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ABSTRACT

A common guestion asked by researchersis, “What sample size do | need for my study?’
Over the years, several rules of thumb have been proposed. In redlity there is no rule of
thumb that appliesto al situations. The sample size needed for a study depends on many
factors including the size of the model, distribution of the variables, amount of missing
data, reliability of the variables, and strength of the relationships among the variables.
The purpose of this paper is to demonstrate how substantive researchers can use a Monte
Carlo study to decide on sample size and determine power. Two models are used as
examples, a confirmatory factor analysis (CFA) model and a growth model. The
analyses are carried out using the Mplus program (Muthén & Muthén, 1998).



A common guestion asked by researchersis, “What sample size do | need for my study?’
Over the years, severa rules of thumb have been proposed such as 5-10 observations per
parameter, 50 observations per variable, no less than 100, and so on. In redlity thereis no
rule of thumb that applies to all situations. The sample size needed for a study depends
on many factors including the size of the model, distribution of the variables, anount of
missing data, reliability of the variables, and strength of the relationships among the
variables. Although parameter estimates frequently have small bias, standard errors are
more sensitive. Standard errors may be overestimated or underestimated depending on
the situation. This affects the estimation of confidence intervals also referred to as
coverage. If standard errors are overestimated, significant effects may be missed. If they
are underestimated, significant effects may be overstated. Another issue that needs to be
considered when deciding on sample size is power. A sample may be large enough for
unbiased parameter estimates, unbiased standard errors, and good coverage, but it may
not be large enough to detect an important effect in the model.

The purpose of this paper is to demonstrate how substantive researchers can use a Monte
Carlo study to decide on sample size and determine power. Two models are used as
examples, a confirmatory factor analysis (CFA) model and a growth model. The
analyses are carried out using the Mplus program (Muhén & Muthén, 1998) which has
extensive Monte Carlo facilities. Data generation using Mplus can include normal data,
non-normal data, missing data, clustering, and mixtures of populations. Analysis models
can include any of the models available in Mplus. Data generation and analysis models
do not need to be the same.

This paper focuses on parameter estimates, standard errors, coverage, and power
assuming correctly specified models. Mis-specified models can also be studied in the
Mplus Monte Carlo framework, but are not included here. Also, it should be noted that
Monte Carlo studies are useful for evaluating the performance of mode fit indices, but
this use is not considered in the paper.

METHOD

A common use of Monte Carlo studies is for methodological investigations of the
performance of statistical estimators under various conditions. In these studies, data are
generated and models are estimated, sometimes using more than one estimator. The
performance of an estimator is judged by studying parameter estimate bias, standard error
bias, and coverage. A less common use of Monte Carlo studiesis to decide on sample
size and determine power in the design of substantive studies. This use isthe focus of the

paper.
MONTE CARLO STUDY

In Monte Carlo studies, data are generated from a population with hypothesized
parameter values. A large number of samples are drawn, and a model is estimated for
each sample. Parameter values and standard errors are averaged over the samples. The



following criteria are examined: parameter estimate bias, standard error bias, and
coverage.

Severa decisions need to be made to carry out a Monte Carlo study. Thefirst isthe
choice of the model to be studied. This choice is driven by the research question being
asked. Once the modéd is chosen, population values for each parameter of the model
must be selected. These values can be obtained from theory or previous research.
Estimates from previous studies are often the best estimates available for population
values in the Monte Carlo study.

Technical considerations in the Monte Carlo study are the number of samples to be drawn
and the seed. The number of samples to be drawn (replications) can be thought of as the
sample size for the Monte Carlo study. The number of replications should be increased
until stability of the resultsis achieved. In this study, 10,000 replications are used for
each anaysis to insure that stability has been reached. The value of the seed determines
the starting point for the random draws of the samples. More than one seed should be
used, and the results for the different seeds should be checked for stability.

MODELS TO BE STUDIED

A CFA model and a growth model were selected for study. These models were chosen
because they are often used in practice and are sufficiently different from each other.
CFA models are typically cross-sectional and have only a covariance structure. The
growth model is longitudinal and has both a mean and covariance structure.

