Ũνxν ,

or equivalently Ũx = 0. This yields the vector z̃⊤1 =
[
1 −2 1 0

]⊤
.

Finally set xν = e2, that is, x4 = 1, x3 = 0, and calculate x1 and x2, by using Ux = 0. This

yields the vector z̃⊤2 =
[
2 −3 0 1

]⊤
.

Thus a basis for kerA⊤ is given by







−1

2

1

0


 ,




2

−3

0

1








.

We also remark that a new basis for ranA⊤ can be obtained by taking as basis vectors those

columns of A⊤ which correspond to steps in T̃ . In our case, these are the first and second

columns, and so the set 






1

2

4

5

−3



,




2

4

3

5

−1








constitutes a basis for ranA⊤. A new basis for ran (A⊤)⊤ = ranA can be obtained by taking the

columns of Ũ⊤, namely it is the set







1

0

−1

−2


 ,




0

1

2

3








. ♦

Exercise 25.9. Find bases for the four fundamental subspaces of the matrix

A =




1 1 1
1 3 2
2 4 3


 .





Chapter 26

Positive definite and
semidefinite matrices

Within nonlinear optimization, and particularly in quadratic optimization, it is important that

one can determine, in an efficient manner, whether or not a given matrix is positive definite. In

this chapter, we will deal with this question and some related things. We begin with some facts

about special types of matrices.

26.1. Diagonal and triangular matrices

(1) A matrix is referred to as a square matrix if its number of rows is the same as its number

of columns.

(2) A square matrix H is called symmetric if H⊤ = H , that is, its elements satisfy hij = hji

for all i’s and j’s.

(3) A square matrix D is called diagonal if all its entries which aren’t on the diagonal are all

zeros, that is, dij = 0 if i 6= j. The diagonal elements of a diagonal matrix D are often

denoted by di (instead of the more precise notation dii). A diagonal matrix D is always

symmetric, and is non-singular (or invertible) iff di 6= 0 for all i’s.

(4) A square matrix L is called lower triangular if the elements of the matrix satisfy lij = 0

whenever i < j. This means that the elements above the diagonal entries are all zeros.

A lower triangular matrix L is non-singular iff all the diagonal entries lii’s are nonzero.

(5) A square matrix U is called upper triangular if the elements of the matrix satisfy uij = 0

whenever i > j. This means that the elements below the diagonal entries are all zeros.

An upper triangular matrix U is non-singular iff all the diagonal entries uii’s are nonzero.

Thus a 4× 4 diagonal matrix D has the following form:

D =




d1 0 0 0

0 d2 0 0

0 0 d3 0

0 0 0 d4




while a 4× 4 lower triangular matrix L, and a 4× 4 upper triangular matrix U , have the following

form:

L =




l11 0 0 0

l21 l22 0 0

l31 l32 l33 0

l41 l42 l43 l44


 , U =




u11 u12 u13 u14

0 u22 u23 u24

0 0 u33 u34

0 0 0 u44


 .

175
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An important property of diagonal and triangular matrices is that it is easy to solve systems of

equations involving these. For example, if one wants to solve the system Lx = b, where L is a

4× 4 lower triangular matrix as above, then one obtains x as follows:

x1 =
b1
l11

,

x2 =
b2 − l21x1

l22
,

x3 =
b3 − l31x1 − l32x2

l33
,

x4 =
b4 − l41x1 − l42x2 − l43x3

l44
.

Similarly, if we want to solve Ux = b, where U is a 4 × 4 upper triangular matrix as above then

one obtains x as follows:

x1 =
b4
u44

,

x2 =
b3 − u34x4

u33
,

x3 =
b2 − u24x4 − u23x3

u22
,

x4 =
b1 − u14x4 − u13x3 − u12x2

u11
.

The easiest case is the equation system Dx = b, where D is a 4 × 4 diagonal matrix. Then the

solution x is given simply by

x1 =
b1
d1

, x2 =
b2
d2

, x3 =
b3
d3

, x4 =
b4
d4

.

26.2. Positive definite and semidefinite matrices

Let H ∈ R
n×n be a given symmetric matrix and let x ∈ R

n. Then

x⊤Hx =
n∑

i=1

n∑

j=1

hijxixj . (26.1)

If x1, . . . , xn are thought of as variables, and the matrix entries hij are constants, then (26.1) is

called a quadratic form in x ∈ R
n.

(1) A symmetric matrix H ∈ R
n×n is called positive semidefinite if x⊤Hx ≥ 0 for all x ∈ R

n.

(2) A symmetric matrix H ∈ R
n×n is called positive definite if x⊤Hx > 0 for all nonzero

x ∈ R
n.

Clearly every positive definite matrix is positive semidefinite.

Example 26.1. Let H =

[
1 2

2 5

]
.

