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ABSTRACT 
 
 
A common question asked by researchers is, “What sample size do I need for my study?”  
Over the years, several rules of thumb have been proposed.  In reality there is no rule of 
thumb that applies to all situations.  The sample size needed for a study depends on many 
factors including the size of the model, distribution of the variables, amount of missing 
data, reliability of the variables, and strength of the relationships among the variables.  
The purpose of this paper is to demonstrate how substantive researchers can use a Monte 
Carlo study to decide on sample size and determine power.  Two models are used as 
examples, a confirmatory factor analysis (CFA) model and a growth model.  The 
analyses are carried out using the Mplus program (Muthén & Muthén, 1998).
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A common question asked by researchers is, “What sample size do I need for my study?”  
Over the years, several rules of thumb have been proposed such as 5-10 observations per 
parameter, 50 observations per variable, no less than 100, and so on.  In reality there is no 
rule of thumb that applies to all situations.  The sample size needed for a study depends 
on many factors including the size of the model, distribution of the variables, amount of 
missing data, reliability of the variables, and strength of the relationships among the 
variables.  Although parameter estimates frequently have small bias, standard errors are 
more sensitive.  Standard errors may be overestimated or underestimated depending on 
the situation.  This affects the estimation of confidence intervals also referred to as 
coverage.  If standard errors are overestimated, significant effects may be missed.  If they 
are underestimated, significant effects may be overstated.  Another issue that needs to be 
considered when deciding on sample size is power.  A sample may be large enough for 
unbiased parameter estimates, unbiased standard errors, and good coverage, but it may 
not be large enough to detect an important effect in the model.  
 
The purpose of this paper is to demonstrate how substantive researchers can use a Monte 
Carlo study to decide on sample size and determine power.  Two models are used as 
examples, a confirmatory factor analysis (CFA) model and a growth model.  The 
analyses are carried out using the Mplus program (Muthén & Muthén, 1998) which has 
extensive Monte Carlo facilities.  Data generation using Mplus can include normal data, 
non-normal data, missing data, clustering, and mixtures of populations.  Analysis models 
can include any of the models available in Mplus.  Data generation and analysis models 
do not need to be the same.  
 
This paper focuses on parameter estimates, standard errors, coverage, and power 
assuming correctly specified models.  Mis-specified models can also be studied in the 
Mplus Monte Carlo framework, but are not included here.  Also, it should be noted that 
Monte Carlo studies are useful for evaluating the performance of model fit indices, but 
this use is not considered in the paper. 

 
METHOD 

 
A common use of Monte Carlo studies is for methodological investigations of the 
performance of statistical estimators under various conditions.  In these studies, data are 
generated and models are estimated, sometimes using more than one estimator.  The 
performance of an estimator is judged by studying parameter estimate bias, standard error 
bias, and coverage.  A less common use of Monte Carlo studies is to decide on sample 
size and determine power in the design of substantive studies.  This use is the focus of the 
paper. 
 
MONTE CARLO STUDY  
 
In Monte Carlo studies, data are generated from a population with hypothesized 
parameter values.  A large number of samples are drawn, and a model is estimated for 
each sample.  Parameter values and standard errors are averaged over the samples.  The 
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following criteria are examined: parameter estimate bias, standard error bias, and 
coverage. 
 
Several decisions need to be made to carry out a Monte Carlo study.  The first is the 
choice of the model to be studied.  This choice is driven by the research question being 
asked.  Once the model is chosen, population values for each parameter of the model 
must be selected.  These values can be obtained from theory or previous research.  
Estimates from previous studies are often the best estimates available for population 
values in the Monte Carlo study.  
 
Technical considerations in the Monte Carlo study are the number of samples to be drawn 
and the seed.  The number of samples to be drawn (replications) can be thought of as the 
sample size for the Monte Carlo study.  The number of replications should be increased 
until stability of the results is achieved.  In this study, 10,000 replications are used for 
each analysis to insure that stability has been reached.  The value of the seed determines 
the starting point for the random draws of the samples.  More than one seed should be 
used, and the results for the different seeds should be checked for stability. 
 
MODELS TO BE STUDIED 
 
A CFA model and a growth model were selected for study.  These models were chosen 
because they are often used in practice and are sufficiently different from each other. 
CFA models are typically cross-sectional and have only a covariance structure.  The 
growth model is longitudinal and has both a mean and covariance structure. 
 