Confirmatory Factor Analysis Model

The CFA modd that is studied has two factors, each of which has five continuous factor
indicators. The CFA model has 31 free parameters and 24 degrees of freedom. A
diagram of the CFA model is shown in Figure 1. Data are generated using the following
population values. The factor loadings are 0.8. The residua variances of the factor
indicators are 0.36. Factor variances are fixed to one to set the metric of the factors. The

Insert Figure 1 Here

factor correlation is 0.25. All factor loadings are free. These population values are
chosen so that the variances of the factor indicators are one which makes the parameter
values more eadly interpretable. The population values result in areliability of 0.64 for
each factor indicator. Reliability is calculated as the ratio of the variance of the factor
indicator explained by the factor to the total variance of the factor indicator using the
following formula,

L) 1Py /0%y +0),

where| isthe factor loading, y isthe factor variance, and q is the residual variance.



The focus of the power investigation in the CFA model is the factor correlation. This
parameter is of particular interest because it represents the correlation between the two
constructs unattenuated by measurement error.  The CFA model can also be thought of
as alongitudinal model with two measurement occasions so that the last five indicators
are repeated measures of the first five indicators. In this case, the factor correlation can
be seen as a measure of stability of the construct over time.

The CFA model is examined under four conditions. (1) normally distributed continuous
factor indicators without missing data, (2) normally distributed continuous factor
indicators with missing data, (3) non-normal continuous factor indicators without missing
data, and (4) nor-normal continuous factor indicators with missing data.

Missing Data

In the analyses with missing data, the data are generated such that all subjects have data
onyl, y2,y3, y4, and y5 and 50 percent of the subjects have data on y6, y7, y8, y9, and
y10. The patterns of missing data should be specified to reflect missing data patterns
seen in practice. For example, the percent of missing data can increase in relation to the
number of questionsin a survey to reflect the likelihood that subjects become tired
toward the end of a survey and start skipping questions. Or the percent of missing data
can increase over time reflecting the likelihood that people will drop out of astudy. If a
study is designed such that some subjects receive only a subset of the items on a survey
or are measured only at certain ages, this can also be reflected in the generation of data.
The way missing data are generated for the CFA model is an example of missing
completely at random (MCAR; Little & Rubin, 1987).

Non-Norma Data

In the analyses with norntnormal data, the data are created using a mixture of two norma
subpopulations or classes of individuals. Normal data are generated for two classes that
have different means and variances for the factor indicators. The combined data are
analyzed as though they come from a single population. To maintain a similarity
between the CFA models without and with missing data, the parameter values for the
factor indicators are chosen so that their reliabilities are 0.64 using equation (1).

The first step is to generate data for two classes such that the combination of the data
from the two classes has the desired skewness and kurtosis. Thisis done by allowing one
of the classes to represent an outlying group of individuals that has different means and
variances for the factor indicators. The choice of the proportion of individuals in the two
classes also affects skewness and kurtosis. To insure that the model for the combined
datais a correctly specified CFA model, skewness and kurtosis in the factor indicatorsis
achieved by choosing different means and variances for the factors, not by manipulating
the means and variances of the factor indicators.

For the CFA modd with nort normal data, Class 1, the outlier class, contains 12 percent
of the subjects and Class 2 contains the remaining 88 percent. Only the factor indicators



for the second factor are nortnormal. Therefore, the Class 1 mean for the second factor
is chosen to be 15 ard the variance 5 as compared to the Class 2 mean and variance of
zero and one. The resulting population univariate skewness for variables y6 through y10
is1l.2. Theresulting population univariate kurtosis for variables y6 through y10 ranges
from 1.5 to 1.6.

The second step is to run the analysis with one replication and a large sample to obtain
approximate population values for the one class model. In this paper, a sample size of
100,000 is used. Given that factor indicator reliabilities of 0.64 are desired, the third step
isto solve for the population residual variances for the factor indicators of the second
factor using equation (1) and use those values as the population values for data
generation.