Then x⊤Hx = x2
1 + 2x1x2 + 2x2x1 + 5x2

2 = (x1 + 2x2)
2 + x2

2 ≥ 0, with equality iff x1 + 2x2 = 0

and x2 = 0, that is, iff x1 = x2 = 0. So the matrix is positive definite. ♦

Example 26.2. Let H =

[
1 2

2 4

]
.

Then x⊤Hx = x2
1 +2x1x2 +2x2x1 +4x2

2 = (x1 +2x2)
2 ≥ 0. So the matrix is positive semidefinite.

However, the matrix is not positive definite, since with x1 = −2 and x2 = 1, we have that

x⊤Hx = 0, but x 6= 0. ♦
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Example 26.3. Let H =

[
1 2

2 3

]
.

Then x⊤Hx = x2
1 + 2x1x2 + 2x2x1 + 3x2

2 = (x1 + 2x2)
2 − x2

2. Since with x1 = −2 and x2 = 1, we

have that x⊤Hx = −1 < 0, it follows that H is not positive semidefinite (even though all entries

of H are positive). ♦

Exercise 26.4. Show that H =

[
1 −1
−1 4

]
is positive definite.

26.3. Properties of positive definite matrices

Property 26.5. If H is symmetric and positive definite, then H is invertible.

Proof. If H is not invertible, then there exists a nonzero vector x such that Hx = 0. Thus

x⊤Hx = x⊤0 = 0, contradicting the positive definiteness of H . �

Property 26.6. If H is symmetric and positive definite, then every diagonal entry hii > 0.

Proof. We have e⊤i Hei = hii. �

Property 26.7. A diagonal matrix D is positive definite iff all the di’s are positive.

Proof. This follows from the fact that x⊤Dx =
n∑

i=1

dix
2
i . �

Property 26.8. If H ∈ R
n×n is symmetric and positive definite, and if B ∈ R

n×k has linearly

independent columns, then the matrix G := B⊤HB ∈ R
k×k is symmetric and positive definite as

well.

Proof. Since G⊤ = (B⊤HB)⊤ = B⊤H⊤B = B⊤HB = G, we see that G is symmetric. Also,

x⊤Gx = x⊤B⊤HBx = (Bx)⊤H(Bx) ≥ 0 for all x ∈ R
k, with equality only iff Bx = 0, which in

turn is equivalent to x = 0, since B has linearly independent columns. �

Property 26.9. Let H ∈ R
n×n be the symmetric block matrix

H =

[
H1 0

0 H2

]
,

where H1 ∈ R
n1×n1 , H2 ∈ R

n2×n2 are symmetric, and n1 + n2 = n. Then H is positive definite

iff H1 and H2 are positive definite.

Proof. If: Let x ∈ R
n be nonzero. If we partition x into x1 and x2, where x1 is made up of

the first n1 components and x2 the last n2 components of x, then either x1 6= 0 or x2 6= 0.

Then x⊤
1 H1x1 and x⊤

2 H2x2 are both nonnegative, and at least one of them is nonzero. Hence

x⊤Hx = x⊤
1 H1x1 + x⊤

2 H2x2 > 0.

Only if: We have x⊤Hx = x⊤
1 H1x1+x⊤

2 H2x2. Suppose that H is positive definite. By taking

x1 6= 0 and x2 = 0 here, we see that H1 must be positive definite. Next taking x2 nonzero and

x1 = 0, we see that H2 must also be positive definite. �

Property 26.10. A symmetric matrix H is positive definite iff all its eigenvalues are positive.

Proof. If: By the spectral theorem1, H = P⊤ΛP , where P is invertible, and Λ is a diagonal

matrix with the eigenvalues of H as its diagonal entries. Since all of these eigenvalues are positive,

it follows that Λ is positive definite. Moreover, P has linearly independent column vectors, and

so we conclude that P⊤ΛP = H is positive definite as well.

1see for example [T]
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Only if: Suppose that H is positive definite. By the spectral theorem we know that there is

a basis of eigenvectors of H for R
n. Let λ be an eigenvalue of H with an eigenvector x. Then

Hx = λx and x 6= 0. But then 0 < x⊤Hx = x⊤(λx) = λ(x⊤x) and since x⊤x > 0, it follows that

λ > 0 as well. �

Exercise 26.11 (Sylvester’s criterion for positivity). Let H ∈ R
n×n. For 1 ≤ k ≤ n, the kth principal

submatrix of H is the k × k submatrix of H formed by taking just the first k rows and first k columns
of H . Its determinant is called the kth principal minor. In this exercise we want to prove Sylvester’s
criterion for positivity, namely that a symmetric matrix H ∈ R

n×n is positive definite iff all its principal
minors are positive.

(1) Show the ‘only if’ part by showing that each kth principal submatrix is positive definite, and
hence it has a positive determinant.

(2) Let v1, . . . , vn be a basis of a vector space V . Suppose that W is a k-dimensional subspace of
V . If m < k, then show that there exists a nonzero vector in W which is a linear combination
of vm+1, . . . , vn. Hint: Use Exercise 23.9 with S1 := W and S2 := span {vm+1, . . . , vn}.