Confirmatory Factor Analysis Model 
 
The CFA model that is studied has two factors, each of which has five continuous factor 
indicators.  The CFA model has 31 free parameters and 24 degrees of freedom.  A 
diagram of the CFA model is shown in Figure 1.  Data are generated using the following 
population values.  The factor loadings are 0.8.  The residual variances of the factor 
indicators are 0.36.   Factor variances are fixed to one to set the metric of the factors.  The  
 

Insert Figure 1 Here 
 
factor correlation is 0.25.   All factor loadings are free.  These population values are 
chosen so that the variances of the factor indicators are one which makes the parameter 
values more easily interpretable.  The population values result in a reliability of 0.64 for 
each factor indicator.  Reliability is calculated as the ratio of the variance of the factor 
indicator explained by the factor to the total variance of the factor indicator using the 
following formula,  
 
(1) λ2 ψ / (λ2 ψ + θ) ,  
 
where λ is the factor loading, ψ is the factor variance, and θ is the residual variance.  
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The focus of the power investigation in the CFA model is the factor correlation.  This 
parameter is of particular interest because it represents the correlation between the two 
constructs unattenuated by measurement error.    The CFA model can also be thought of 
as a longitudinal model with two measurement occasions so that the last five indicators 
are repeated measures of the first five indicators.  In this case, the factor correlation can 
be seen as a measure of stability of the construct over time.  
 
The CFA model is examined under four conditions: (1) normally distributed continuous 
factor indicators without missing data, (2) normally distributed continuous factor 
indicators with missing data, (3) non-normal continuous factor indicators without missing 
data, and (4) non-normal continuous factor indicators with missing data.  
 
Missing Data 
 
In the analyses with missing data, the data are generated such that all subjects have data 
on y1, y2, y3, y4, and y5 and 50 percent of the subjects have data on y6, y7, y8, y9, and 
y10.  The patterns of missing data should be specified to reflect missing data patterns 
seen in practice.  For example, the percent of missing data can increase in relation to the 
number of questions in a survey to reflect the likelihood that subjects become tired 
toward the end of a survey and start skipping questions.  Or the percent of missing data 
can increase over time reflecting the likelihood that people will drop out of a study.  If a 
study is designed such that some subjects receive only a subset of the items on a survey 
or are measured only at certain ages, this can also be reflected in the generation of data.  
The way missing data are generated for the CFA model is an example of missing 
completely at random (MCAR; Little & Rubin, 1987).  
 
Non-Normal Data 
 
In the analyses with non-normal data, the data are created using a mixture of two normal 
subpopulations or classes of individuals.  Normal data are generated for two classes that 
have different means and variances for the factor indicators.  The combined data are 
analyzed as though they come from a single population.  To maintain a similarity 
between the CFA models without and with missing data, the parameter values for the 
factor indicators are chosen so that their reliabilities are 0.64 using equation (1). 
 
The first step is to generate data for two classes such that the combination of the data 
from the two classes has the desired skewness and kurtosis.  This is done by allowing one 
of the classes to represent an outlying group of individuals that has different means and 
variances for the factor indicators.  The choice of the proportion of individuals in the two 
classes also affects skewness and kurtosis.  To insure that the model for the combined 
data is a correctly specified CFA model, skewness and kurtosis in the factor indicators is 
achieved by choosing different means and variances for the factors, not by manipulating 
the means and variances of the factor indicators.   
 
For the CFA model with non-normal data, Class 1, the outlier class, contains 12 percent 
of the subjects and Class 2 contains the remaining 88 percent.  Only the factor indicators 
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for the second factor are non-normal.  Therefore, the Class 1 mean for the second factor 
is chosen to be 15 and the variance 5 as compared to the Class 2 mean and variance of 
zero and one.  The resulting population univariate skewness for variables y6 through y10 
is 1.2.    The resulting  population univariate kurtosis for variables y6 through y10 ranges 
from 1.5 to 1.6. 
 
The second step is to run the analysis with one replication and a large sample to obtain 
approximate population values for the one class model.  In this paper, a sample size of 
100,000 is used.  Given that factor indicator reliabilities of 0.64 are desired, the third step 
is to solve for the population residual variances for the factor indicators of the second 
factor using equation (1) and use those values as the population values for data 
generation. 
 
Growth Model 
 
Two growth models are studied.  Both are linear growth models with equidistant time 
points for four continuous outcomes.  One has a covariate influencing the intercept and 
slope growth factors.  The growth model without a covariate has 9 free parameters and 5 
degrees of freedom.  The growth model with a covariate has 11 free parameters and 7 
degrees of freedom.  Figure 2 shows the diagram for the growth model with the covariate.  
Data are generated using the following population values.  For the growth model without 
a covariate, the mean of the intercept growth factor is 0.0 and the mean of the slope 
growth factor is 0.2.  The variance of the intercept growth factor is 0.5 and the variance  
 

Insert Figure 2 Here 
 
of the slope growth factor is 0.1, reflecting a commonly seen variance ratio.  The 
covariance between the intercept and slope growth factors is zero.   The residual 
variances of the continuous outcomes are 0.5.  This results in R-square values of 0.50 for 
y1, 0.55 for y2, 0.64 for y3, and 0.74 for y4 using the following formula, 
 
(2) R-square (yt) = (ψ i + xt

2 ψs+ 2 xt ψ is)/(ψ i + xt
2 ψs + 2 xt ψ is + θt), 

 
where ψ i is the variance of the intercept growth factor, xt is the time score at time t, ψs is 
the variance of the slope growth factor, ψ is is the covariance between intercept and slope 
growth factors (set at zero in this case), and θt is the residual variance for the outcome at 
time t.  Here the xt time scores are chosen as 0, 1, 2, and 3.  
 