Growth Modd

Two growth models are studied. Both are linear growth models with equidistant time
points for four continuous outcomes. One has a covariate influencing the intercept and
dope growth factors. The growth model without a covariate has 9 free parameters and 5
degrees of freedom. The growth model with a covariate has 11 free parameters and 7
degrees of freedom. Figure 2 shows the diagram for the growth model with the covariate.
Data are generated using the following population values. For the growth model without
acovariate, the mean of the intercept growth factor is 0.0 and the mean of the Sope
growth factor is 0.2. The variance of the intercept growth factor is 0.5 and the variance

Insert Figure 2 Here

of the slope growth factor is 0.1, reflecting a commonly seen variance ratio. The
covariance between the intercept and slope growth factorsis zero. The residual
variances of the continuous outcomes are 0.5. Thisresultsin R-square values of 0.50 for
y1, 0.55 for y2, 0.64 for y3, and 0.74 for y4 using the following formula,

(2 Rsquare(y) =i+ XY st 2% Vil i+ XY s+ 2% Yis+ G),

wherey ; is the variance of the intercept growth factor, % isthetime score at timet, y sis
the variance of the slope growth factor, y is is the covariance between intercept and slope
growth factors (set at zero in this case), and ¢ is the resdua variance for the outcome at
timet. Herethe x time scores are chosen as0, 1, 2, and 3.

In the growth model with a covariate, the intercept and slope growth factors are regressed
on adichotomous covariate with a 50/50 split giving the covariate amean of 0.5 and a
variance of 0.25. This covariate can be thought of as a treatment or gender dummy
variable. For the intercept growth factor, the regression coefficient is 0.5. The residual
variance for the intercept growth factor is chosen as 0.25. This corresponds to an R
square value of 0.20 for the intercept growth factor.



The focus of the power investigation in the growth model is the regression coefficient in
the regression of the slope growth factor on the covariate. This parameter is selected
because across-group differences in development over time are the focus of many
longitudinal studies. Regression coefficient values of 0.2 and 0.1 are chosen to study
different effect sizes. A regression coefficient of 0.2 has an effect size of 0.63 reflecting
amedium effect (Cohen, 1969). A slope of 0.1 has an effect size of 0.32 reflecting a
small effect. Here effect size is computed as the ratio of the difference in the slope
means for the two values of the covariate divided by the standard deviation of the slope
growth factor. The residua variance for the slope growth factor is chosen as 0.09. This
corresponds to an R-square vaue of 0.10 for the slope growth factor when the regression
coefficient is 0.2 and an R-sguare of 0.03 when the regression coefficient is0.1. Values
as low as these are commonly seen in the prediction of the slope growth factor.

The growth model is examined under five conditions: (1) normally distributed continuous
outcomes without missing data without a covariate, (2) normally distributed continuous
outcomes without missing data with a covariate that has a regression coefficient of 0.2 for
the slope growth factor, (3) normally distributed continuous outcomes with missing data
with a covariate that has a regression coefficient of 0.2 for the slope growth factor, (4)
normally distributed continuous outcomes without missing data with a covariate that has
aregression coefficient of 0.1 for the slope growth factor, and (5) normally distributed
continuous outcomes with missing data with a covariate that has a regression coefficient
of 0.1 for the dope growth factor.

Missing Data

In the analyses with missing data, the data are generated to reflect an increase in missing
data over time due to attrition. For the second through the fourth time points, the
probability of missing data is influenced by the covariate, while the first time point has
data missing completely at random (MCAR). For the covariate value of zero, the first
measurement occasion has 12 percent missing on the outcome, the second has 18 percent
missing, the third has 27 percent missing, and the fourth has 50 percent missing. For the
covariate value of one, the first measurement occasion has 12 percent missing on the
outcome, the second has 38 percent missing, the third has 50 percent missing, and the
fourth has 73 percent missing. The way missing data are generated for the growth model
is an example of missing at random (MAR; Little & Rubin, 1987).

MODEL ESTIMATION

Model estimation is carried out in al cases by maximum likelihood under the assumption
of normality. For models with non-normal data, standard errors are computed using a
non-normality robust sandwich estimator. All analyses are done using the Mplus
program. All Mplus inputs used for the paper are included in Appendix 1 and are
available at www.statmodel.com. Complete outputs are also available at this website.