(3) Let H ∈ R
n×n be symmetric. If w⊤Hw > 0 for all nonzero vectors w in a k-dimensional

subspace W of Rn, then H has at least k positive eigenvalues (counting multiplicity). Hint:

By the spectral theorem, we know that H has an orthonormal basis of eigenvectors v1, . . . , vn.
Suppose that the first m of these eigenvectors are the ones corresponding to positive eigenvalues,
while the others correspond to nonpositive eigenvalues.

(4) Prove Sylvester’s criterion for positivity using induction on n. Hint: To complete the induction

step, note that the nth principal submatrix of H ∈ R
(n+1)×(n+1) is positive definite by the

induction hypothesis. Thus w⊤Hw > 0 for all nonzero vectors w in the n-dimensional subspace
W = span {e1, . . . , en} (⊂ R

n+1). Conclude that at least n eigenvalues of H must be positive.
Since detH is positive as well, argue that all the eigenvalues of H must be positive.

Exercise 26.12. Using Sylvester’s criterion of positivity check if the matrices

A =




4 2 1
2 3 −1
1 −1 2


 , B =




3 −1 2
−1 4 −2
2 −2 1




are positive definite or not. Are the matrices −A, A3, A−1 also positive definite?

Exercise 26.13. True or false:

(1) If A is positive definite, then A5 is positive definite.

(2) If A is negative definite (that is −A is positive definite), then A8 is negative definite.

(3) If A is negative definite, then A12 is positive definite.

(4) If A is positive definite and B is negative semidefinite, then A−B is positive definite.

26.4. Properties of positive semidefinite
matrices

Property 26.14. If H is symmetric and positive semidefinite, then every diagonal entry hii ≥ 0.

Proof. We have e⊤i Hei = hii. �

Property 26.15. If H is symmetric and positive semidefinite and a diagonal entry hii = 0, then

hij = hji = 0 for all j.

Proof. For r ∈ R, let x := rei + ej. Then x⊤Hx = 2rhij + hjj ≥ 0. But the choice of r was

arbitrary. Hence hij = 0. �

Property 26.16. A diagonal matrix D is positive semidefinite iff all the di’s are nonnegative.

Proof. This follows from the fact that x⊤Dx =
n∑

i=1

dix
2
i . �
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Property 26.17. If H ∈ R
n×n is symmetric and positive semidefinite and B ∈ R

n×k, then

G := B⊤HB ∈ R
k×k is symmetric and positive semidefinite as well.

Proof. Since G⊤ = (B⊤HB)⊤ = B⊤H⊤B = B⊤HB = G, it follows that G is symmetric. Also,

x⊤Gx = x⊤B⊤HBx = (Bx)⊤H(Bx) ≥ 0 for all x ∈ R
k. �

Property 26.18. Let H ∈ R
n×n be a symmetric block matrix

H =

[
H1 0

0 H2

]
,

where H1 ∈ R
n1×n1 , H2 ∈ R

n2×n2 are symmetric, and n1+n2 = n. Then H is positive semidefinite

iff H1 and H2 are positive semidefinite.

Proof. If: Let x ∈ R
n. Partition x into x1 and x2, where x1 is made up of the first n1 com-

ponents and x2 the last n2 components of x. Then x⊤
1 H1x1 and x⊤

2 H2x2 are both nonnegative.

Consequently, x⊤Hx = x⊤
1 H1x1 + x⊤

2 H2x2 ≥ 0.

Only if: We have x⊤Hx = x⊤
1 H1x1 + x⊤

2 H2x2. Let H be positive semidefinite. By taking

x1 ∈ R
n1 arbitrary and x2 = 0 here, we see that H1 must be positive semidefinite. Next taking

x2 ∈ R
n2 arbitrary and x1 = 0, we see that H2 must also be positive semidefinite. �

Property 26.19. A symmetric matrix H is positive semidefinite iff all its eigenvalues are non-

negative.

Proof. If: By the spectral theorem, H = P⊤ΛP , where P is invertible, and Λ is a diagonal matrix

with the eigenvalues of H as its diagonal entries. Since all of these eigenvalues are nonnegative,

it follows that Λ is positive semidefinite. So we conclude that P⊤ΛP = H is positive semidefinite

as well.

Only if: Suppose that H is positive semidefinite. By the spectral theorem we know that there

is a basis of eigenvectors of H for Rn. Let λ be an eigenvalue of H with an eigenvector x. Then

Hx = λx and x 6= 0. But then 0 ≤ x⊤Hx = x⊤(λx) = λ(x⊤x) and since x⊤x > 0, it follows that

λ ≥ 0. �

26.5. The matrices A
⊤
A and AA

⊤

Let A ∈ R
m×n be a given matrix. Set H = A⊤A ∈ R

n×n and G = AA⊤ ∈ R
m×m. Then H and

G are both symmetric, since

H⊤ = (A⊤A)⊤ = A⊤(A⊤)⊤ = A⊤A = H,

G⊤ = (AA⊤)⊤ = (A⊤)⊤A⊤ = AA⊤ = G.