In the growth model with a covariate, the intercept and slope growth factors are regressed 
on a dichotomous covariate with a 50/50 split giving the covariate a mean of 0.5 and a 
variance of 0.25.  This covariate can be thought of as a treatment or gender dummy 
variable.  For the intercept growth factor, the regression coefficient is 0.5.  The residua l 
variance for the intercept growth factor is chosen as 0.25. This corresponds to an R-
square value of 0.20 for the intercept growth factor.  
 



 7

The focus of the power investigation in the growth model is the regression coefficient in 
the regression of the slope growth factor on the covariate.  This parameter is selected 
because across-group differences in development over time are the focus of many 
longitudinal studies.  Regression coefficient values of 0.2 and 0.1 are chosen to study 
different effect sizes.  A regression coefficient of 0.2 has an effect size of 0.63 reflecting 
a medium effect (Cohen, 1969).  A slope of 0.1 has an effect size of 0.32 reflecting a 
small effect.   Here effect size is computed as the ratio of the difference in the slope 
means for the two values of the covariate divided by the standard deviation of the slope 
growth factor. The residual variance for the slope growth factor is chosen as 0.09. This 
corresponds to an R-square value of 0.10 for the slope growth factor when the regression 
coefficient is 0.2 and an R-square of 0.03 when the regression coefficient is 0.1.  Values 
as low as these are commonly seen in the prediction of the slope growth factor.   
 
The growth model is examined under five conditions: (1) normally distributed continuous 
outcomes without missing data without a covariate, (2) normally distributed continuous 
outcomes without missing data with a covariate that has a regression coefficient of 0.2 for 
the slope growth factor, (3) normally distributed continuous outcomes with missing data 
with a covariate that has a regression coefficient of 0.2 for the slope growth factor, (4) 
normally distributed continuous outcomes without missing data with a covariate that has 
a regression coefficient of 0.1 for the slope growth factor, and (5) normally distributed 
continuous outcomes with missing data with a covariate that has a regression coefficient 
of 0.1 for the slope growth factor.  
 
Missing Data 
 
In the analyses with missing data, the data are generated to reflect an increase in missing 
data over time due to attrition.  For the second through the fourth time points, the 
probability of missing data is influenced by the covariate, while the first time point has 
data missing completely at random (MCAR).  For the covariate value of zero, the first 
measurement occasion has 12 percent missing on the outcome, the second has 18 percent 
missing, the third has 27 percent missing, and the fourth has 50 percent missing.  For the 
covariate value of one, the first measurement occasion has 12 percent missing on the 
outcome, the second has 38 percent missing, the third has 50 percent missing, and the 
fourth has 73 percent missing.  The way missing data are generated for the growth model 
is an example of missing at random (MAR; Little & Rubin, 1987). 
 
MODEL ESTIMATION 
 
Model estimation is carried out in all cases by maximum likelihood under the assumption 
of normality.  For models with non-normal data, standard errors are computed  using a 
non-normality robust sandwich estimator.  All analyses are done using the Mplus 
program.  All Mplus inputs used for the paper are included in Appendix 1 and are 
available at www.statmodel.com.   Complete outputs are also available at this website.  
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STRATEGY FOR DECIDING ON SAMPLE SIZE 
 
Several criteria are examined to determine sample size.  The first criterion is that 
parameter and standard error biases do not exceed 10 percent for any parameter in the 
model.  The second criterion is that the standard error bias for the parameter for which 
power is being assessed does not exceed 5 percent.  The third criterion is that coverage 
remains between 0.91 and 0.98.  Once these three conditions are satisfied, the sample size 
is chosen to keep power close to 0.80.  The value of 0.80 is used because it is a 
commonly accepted value for sufficient power.   
 
Appendix 2 shows partial output from the Mplus analysis for the CFA model with 
normally distributed continuous factor indicators without missing data.  All outputs from 
the analyses in this paper are available at the website www.statmodel.com.  Following is 
a description of how the information in the output is used to evaluate the criteria 
discussed above.   
 