STRATEGY FOR DECIDING ON SAMPLE SIZE

Several criteriaare examined to determine sample size. The first criterion is that
parameter and standard error biases do not exceed 10 percent for any parameter in the
model. The second criterion is that the standard error bias for the parameter for which
power is being assessed does not exceed 5 percent. The third criterion is that coverage
remains between 0.91 and 0.98. Once these three conditions are satisfied, the sample size
is chosen to keep power close to 0.80. The value of 0.80 is used becauseitisa
commonly accepted value for sufficient power.

Appendix 2 shows partia output from the Mplus analysis for the CFA model with
normally distributed continuous factor indicators without missing data. All outputs from
the analyses in this paper are available at the website www.statmodel.com. Following is
a description of how the information in the output is used to evaluate the criteria
discussed above.

Parameter bias is evaluated using the information in columns one and two of the output.
The column labeled Starting gives the population parameter values. The column labeled
Average gives the parameter estimate average over the replications of the Monte Carlo
study. For example, the first number in column 2, 0.7963, is the average of the factor
loading estimates for y1 over 10,000 replications. To determineits bias, subtract the
population value of 0.8 from this number and divide it by the population value of 0.8.
Thisresultsin abias of -0.005 which is negligible.

Standard error bias is evaluated using the information in columns three and four of the
output. The column labeled Std. Dev. gives the standard deviation of each parameter
estimate over the replications of the Monte Carlo study. Thisis considered to be the
population standard error when the number of replicationsislarge. The column labeled
S.E. Average gives the average of the estimated standard errors for each parameter
estimate over the replications of the Monte Carlo study. Standard error biasis calculated
in the same way as parameter estimate bias as described above.

Coverage is evaluated using the information in column 6 of the output labeled 95%
Cover. It givesthe proportion of replications for which the 95% confidence interval
contains the true parameter value.

Power is evauated using the information in column 7 of the output labeled % Sig Coeff.
This column gives the proportion of replications for which the null hypothesis that a
parameter is equal to zero is rejected for each parameter at the .05 level (two-tailed test
with a critical value of 1.96). The statistical test is the ratio of the parameter estimate to
its standard error, an approximately normally distributed quantity (zscore) in large
samples. For parameters with population values different from zero, this value isan
estimate of power, that is, the probability of rejecting the null hypothesis when it is false.
For parameters with population values equal to zero, this value is an estimate of Type |
error, that is, the probability of reecting the null hypothesis when it is true.



FINDINGS
CONFIRMATORY FACTOR ANALYSISMODEL

The results of the four CFA analyses are found in Table 1. For the simplest CFA model
with normally distributed continuous factor indicators and no missing data, a sample size
of 150 is needed for power of 0.81 to reject the hypothesis that the factor correlation is
zero. By adding the complication of missing data, a sample size of 175 isrequired for
power of 0.81. Considering the CFA model with non-normal factor indicators

without missing data, a sample size of 265 is needed for a power of 0.80. Adding the
complication of missing data results in the need for a sample size of 315 for power of
0.81.

Insert Table 1 Here
GROWTH MODEL

The results of the five growth model analyses are found in Table 2. For the smplest
growth model without missing data and without a covariate, a sample size of 40 is needed
for power of 0.81 to reject the hypothesis that the mean of the slope growth factor is zero.
By adding a dichotomous covariate with population regression coefficient of 0.2 for the
regression of the slope growth factor on the covariate, the sample size requirement to
reject the hypothesis that the regression coefficient is zero rises to 150 for a power of
0.81. By adding the complication of missing data, the sample size requirement increases
to 250 for a power of 0.80. By eliminating the missing data complication and changing
the population value of the regression coefficient to 0.1, the sample size requirement is
600 for a power of 0.80. By adding the complication of missing data to the model with a
regression coefficient of 0.1, the samples size requirement rises to 1025 for a power of
0.80.

Insert Table 2 Here

DISCUSSION

This paper demonstrated the use of a Monte Carlo study for the purpose of deciding on
sample size and determining power. A CFA and a growth model were considered.

For the CFA model, the influences of non-normality and missing data on sample size
requirements were studied. Sample size requirements were found to be influenced more
by nortnormality than missing data, at least in this situation where data are missing
completely at random. For both normal and non-normal data, adding the complication of
missing data increased the sample size requirement by approximately 18 percent. Having
both non-normality and missing data approximately doubled the sample size requirement.