Furthermore, H and G are both positive semidefinite, since for every x ∈ R
n and every y ∈ R

m

we have

x⊤Hx = x⊤A⊤Ax = (Ax)⊤(Ax) = ‖Ax‖2 ≥ 0,

y⊤Gy = y⊤AA⊤y = (A⊤y)⊤(A⊤y) = ‖A⊤y‖2 ≥ 0.

Now suppose that A has linearly independent columns. Since I is positive definite, it then follows

that H = A⊤A = A⊤IA is positive definite as well.

Similarly, if A has linearly independent rows, then A⊤ has linearly independent columns, and

applying what we have just proved to A⊤, it follows that G = (A⊤)⊤A⊤ = AA⊤ is positive

definite.
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The following relations are sometimes useful:

ker(A⊤A) = kerA,

ker(AA⊤ = kerA⊤,

ran (A⊤A) = ranA⊤,

ran (AA⊤) = ranA.

If A⊤Ax = 0, then x⊤A⊤Ax = x⊤0 = 0. So ‖Ax‖2 = x⊤A⊤Ax = 0, that is, Ax = 0. Hence we

conclude that ker(A⊤A) ⊂ kerA. On the other hand, if Aξ = 0, then A⊤Aξ = A⊤0 = 0. Thus

also kerA ⊂ ker(A⊤A).

That ker(AA⊤) = kerA⊤ follows from the previous case by replacing A by A⊤. Also,

ran (A⊤A) = (ker(A⊤A)⊤)⊥ = (ker(A⊤A))⊥ = (kerA)⊥ = ranA⊤.

Finally, ran (AA⊤) = ranA follows from the previous case by replacing A by A⊤.

26.6. LDL
⊤-factorization of positive definite

matrices

In order to determine whether or not a given symmetric matrix is positive definite, one can use

the so-called LDL⊤-factorization, which is based on the following result.

Theorem 26.20. A symmetric H ∈ R
n×n is positive definite iff

(1) there exists a lower triangular matrix L ∈ R
n×n with 1’s on the diagonal (all lii = 1),

and

(2) there exists a diagonal matrix D ∈ R
n×n with all diagonal entries positive (all di > 0),

(3) such that H = LDL⊤.

In this section we will give a constructive proof of this result by describing an algorithm for the

LDL⊤-factorization of positive definite matrices.

First assume that L and D are as above. Then D is positive definite. Also L⊤ has linearly

independent columns. Thus it follows that H = LDL⊤ = (L⊤)⊤DL⊤ is also positive definite, by

the properties of positive definite matrices we had studied earlier.

In the remainder of this chapter, we will assume that we have been given a H which is positive

definite, and we will show how one can determine L and D with the properties above, such that

H has the factorization H = LDL⊤.

For making the exposition less technical (and hopefully easier to follow), we limit the descrip-

tion of our method in the special case that H is a 4 × 4 matrix. The generalization to an n × n

matrix is obvious.

Our goal is to carry out the factorization H = LDL⊤, where

H =




h11 h12 h13 h14

h21 h22 h23 h24

h31 h32 h33 h34

h41 h42 h43 h44




is given, and we want to find L and D having the form:

D =




d1 0 0 0

0 d2 0 0

0 0 d3 0

0 0 0 d4


 and L =




1 0 0 0

l21 1 0 0

l31 l32 1 0

l41 l42 l43 1


 .
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For reasons that will soon become evident, we denote the elements of H by h
(1)
ij . Thus we have

H =




h
(1)
11 h

(1)
12 h

(1)
13 h

(1)
14

h
(1)
21 h

(1)
22 h

(1)
23 h

(1)
24

h
(1)
31 h

(1)
32 h

(1)
33 h

(1)
34

h
(1)
41 h

(1)
42 h

(1)
43 h

(1)
44


 ,

where h
(1)
ij = h

(1)
ji for all i and j. Since H is positive definite, it follows in particular that h

(1)
11 > 0.

Thus we can subtract multiples of the first row from the remaining rows, so that all the elements

below the diagonal element h
(1)
11 in the first column become zeros.

This corresponds to premultiplying the matrix H with the matrix E1 given below. The first

row of H is unaffected by these row operations, and so the first row of E1H is the same as the

first row of H . The other rows have been possibly changed, and so these elements will be denoted

now by h
(2)
ij . Hence we have that

E1 =




1 0 0 0

−l21 1 0 0

−l31 0 1 0

−l41 0 0 1


 and E1H =




h
(1)
11 h

(1)
12 h

(1)
13 h

(1)
14

0 h
(2)
22 h

(2)
23 h

(2)
24

0 h
(2)
32 h

(2)
33 h

(2)
34

0 h
(2)
42 h

(2)
43 h

(2)
44


 ,

where li1 =
h
(1)
i1

h
(1)
11

and

h
(2)
ij = h

(1)
ij − li1h

(1)
1j = h

(1)
ij −

h
(1)
i1 h

(1)
1j

h
(1)
11

for i = 2, 3, 4 and j = 2, 3, 4.