Parameter bias is evaluated using the information in columns one and two of the output.  
The column labeled Starting gives the population parameter values.  The column labeled 
Average gives the parameter estimate average over the replications of the Monte Carlo 
study.  For example, the first number in column 2, 0.7963, is the average of the factor 
loading estimates for y1 over 10,000 replications.  To determine its bias, subtract the 
population value of 0.8 from this number and divide it by the population value of 0.8.  
This results in a bias of -0.005 which is negligible.   
 
Standard error bias is evaluated using the information in columns three and four of the 
output.  The column labeled Std. Dev. gives the standard deviation of each parameter 
estimate over the replications of the Monte Carlo study.  This is considered to be the 
population standard error when the number of replications is large.  The column labeled 
S.E. Average gives the average of the estimated standard errors for each parameter 
estimate over the replications of the Monte Carlo study.  Standard error bias is calculated 
in the same way as parameter estimate bias as described above.   
 
Coverage is evaluated using the information in column 6 of the output labeled 95% 
Cover.  It gives the proportion of replications for which the 95% confidence interval 
contains the true parameter value.  
 
Power is evaluated using the information in column 7 of the output labeled % Sig Coeff.  
This column gives the proportion of replications for which the null hypothesis that a 
parameter is equal to zero is rejected for each parameter at the .05 level (two-tailed test 
with a critical value of 1.96).  The statistical test is the ratio of the parameter estimate to 
its standard error, an approximately normally distributed quantity (z-score) in large 
samples.  For parameters with population values different from zero, this value is an 
estimate of power, that is, the probability of rejecting the null hypothesis when it is false.  
For parameters with population values equal to zero, this value is an estimate of Type I 
error, that is, the probability of rejecting the null hypothesis when it is true.  
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FINDINGS 

 
CONFIRMATORY FACTOR ANALYSIS MODEL 
 
The results of the four CFA analyses are found in Table 1.  For the simplest CFA model 
with normally distributed continuous factor indicators and no missing data, a sample size 
of 150 is needed for power of 0.81 to reject the hypothesis that the factor correlation is 
zero.  By adding the complication of missing data, a sample size of 175 is required for  
power of 0.81.  Considering the CFA model with non-normal factor indicators  
without missing data, a sample size of 265 is needed for a power of 0.80.  Adding the 
complication of missing data results in the need for a sample size of 315 for power of 
0.81.  

 
Insert Table 1 Here 

   
GROWTH MODEL 
 
The results of the five growth model analyses are found in Table 2.  For the simplest 
growth model without missing data and without a covariate, a sample size of 40 is needed 
for power of 0.81 to reject the hypothesis that the mean of the slope growth factor is zero.  
By adding a dichotomous covariate with population regression coefficient of 0.2 for the 
regression of the slope growth factor on the covariate, the sample size requirement to 
reject the hypothesis that the regression coefficient is zero rises to 150 for a power of 
0.81.  By adding the complication of missing data, the sample size requirement increases 
to 250 for a power of 0.80.  By eliminating the missing data complication and changing 
the population value of the regression coefficient to 0.1, the sample size requirement is 
600 for a power of 0.80.  By adding the complication of missing data to the model with a 
regression coefficient of 0.1, the samples size requirement rises to 1025 for a power of 
0.80.  
 

Insert Table 2 Here 
 

DISCUSSION 
 
This paper demonstrated the use of a Monte Carlo study for the purpose of deciding on 
sample size and determining power.  A CFA and a growth model were considered.  
 
For the CFA model, the influences of non-normality and missing data on sample size 
requirements were studied.  Sample size requirements were found to be influenced more 
by non-normality than missing data, at least in this situation where data are missing 
completely at random.  For both normal and non-normal data, adding the complication of 
missing data increased the sample size requirement by approximately 18 percent.  Having 
both non-normality and missing data approximately doubled the sample size requirement.  
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For the growth model, the influence of missing data, a covariate, and regression 
coefficient size on sample size requirements were studied.  It was found that the largest 
impact on the sample size requirement came from including a small regression coefficient 
for the covariate in the model.  Reducing the population value of the regression 
coefficient from 0.2 to 0.1 increased the sample size requirement approximately four 
times both with and without missing data.  This reflected a change in effect size from 
medium to small.  Including missing data in the model increased the sample size 
requirement by a factor of approximately 1.7 for both effect sizes.   
 
The results in this paper support the fact that sample size requirements depend strongly 
on many factors.  As an example, the sample size requirement of 600 for detecting a 
small effect size in the growth model is high in contrast to the sample size requirement of 
265 for detecting a small factor correlation in the CFA model.  
  