For the growth model, the influence of missing data, a covariate, and regression
coefficient size on sample size requirements were studied. 1t was found that the largest
impact on the sample size requirement came from including a small regression coefficient
for the covariate in the model. Reducing the population value of the regression
coefficient from 0.2 to 0.1 increased the sample size requirement approximately four
times both with and without missing data. This reflected a change in effect size from
medium to small. Including missing data in the model increased the sample size
requirement by a factor of approximately 1.7 for both effect sizes.

The results in this paper support the fact that sample size requirements depend strongly
on many factors. As an example, the sample size requirement of 600 for detecting a
small effect size in the growth model is high in contrast to the sample size requirement of
265 for detecting a small factor correlation in the CFA mode.

The paper demonstrated how substantive researchers can use a Monte Carlo study to
decide on sample size and determine power. Two models were considered and a strategy
for deciding on sample size was described. Many variations of the models and strategy
described in the paper can aso be considered. Variations of the CFA model that can be
considered are factor cross-loadings and/or residual covariances. In addition, the number
of factors and the number of factor indicators can be varied. Variations of the growth
model that can be considered are different choices of the R-square value for the slope
growth factor and the continuous outcomes, residual covariances, free time scores,
quadratic models, and piecewise models. In addition, the number of time points can be
varied. Also, if aresearcher isinterested in power for only one parameter, it is not
necessary to have the strict bias requirements for all parameters in the model as suggested
in the strategy of this paper.

In addition to the models and data complications included in this paper, Monte Carlo
studies in Mplus can include investigations of sample size and power in situations with
cluster samples (hierarchical data) and mixtures of unobserved subpopulations. This
allows studies of sample size and power for multilevel CFA models, 3-level growth
models, factor mixture models, and growth mixture models. It isimportant to investigate
the reduction in power due to cluster sampling and due to considering small
subpopulations in mixture models.
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APPENDIX 1

Appendix 1 contains the Mplus input files for the nine analyses in the paper. Following
is a brief description of the Mplus commands. Details about the input language can be
found in the Mplus User’s Guide (Muthén & Muthén, 1998). The TITLE command
provides atitle for the output. The MONTECARLO command describes the technical
details of the Monte Carlo study. The ANALY SIS command provides information about
the type of analysis to be performed. The MODEL MONTECARLO command is used to
provide the population parameter values to be used in data generation. The MODEL
command describes the model to be estimated. The OUTPUT command is used to
request extra output.

Mplus Input File For The CFA Model With Normally Distributed Continuous Factor
Indicators Without Missing Data

TI TLE: cfal.inp normal, no m ssing
MONTECARLO: NAMES ARE y1-y10;

NOBSERVATI ONS = 150;

NREPS = 10000;

SEED = 53487;

NCLASSES = 1;

GCLASSES = 1;

SAVE = cfal. sav;
ANALYSI S: TYPE = M XTURE;

ESTI MATOR = M,;
MODEL MONTECARLO:

YOVERALL %

f1 BY yl-y5*.8;

f2 BY y6-y10*. 8;

fl@a fa2a,;

y1l-y10*. 36;

f1 WTH f2*. 25;
MODEL :

YEOVERALL%

f1 BY yl-y5*.8;

f2 BY y6-y10*. 8;

fl@a fa2a;

y1-y1l0*. 36;

f1 WTH f2*. 25;
OQUTPUT: TECH9;

Mplus Input File For The CFA Moded With Normally Distributed Continuous Factor
Indicators With Missing Data

TI TLE: cfa2.inp normal, mssing
MONTECARLC: NAMES ARE y1-y10;
NOBSERVATI ONS = 175;
NREPS = 10000;
SEED = 53487,
NCLASSES = 1,
GCLASSES = 1,
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PATM SS = y6 (.5) y7 (.5) y8 (.5) y9 (.5) y10 (.5);
PATPROB = 1;
SAVE = cfa2. sav;
ANALYSI S: TYPE = M XTURE M SSI NG,
ESTI MATOR = M,;
MODEL MONTECARLO:
YOVERALL%
f1 BY yl-y5*.8;
f2 BY y6-y10*. 8;
fl@a fa2a;
y1-y1l0*. 36;
f1 WTH f2*. 25;
MODEL :
YEOVERALL%
f1 BY yl-y5*.8;
f2 BY y6-yl0*. 8;
fia fa2a,;
y1-y10*. 36;
f1 WTH f2*. 25;
OUTPUT: PATTERNS TECH9;