Now we can subtract multiples of the first column of E1H from the other columns, so that all the

elements to the right of the diagonal element h
(1)
11 in the first row become zeros. This correspond

to postmultiplying the matrix E1H by the matrix E⊤
1 . (That the same matrix E1 appears again,

except now transposed, is because of the fact thatH is symmetric, so that h
(1)
1j = h

(1)
j1 for j = 2, 3, 4.

Hence the same multipliers which were used earlier in the row operations are now used in the

column operations.) The elements h
(2)
ij are not effected by these column operations since the first

column of E1H has zeros below h
(1)
11 . Thus

E1HE⊤
1 =




h
(1)
11 0 0 0

0 h
(2)
22 h

(2)
23 h

(2)
24

0 h
(2)
32 h

(2)
33 h

(2)
34

0 h
(2)
42 h

(2)
43 h

(2)
44


 .

Since H is positive definite, so is E1HE⊤
1 , which in turn implies that the matrix




h
(2)
22 h

(2)
23 h

(2)
24

h
(2)
32 h

(2)
33 h

(2)
34

h
(2)
42 h

(2)
43 h

(2)
44




is positive definite as well. In particular, h
(2)
22 > 0. Now we are going to repeat the above steps for

this smaller positive definite matrix.

One can subtract multiples of the second row of E1HE⊤
1 from the last two rows, so that all

the elements below h
(2)
22 in the second column become zeros. This corresponds to premultiplying

the matrix E1HE⊤
1 by E2 given below. The first two rows of E1HE⊤

1 are not affected by these
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row operations. The last two rows are affected, and we denote their new entries by h
(3)
ij . Thus we

have that

E2=




1 0 0 0

0 1 0 0

0 −l32 1 0

0 −l42 0 1


 and E2E1HE⊤

1 =




h
(1)
11 0 0 0

0 h
(2)
22 h

(2)
23 h

(2)
24

0 0 h
(3)
33 h

(3)
34

0 0 h
(3)
43 h

(3)
44


,

where li2 =
h
(1)
i2

h
(2)
22

and

h
(3)
ij = h

(2)
ij − li2h

(2)
2j = h

(2)
ij −

h
(2)
i2 h

(2)
2j

h
(2)
22

for i = 3, 4 and j = 3, 4.

Now we can subtract multiples of the second column of E2E1HE⊤
1 from the last two columns, so

that all the elements to the right of the diagonal element h
(2)
22 in the second row become zeros.

This correspond to postmultiplying the matrix E2E1HE⊤
1 by the matrix E⊤

2 . The elements h
(3)
ij

are not effected by these column operations. Thus

E2E1HE⊤
1 E⊤

2 =




h
(1)
11 0 0 0

0 h
(2)
22 0 0

0 0 h
(3)
33 h

(3)
34

0 0 h
(3)
43 h

(3)
44


 .

Since H is positive definite, so is E2E1HE⊤
1 E⊤

2 , which in turn implies that the matrix
[

h
(3)
33 h

(3)
34

h
(3)
43 h

(3)
44

]

is positive definite as well. In particular, h
(3)
33 > 0. Now we are going to repeat the above steps for

this yet smaller positive definite matrix.

One can subtract a multiple of the third row of E2E1HE⊤
1 E⊤

2 from the last row, so that the

elements below h
(3)
33 in the third column becomes zero. This corresponds to premultiplying the

matrix E2E1HE⊤
1 E⊤

2 by E3 given below. The first three rows of E2E1HE⊤
1 E⊤

2 are not affected

by these row operations. The last row is affected, and we denote its new entries by h
(4)
4j . Thus we

have that

E3 =




1 0 0 0

0 1 0 0

0 0 1 0

0 0 −l43 1


 and

E3E2E1HE⊤
1 E⊤

2 =




h
(1)
11 0 0 0

0 h
(2)
22 0 0

0 0 h
(3)
33 h

(3)
34

0 0 0 h
(4)
44


 ,

where l43 =
h
(1)
43

h
(3)
33

and h
(4)
44 = h

(3)
44 − l43h

(3)
34 = h

(3)
44 − h

(3)
43 h

(3)
34

h
(3)
33

.