The paper demonstrated how substantive researchers can use a Monte Carlo study to 
decide on sample size and determine power.  Two models were considered and a strategy 
for deciding on sample size was described.  Many variations of the models and strategy 
described in the paper can also be considered.  Variations of the CFA model that can be 
considered are factor cross- loadings and/or residual covariances.  In addition, the number 
of factors and the number of factor indicators can be varied.  Variations of the growth 
model that can be considered are different choices of the R-square value for the slope 
growth factor and the continuous outcomes, residual covariances, free time scores, 
quadratic models, and piecewise models.  In addition, the number of time points can be 
varied.  Also, if a researcher is interested in power for only one parameter, it is not 
necessary to have the strict bias requirements for all parameters in the model as suggested 
in the strategy of this paper.  
 
In addition to the models and data complications included in this paper, Monte Carlo 
studies in Mplus can include investigations of sample size and power in situations with 
cluster samples (hierarchical data) and mixtures of unobserved subpopulations.  This 
allows studies of sample size and power for multilevel CFA models, 3- level growth 
models, factor mixture models, and growth mixture models.  It is important to investigate  
the reduction in power due to cluster sampling and due to considering small 
subpopulations in mixture models. 
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APPENDIX 1 
 
Appendix 1 contains the Mplus input files for the nine analyses in the paper.  Following 
is a brief description of the Mplus commands.  Details about the input language can be 
found in the Mplus User’s Guide (Muthén & Muthén, 1998).  The TITLE command 
provides a title for the output.  The MONTECARLO command describes the technical 
details of the Monte Carlo study.  The ANALYSIS command provides information about 
the type of analysis to be performed.  The MODEL MONTECARLO command is used to 
provide the population parameter values to be used in data generation.  The MODEL 
command describes the model to be estimated. The OUTPUT command is used to 
request extra output.   
 
 
Mplus Input File For The CFA Model With Normally Distributed Continuous Factor 
Indicators Without Missing Data 
 
TITLE:          cfa1.inp normal, no missing 
MONTECARLO:     NAMES ARE y1-y10; 
                NOBSERVATIONS = 150; 
                NREPS = 10000; 
                SEED = 53487; 
                NCLASSES = 1; 
                GCLASSES = 1; 
                SAVE = cfa1.sav; 
ANALYSIS:       TYPE = MIXTURE; 
                ESTIMATOR = ML; 
MODEL MONTECARLO: 
                %OVERALL% 
                f1 BY y1-y5*.8; 
                f2 BY y6-y10*.8; 
                f1@1 f2@1; 
                y1-y10*.36; 
                f1 WITH f2*.25; 
MODEL:   
                %OVERALL% 
                f1 BY y1-y5*.8; 
                f2 BY y6-y10*.8; 
                f1@1 f2@1; 
                y1-y10*.36; 
                f1 WITH f2*.25; 
OUTPUT:     TECH9; 
 
 
Mplus Input File For The CFA Model With Normally Distributed Continuous Factor 
Indicators With Missing Data 
 
TITLE:  cfa2.inp  normal, missing 
MONTECARLO:  NAMES ARE y1-y10; 
          NOBSERVATIONS = 175; 
          NREPS = 10000; 
          SEED = 53487; 
          NCLASSES = 1; 
          GCLASSES = 1; 



 14 

          PATMISS = y6 (.5) y7 (.5) y8 (.5) y9 (.5) y10 (.5); 
          PATPROB = 1; 
         SAVE = cfa2.sav; 
ANALYSIS:   TYPE = MIXTURE MISSING; 
                 ESTIMATOR = ML; 
MODEL MONTECARLO: 
   %OVERALL% 
   f1 BY y1-y5*.8; 
                 f2 BY y6-y10*.8; 
                 f1@1 f2@1; 
                 y1-y10*.36; 
                 f1 WITH f2*.25; 
MODEL:   
   %OVERALL% 
     f1 BY y1-y5*.8; 
                 f2 BY y6-y10*.8; 
                 f1@1 f2@1; 
                 y1-y10*.36; 
                 f1 WITH f2*.25; 
OUTPUT:    PATTERNS TECH9; 
 
 
Mplus Input File For The CFA Model With Non-Normal Continuous Factor Indicators  
Without Missing Data 
 
TITLE:  cfa3.inp  non-normal, no missing 
MONTECARLO:  NAMES ARE y1-y10; 
          NOBSERVATIONS = 265; 
         NREPS = 10000; 
          SEED = 53487; 
   NCLASSES = 1; 
          GCLASSES = 2; 
          SAVE = cfa3.sav; 
ANALYSIS:   TYPE = MIXTURE; 
                 ESTIMATOR = MLR; 
MODEL MONTECARLO: 
   %OVERALL% 
   f1 BY y1-y5*.8; 
                 f2 BY y6-y10*.8; 
                 f1@1 f2@1; 
                 y1-y5*.36 y6-y10*9; 
                 f1 WITH f2*.95; 
                 [C#1@-2]; 
 