Now we subtract a multiple of the third column of E3E2E1HE⊤
1 E⊤

2 from the last column, so

that the element to the right of the diagonal element h
(3)
33 in the third row becomes a zero. This

correspond to postmultiplying the matrix E3E2E1HE⊤
1 E⊤

2 by the matrix E⊤
3 . The element h

(4)
44
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is not effected by this column operation. Thus

E3E2E1HE⊤
1 E⊤

2 E⊤
3 =




h
(1)
11 0 0 0

0 h
(2)
22 0 0

0 0 h
(3)
33 0

0 0 0 h
(4)
44


 .

Since H is positive definite, so is E3E2E1HE⊤
1 E⊤

2 E⊤
3 , which in turn implies that h

(4)
44 > 0.

Let D be the diagonal matrix E3E2E1HE⊤
1 E⊤

2 E⊤
3 given above. Since each row operation

matrix Ek is invertible, we have that

H = E−1
1 E−1

2 E−1
3 D(E⊤

3 )−1(E⊤
2 )−1(E⊤

1 )−1. (26.2)

It turns out that it is very easy to calculate the inverses E−1
k and the product E−1

1 E−1
2 E−1

3 .

Indeed, one has that

E−1
1 =




1 0 0 0

l21 1 0 0

l31 0 1 0

l41 0 0 1


 ,

E−1
2 =




1 0 0 0

0 1 0 0

0 l32 1 0

0 l42 0 1


 ,

E−1
3 =




1 0 0 0

0 1 0 0

0 0 1 0

0 0 l43 1


 ,

and

E−1
1 E−1

2 E−1
3 =




1 0 0 0

l21 1 0 0

l31 l32 1 0

l41 l42 l43 1


 .

Thus the matrix L := E−1
1 E−1

2 E−1
3 is lower triangular with 1’s on the diagonal. Also,

L⊤ = (E−1
1 E−1

2 E−1
3 )⊤ = (E−1

3 )⊤(E−1
2 )⊤(E−1

1 )⊤

= (E⊤
3 )−1(E⊤

2 )−1(E⊤
1 )−1.

So (26.2) becomes H = LDL⊤, and we have obtained the desired factorization.

26.7. An example of LDL
⊤-factorization

We will find out if the following matrix H is positive definite or not by carrying out the LDL⊤-

factorization:

H =




2 −1 0 0

−1 2 −1 0

0 −1 2 −1

0 0 −1 2



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First add 1
2 times the first row to the second row and then add 1

2 times the first column to the

second column. Thus

E1 =




1 0 0 0
1
2 1 0 0

0 0 1 0

0 0 0 1


 and E1HE⊤

1 =




2 0 0 0

0 3
2 −1 0

0 −1 2 −1

0 0 −1 2


 .

Now add 2
3 times the second row to the third row and then add 2

3 times the second column to the

third column. Thus

E2 =




1 0 0 0

0 1 0 0

0 2
3 1 0

0 0 0 1


 and E2E1HE⊤

1 E⊤
2 =




2 0 0 0

0 3
2 0 0

0 0 4
3 −1

0 0 −1 2


 .

Now add 3
4 times the third row to the fourth row and then add 3

4 times the third column to the

fourth column. Thus

E3=




1 0 0 0

0 1 0 0

0 0 1 0

0 0 3
4 1


 and E3E2E1HE⊤

1 E⊤
2 E⊤

3 =




2 0 0 0

0 3
2 0 0

0 0 4
3 0

0 0 0 5
4


 .

Thus the LDL⊤-factorization is completed, and we have H = LDL⊤, where

L =




1 0 0 0

− 1
2 1 0 0

0 − 2
3 1 0

0 0 − 3
4 1


 and D =




2 0 0 0

0 3
2 0 0

0 0 4
3 0

0 0 0 5
4


 .

Since all the diagonal elements of D are > 0, we conclude that H is positive definite.

26.8. Completing squares and
LDL

⊤-factorization

There is a close connection between LDL⊤-factorization and good old completion of squares. We

will illustrate this connection with the help of the example from the previous section.

Let x ∈ R
4 and consider the quadratic form

x⊤Hx = 2x2
1 − 2x1x2 + 2x2

2 − 2x2x3 + 2x2
3 − 2x3x4 + 2x2

4. (26.3)

Using the LDL⊤-factorization, we have

x⊤Hx = x⊤LDL⊤x = (L⊤x)⊤D(L⊤x),

where

L⊤x =




1 − 1
2 0 0

0 1 − 2
3 0

0 0 1 − 3
4

0 0 0 1







x1

x2

x3

x4


 =




x1 − 1
2x2

x2 − 2
3x3

x3 − 3
4x4

x4


 .

Consequently

x⊤Hx =




x1 − 1
2x2

x2 − 2
3x3

x3 − 3
4x4

x4




⊤ 


2 0 0 0

0 3
2 0 0

0 0 4
3 0

0 0 0 5
4







x1 − 1
2x2

x2 − 2
3x3

x3 − 3
4x4

x4


 ,
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that is,

x⊤Hx = 2

(
x1 −

1

2
x2

)2

+
3

2

(
x2 −

1

2
x3

)2

+
4

3

(
x3 −

1

2
x4

)2

+
5

4
x2
4. (26.4)

Thus using the LDL⊤-factorization, the quadratic form given by (26.3) can be written as a sum

of squares. An alternative way of doing this is by the completion of squares. We describe this

below by means of the same example.

First we eliminate mixed terms which contain the factor x1 as follows:

2x2
1 − 2x1x2 = 2(x2

1 − x1x2) = 2

((
x1 −

1

2
x2

)2

− 1

4
x2
2

)
.

This gives

x⊤Hx = 2

(
x1 −

1

2
x2

)2

+
3

2
x2
2 − 2x2x3 + 2x2

3 − 2x3x4 + 2x2
4.

Next we eliminate the mixed terms that contain the factor x2 as follows:

3

2
x2
2 − 2x2x3 =

3

2

((
x2 −

2

3
x3

)2

− 4

9
x2
3

)
.

This gives

x⊤Hx = 2

(
x1 −

1

2
x2

)2

+
3

2

(
x2 −

2

3
x3

)2

+
4

3
x2
3 − 2x3x4 + 2x2

4.

Finally, we eliminate the mixed terms that contain the factor x3 as follows:

4

3
x2
3 − 2x3x4 + 2x2

4 =
4

3

((
x3 −

3

4
x4

)2

− 9

16
x2
4

)
.

This gives

x⊤Hx = 2

(
x1 −

1

2
x2

)2

+
3

2

(
x2 −

2

3
x3

)2

+
4

3

(
x3 −

3

4
x4

)2

+
5

4
x2
4,

which is the same as (26.4).

26.9. LDL
⊤-factorization: semidefinite case

We have seen how one can determine whether or not a given symmetric matrix is positive definite.

A natural question which then arises is whether there is a similar procedure also for determining if it

is positive semidefinite. The answer is yes, and one can do so with a modified LDL⊤-factorization,

which allows the diagonal element h
(i)
ii to be equal to 0.

Theorem 26.21. A symmetric H ∈ R
n×n is positive semidefinite iff

(1) there exists a lower triangular matrix L ∈ R
n×n with 1’s on the diagonal (all the lii = 1),

and

(2) there exists a diagonal matrix D ∈ R
n×n with all diagonal entries nonnegative (all the

di ≥ 0),

(3) such that H = LDL⊤.

In this section we will give a constructive proof of this result by describing an algorithm for

the LDL⊤-factorization of positive semidefinite matrices.

First assume that L and D are as above. Then D is positive semidefinite. Thus it follows that

H = LDL⊤ = (L⊤)⊤DL⊤ is also positive semidefinite, by the properties of positive semidefinite

matrices we had studied earlier.
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In the remainder of this chapter, we will assume that we have been given a H which is positive

semidefinite, and we will show how one can determine L and D with the properties above, such

that H has the factorization H = LDL⊤.

Again for the simplicity of exposition, assume that n = 4. Then one can try to use the method

we learnt in Section 26.6. But now when H is not necessarily positive definite, it can very well

happen that some diagonal element h
(i)
ii ≤ 0. But since H is positive semidefinite, it cannot2 be

the case that h
(i)
ii < 0. Thus the “worst” that can happen is that for an i or a few i’s h

(i)
ii = 0.

Take for example the case that h
(2)
22 = 0. But since H is positive semidefinite, it follows then

that h
(2)
23 = h

(2)
32 = h

(2)
24 = h

(2)
42 = 0, by the property of positive semidefinite matrices we had seen

earlier.

But then we arrive at the following scenario:

E1HE⊤
1 =




h
(1)
11 0 0 0

0 h
(2)
22 h

(2)
23 h

(2)
24

0 h
(2)
32 h

(2)
33 h

(2)
34

0 h
(2)
42 h

(2)
43 h

(2)
44


 =




h
(1)
11 0 0 0

0 0 0 0

0 0 h
(2)
33 h

(2)
34

0 0 h
(2)
43 h

(2)
44


 .

But then we can simply put E2 = I, so that

E2E1HE⊤
1 E⊤

2 =




h
(1)
11 0 0 0

0 h
(2)
22 0 0

0 0 h
(3)
33 h

(3)
34

0 0 h
(3)
43 h

(3)
44


 ,

with h
(2)
22 = 0 and h

(3)
ij = h

(2)
ij for i = 3, 4 and j = 3, 4.

When we compare this with the corresponding expression from Section 26.6, we note that

the difference here is the we now have h
(2)
22 = 0 as opposed to having it > 0 before. (Also, E2 is

now the identity matrix, which was typically not the case in Section 26.6, unless both l32 and l42
happened to be equal to 0.)