                 %C#1% 
 
                 [f1@0 f2@15]; 
                 f1@1 f2@5; 
                 
                 %C#2% 
 
                 [f1@0 f2@0]; 
                 f1@1 f2@1; 
MODEL:   
   %OVERALL% 
     f1 BY y1-y5*.8; 
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                 f2 BY y6-y10*4; 
                 f1@1 f2@1; 
                 y1-y5*.36 y6-y10*9; 
                 f1 WITH f2*.20; 
 
   [y6-y10*1.42]; 
OUTPUT:           TECH9; 
 
 
Mplus Input File For The CFA Model With Non-Normal Continuous Factor Indicators 
With Missing Data 
  
TITLE:  cfa4.inp  non-normal, missing 
MONTECARLO:  NAMES ARE y1-y10; 
          NOBSERVATIONS = 315; 
          NREPS = 10000; 
          SEED = 53487; 
          NCLASSES = 1; 
          GCLASSES = 2; 
          PATMISS = y6 (.5) y7 (.5) y8 (.5) y9(.5) y10 (.5); 
          PATPROB = 1; 
          SAVE = cfa4.sav; 
ANALYSIS:   TYPE = MIXTURE MISSING; 
                 ESTIMATOR = MLR; 
MODEL MONTECARLO: 
   %OVERALL% 
   f1 BY y1-y5*.8; 
                 f2 BY y6-y10*.8; 
                 f1@1 f2@1; 
                 y1-y5*.36 y6-y10*9; 
                 f1 WITH f2*.95; 
                 [C#1@-2]; 
 
                 %C#1% 
 
                 [f1@0 f2@15]; 
                 f1@1 f2@5; 
                 
                 %C#2% 
 
                 [f1@0 f2@0]; 
                 f1@1 f2@1; 
MODEL:   
   %OVERALL% 
     f1 BY y1-y5*.8; 
                 f2 BY y6-y10*4; 
                 f1@1 f2@1; 
                 y1-y5*.36 y6-y10*9; 
                 f1 WITH f2*.20; 
 
   [y6-y10*1.42]; 
OUTPUT:    PATTERNS TECH9; 
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Mplus Input File For The Growth Model With Normally Distributed Continuous 
Outcomes Without Missing Data Without A Covariate 
 
TITLE:  growth1.inp  normal, no covariate, no missing 
MONTECARLO:  NAMES ARE y1-y4; 
          NOBSERVATIONS = 40; 
          NREPS = 10000; 
          SEED = 53487;      
          NCLASSES = 1; 
          GCLASSES = 1; 
          SAVE = growth1.sav; 
ANALYSIS:   TYPE = MIXTURE; 
             ESTIMATOR = ML; 
MODEL MONTECARLO: 
   %OVERALL% 
   i BY y1-y4@1; 
                 s BY y1@0 y2@1 y3@2 y4@3; 
   [y1-y4@0]; 
                 [i*0 s*.2]; 
                 i*.5; 
                 s*.1; 
                 i WITH s*0; 
                 y1-y4*.5; 
 
   %C#1% 
 
                 [i*0 s*.2];  
MODEL:   
   %OVERALL% 
     i BY y1-y4@1; 
                 s BY y1@0 y2@1 y3@2 y4@3; 
   [y1-y4@0]; 
   [i*0 s*.2]; 
   i*.5; 
   s*.1; 
   i WITH s*0; 
   y1-y4*.5; 
 
   %C#1% 
 
   [i*0 s*.2]; 
OUTPUT:  TECH9;  
 
 
Mplus Input File For The Growth Model With Normally Distributed Continuous 
Outcomes Without Missing Data With A Covariate That Has A Regression Coefficient 
Of 0.2 For The Slope Growth Factor  
   
TITLE:  growth2.inp  normal, covariate, no missing 
MONTECARLO:  NAMES ARE y1-y4 x; 
          CUTPOINTS = x (0); 
          NOBSERVATIONS = 150; 
          NREPS = 10000; 
          SEED = 53487; 
          NCLASSES = 1; 
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          GCLASSES = 1; 
          SAVE = growth2.sav; 
ANALYSIS:   TYPE = MIXTURE; 
                 ESTIMATOR = ML; 
MODEL MONTECARLO: 
   %OVERALL% 
   [x@0]; x@1; 
   i BY y1-y4@1; 
                 s BY y1@0 y2@1 y3@2 y4@3; 
   [y1-y4@0]; 
                 [i*0 s*.2]; 
                 i*.25; 
                 s*.09; 
                 i WITH s*0; 
                 y1-y4*.5; 
 
                 i ON x*.5; 
                 s ON x*.2; 
 
   %C#1% 
 
                 [i*0 s*.2];  
MODEL:   
   %OVERALL% 
     i BY y1-y4@1; 
                 s BY y1@0 y2@1 y3@2 y4@3; 
   [y1-y4@0]; 
                 [i*0 s*.2]; 
                 i*.25; 
                 s*.09; 
                 i WITH s*0; 
                 y1-y4*.5; 
 
                 i ON x*.5; 
                 s ON x*.2; 
 
   %C#1% 
 
   [i*0 s*.2]; 
OUTPUT:  TECH9;  
 
 
Mplus Input File For The Growth Model With Normally Distributed Continuous 
Outcomes With Missing Data With A Covariate That Has A Regression Coefficient Of 
0.2 For The Slope Growth Factor  
 
 
TITLE:  growth3.inp  normal, covariate, missing 
MONTECARLO:  NAMES ARE y1-y4 x; 
          CUTPOINTS = x (0); 
          NOBSERVATIONS = 250; 
          NREPS = 10000; 
          SEED = 53487; 
          NCLASSES = 1; 
          GCLASSES = 1; 
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          MISSING = y1-y4; 
          SAVE = growth3.sav; 
ANALYSIS:   TYPE = MIXTURE MISSING; 
                 ESTIMATOR = ML; 
MODEL MISSING: 
                 %OVERALL% 
   [y1@-2 y2@-1.5 y3@-1 y4@0]; 
                 y2-y4 ON x@1; 
MODEL MONTECARLO: 
   %OVERALL% 
   [x@0]; x@1; 
   i BY y1-y4@1; 
                 s BY y1@0 y2@1 y3@2 y4@3; 
   [y1-y4@0]; 
                 [i*0 s*.2]; 
                 i*.25; 
                 s*.09; 
                 i WITH s*0; 
                 y1-y4*.5; 
 
                 i ON x*.5; 
                 s ON x*.2; 
 
   %C#1% 
 
                 [i*0 s*.2]; 
MODEL:   
   %OVERALL% 
     i BY y1-y4@1; 
             s BY y1@0 y2@1 y3@2 y4@3; 
   [y1-y4@0]; 
             [i*0 s*.2]; 
             i*.25; 
             s*.09; 
             i WITH s*0; 
             y1-y4*.5; 
 
             i ON x*.5; 
             s ON x*.2; 
 
   %C#1% 
 
   [i*0 s*.2]; 
OUTPUT:  TECH9;  
 
 
Mplus Input File For The Growth Model With Normally Distributed Continuous 
Outcomes Without Missing Data With A Covariate That Has A Regression Coefficient 
Of 0.1 For The Slope Growth Factor 
 
TITLE:  growth4.inp  normal, covariate, no missing 
MONTECARLO:  NAMES ARE y1-y4 x; 
          CUTPOINTS = x (0); 
          NOBSERVATIONS = 600; 
          NREPS = 10000; 



 19 

          SEED = 53487; 
          NCLASSES = 1; 
          GCLASSES = 1; 
          SAVE = growth4.sav; 
ANALYSIS:   TYPE = MIXTURE; 
                 ESTIMATOR = ML; 
MODEL MONTECARLO: 
   %OVERALL% 
   [x@0]; x@1; 
   i BY y1-y4@1; 
                 s BY y1@0 y2@1 y3@2 y4@3; 
   [y1-y4@0]; 
                 [i*0 s*.2]; 
                 i*.25; 
                 s*.09; 
                 i WITH s*0; 
                 y1-y4*.5; 
 
                 i ON x*.5; 
                 s ON x*.1; 
 
   %C#1% 
 
                 [i*0 s*.2];  
MODEL:   
   %OVERALL% 
     i BY y1-y4@1; 
                 s BY y1@0 y2@1 y3@2 y4@3; 
   [y1-y4@0]; 
                 [i*0 s*.2]; 
                 i*.25; 
                 s*.09; 
                 i WITH s*0; 
                 y1-y4*.5; 
 
                 i ON x*.5; 
                 s ON x*.1; 
 
   %C#1% 
 
   [i*0 s*.2];  
OUTPUT:  TECH9; 
 
 
Mplus Input File For The Growth Model With Normally Distributed Continuous 
Outcomes With Missing Data With A Covariate That Has A Regression Coefficient Of 
0.1 For The Slope Growth Factor 
 