Next we continue with the same procedure as in Section 26.6. When we have completed it,

we have

E3E2E1HE⊤
1 E⊤

2 E⊤
3 =




h
(1)
11 0 0 0

0 h
(2)
22 0 0

0 0 h
(3)
33 0

0 0 0 h
(4)
44


 =: D,

where all the h
(i)
ii ≥ 0. By setting L := E−1

1 E−1
2 E−1

3 , we have that H = LDL⊤, where L has the

form

L =




1 0 0 0

l21 1 0 0

l31 l32 1 0

l41 l42 l43 1


 .

2Here we also use the fact that the Ek’s are all invertible.
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26.10. A new example of LDL
⊤-factorization

We will find out if the following matrix H is positive definite, or positive semidefinite or neither,

by carrying out the LDL⊤-factorization:

H =




1 −1 0 0

−1 2 −1 0

0 −1 2 −1

0 0 −1 1




First add 1 times the first row to the second row and then add 1 times the first column to the

second column. Thus

E1 =




1 0 0 0

1 1 0 0

0 0 1 0

0 0 0 1


 and E1HE⊤

1 =




1 0 0 0

0 1 −1 0

0 −1 2 −1

0 0 −1 1


 .

Now add 1 times the second row to the third row and then add 1 times the second column to the

third column. Thus

E2 =




1 0 0 0

0 1 0 0

0 1 1 0

0 0 0 1


 and E2E1HE⊤

1 E⊤
2 =




1 0 0 0

0 1 0 0

0 0 1 −1

0 0 −1 1


 .

Now add 1 times the third row to the fourth row and then add 1 times the third column to the

fourth column. Thus

E3=




1 0 0 0

0 1 0 0

0 0 1 0

0 0 1 1


 and E3E2E1HE⊤

1 E⊤
2 E⊤

3 =




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0


 .

Thus the LDL⊤-factorization is completed, and we have H = LDL⊤, where

L =




1 0 0 0

−1 1 0 0

0 −1 1 0

0 0 −1 1


 and D =




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0


 .

Since all the diagonal elements of D are ≥ 0, we conclude that H is positive semidefinite. However,

it is not positive definite, since there is a diagonal element of D which is equal to 0.

Exercise 26.22. Determine whether H is positive definite or positive semidefinite or neither.

H =




1 2 −1 0
2 5 −1 −1
−1 −1 0 −1
0 −1 −1 0


 , H ′ =




1 −2 1 0
−2 5 −3 1
1 −3 2 −1
0 1 −1 3


 .
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convex polytope, 14

convex set, 31
cost of flow, 66
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diagonal matrix, 175

diet problem, 19
dimension, 162

directed edges, 65
directional derivative, 110

distance, 6

dual objective function, 154
dual problem, 52, 154

duality theorem, 53

epigraph, 80

Euclidean norm, 6

extreme point, 14, 32

Farkas’ lemma, 59

feasible descent direction, 81, 129

feasible direction, 81, 129
feasible point, 25

feasible set, 1, 25, 52, 80, 103, 129
feasible solution, 5, 52, 80, 129

flow, 66
flow balance, 66

fundamental theorem of linear programming, 29

Gauss-Jordan method, 168
Gauss-Newton method, 123

general inequality, 52
global minimizer, 105, 110

global optimal solution, 129
global optimality conditions, 153

gradient, 84, 109
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greatest upper bound, 3

group, 147

Hessian, 84, 109

implicit function theorem, 135

incidence matrix, 66
infimum, 3

interior of a set, 117
interior point method, 48

interior point of a set, 117
intermediate node, 66

Kantorovich, 9
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Karush-Kuhn-Tucker conditions, 140
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KKT conditions, 140

Koopmans, 9

ladder problem, 133
Lagrange conditions, 92

Lagrange method for quadratic optimization, 91
Lagrange multipliers, 92, 151

Lagrangian, 152
least upper bound, 3

least upper bound property, 4
least-squares problem, 95

line fitting, 21

linear programming, 2, 9
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lower triangular matrix, 175
lower bound, 2

manufacturing problem, 21
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network flow problem, 67
Newton’s method, 121
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nonlinear optimization, 104
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objective function, 1, 80, 103
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optimal feasible solution, 80
optimal solution, 5, 25, 52
optimal value, 5
optimization problem, 1
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positive semidefinite matrix, 176
primal problem, 51
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pseudo inverse, 98
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quadratic function, 83
quadratic optimization, 2

reduced costs, 38
regular point, 131, 140

scalar multiplication, 161
simple inequality, 52
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simplex multipliers, 44
singular value decomposition, 98, 100
sink node, 66
slack variables, 18
source node, 66
spanning tree, 68
spectral theorem, 100
square matrix, 175
standard form, 14, 17
Steiner’s problem, 148
strictly convex function, 79
subspace of a vector space, 161

supremum, 3
Sylvester’s criterion for positivity, 178
symmetric matrix, 175

Taylor expansion, 83
Taylor’s formula, 106, 112

Toricelli point, 148
transportation problem, 20

unconstrained optimization problem, 104
upper triangular matrix, 175
upper bound, 2

vector addition, 161
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