TITLE:  growth5.inp  normal, covariate, missing 
MONTECARLO:  NAMES ARE y1-y4 x; 
          CUTPOINTS = x (0); 
          NOBSERVATIONS = 1025; 
          NREPS = 10000; 
          SEED = 53487; 
          NCLASSES = 1; 
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          GCLASSES = 1; 
          MISSING = y1-y4; 
          SAVE = growth5.sav; 
ANALYSIS:   TYPE = MIXTURE MISSING; 
                 ESTIMATOR = ML; 
MODEL MISSING: 
                 %OVERALL% 
   [y1@-2 y2@-1.5 y3@-1 y4@0]; 
                 y2-y4 on x@1; 
MODEL MONTECARLO: 
   %OVERALL% 
   [x@0]; x@1; 
   i BY y1-y4@1; 
                 s BY y1@0 y2@1 y3@2 y4@3; 
   [y1-y4@0]; 
                 [i*0 s*.2]; 
                 i*.25; 
                 s*.09; 
                 i WITH s*0; 
                 y1-y4*.5; 
 
                 i ON x*.5; 
                 s ON x*.1; 
 
   %C#1% 
 
                 [i*0 s*.2]; 
MODEL:   
   %OVERALL% 
     i BY y1-y4@1; 
                 s BY y1@0 y2@1 y3@2 y4@3; 
   [y1-y4@0]; 
                 [i*0 s*.2]; 
                 i*.25; 
                 s*.09; 
                 i WITH s*0; 
                 y1-y4*.5; 
 
                 i ON x*.5; 
                 s ON x*.1; 
 
   %C#1% 
 
   [i*0 s*.2];  
OUTPUT:  TECH9; 
 
 



 21 

APPENDIX 2 
 

Mplus Output Excerpts For the CFA Model with Normally Distributed Continuous 
Factor Indicators and No Missing Data 
 
MODEL RESULTS 
 
                           ESTIMATES              S. E.     M. S. E.  95%  % Sig 
                Starting   Average   Std. Dev.   Average             Cover Coeff 
CLASS 1 
 
 F1       BY 
  Y1               0.800     0.7963     0.0707     0.0697     0.0707 0.949 1.000 
  Y2               0.800     0.7981     0.0712     0.0698     0.0712 0.942 1.000 
  Y3               0.800     0.7962     0.0708     0.0697     0.0708 0.946 1.000 
  Y4               0.800     0.7975     0.0708     0.0698     0.0708 0.944 1.000 
  Y5               0.800     0.7971     0.0704     0.0698     0.0704 0.947 1.000 
 
 F2       BY 
  Y6               0.800     0.7959     0.0706     0.0697     0.0707 0.945 1.000 
  Y7               0.800     0.7961     0.0702     0.0697     0.0702 0.950 1.000 
  Y8               0.800     0.7950     0.0701     0.0697     0.0701 0.945 1.000 
  Y9               0.800     0.7969     0.0710     0.0698     0.0710 0.946 1.000 
  Y10              0.800     0.7968     0.0703     0.0698     0.0703 0.946 1.000 
 
 F1       WITH 
  F2               0.250     0.2497     0.0864     0.0850     0.0864 0.942 0.812 
 
 Residual Variances 
  Y1               0.360     0.3551     0.0523     0.0513     0.0523 0.934 1.000 
  Y2               0.360     0.3548     0.0523     0.0514     0.0523 0.933 1.000 
  Y3               0.360     0.3546     0.0529     0.0513     0.0529 0.929 1.000 
  Y4               0.360     0.3553     0.0525     0.0514     0.0525 0.931 1.000 
  Y5               0.360     0.3547     0.0526     0.0513     0.0527 0.934 1.000 
  Y6               0.360     0.3548     0.0516     0.0513     0.0516 0.939 1.000 
  Y7               0.360     0.3545     0.0524     0.0513     0.0524 0.929 1.000 
  Y8               0.360     0.3548     0.0520     0.0513     0.0521 0.934 1.000 
  Y9               0.360     0.3554     0.0524     0.0514     0.0524 0.935 1.000 
  Y10              0.360     0.3550     0.0525     0.0514     0.0526 0.934 1.000 
 
 Variances 
  F1               1.000     1.0000     0.0000     0.0000     0.0000 1.000 0.000 
  F2               1.000     1.0000     0.0000     0.0000     0.0000 1.000 0.000 
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TABLE 1 
 

Sample Size Requirements For The CFA Model 
 

 
 
 

  
No Missing 

 

 
Missing 

 
Normal 

 

 
150  

 
175 

 
Non-normal 

 

 
265 

 
315 
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TABLE 2 

 
Sample Size Requirements For The Growth Model 

 
 
 
 

  
No Missing 

 

 
Missing 

 
 

No Covariate 
 

 
40  

 
NA 

 
Regression Coefficient .2 

 

 
150  

 
250  

 
Regression Coefficient .1 

 

 
600  

 
1025  
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Figure Captions 
 
FIGURE 1  CFA Model. 
 
 
FIGURE 2  Growth Model. 
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FIGURE 1 
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FIGURE 2 
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