Mplus Input File For The CFA Model With Non-Normal Continuous Factor Indicators
Without Missing Data

TI TLE: cfa3.inp non-normal, no m ssing
MONTECARLO! NAMES ARE y1-y10;

NOBSERVATI ONS = 265;

NREPS = 10000;

SEED = 53487,

NCLASSES = 1;

GCLASSES = 2;
SAVE = cfa3. sav;
ANALYSI S: TYPE = M XTURE;

ESTI MATOR = MLR;
MODEL MONTECARLO:

YEOVERAL L%

f1 BY yl-y5*.8;

f2 BY y6-yl0*. 8;

fia fa2a,;

y1l-y5*.36 y6-y10*9;

f1 WTH f2*. 95;

[C#1@ 2] ;

UCH1%

[fi@ f2@5];
fi@ f2@;

YCH2%

[fl@ f2@];

fial fa2@;
MODEL :

YOVERAL L%

f1 BY yl-y5*.8;
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f2 BY y6-y10*4;
fi@a fa2a;
yl-y5*.36 y6-y10*9;
f1 WTH f2*. 20;

[y6-y10*1. 42];
OUTPUT: TECH9;

Mplus Input File For The CFA Model With Non-Normal Continuous Factor Indicators
With Missing Data

TI TLE: cfad4.inp non-normal, mssing
MONTECARLC: NAMES ARE y1-y10;
NOBSERVATI ONS = 315;
NREPS = 10000;
SEED = 53487,
NCLASSES = 1,
GCLASSES = 2;
PATM SS = y6 (.5) y7 (.5) y8 (.5) y9(.5) y10 (.5);
PATPROB = 1,
SAVE = cfa4. sav;
ANALYSI S: TYPE = M XTURE M SSI NG
ESTI MATOR = MLR;

MODEL MONTECARLO:
YOVERALL %
f1 BY yl-y5*.8;
f2 BY y6-y10*. 8;
fl@a fa2a,;
yl-y5*.36 y6-y10*9;
f1 WTH f2*. 95;
[CHl@ 2];

YCH1L%

[fl@ f2@5];
fi@ f2@;

UCH2%

[fl@ f2@];
fi@a faa,;

YOVERALL %

f1 BY yl-y5*.8;

f2 BY y6-y10*4;
fial fa2@;

yl-y5*. 36 y6-y10*9;
f1 WTH f2*. 20;

MODEL :

[y6-y10*1. 42];
OUTPUT: PATTERNS TECH9;
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Mplus Input File For The Growth Model With Normally Distributed Continuous
Outcomes Without Missing Data Without A Covariate

TI TLE: growm hl.inp normal, no covariate, no m ssing
MONTECARLO: NAMES ARE y1-y4;

NOBSERVATI ONS = 40;

NREPS = 10000;

SEED = 53487,

NCLASSES = 1;

GCLASSES = 1;

SAVE = growt hl. sav;
ANALYSI S: TYPE = M XTURE;

ESTI MATOR = M,
MODEL MONTECARLO

YOVERAL L%

i BY yl-ya4@,;

s BY yl@ y2@ y3@ y4@s;

[y1-y4@];

[i*0 s*.2];

i *.5;

s*. 1;

i WTH s*0;

yl-ya*.5;

YCH1L%

[i*0 s*.2];
MODEL :

YOVERALL %

i BY yl-y4@,

s BY y1@ y2@ y3@ y4@;

[yl-y4@];

[i*0 s*.2];

i *.5;

s*. 1,

i WTH s*0;

yl-y4*.5;

UCH1%

[i*0 s*.2];
OUTPUT: TECHO;

Mplus Input File For The Growth Model With Normally Distributed Continuous
Outcomes Without Missing Data With A Covariate That Has A Regression Coefficient
Of 0.2 For The Slope Growth Factor

TI TLE: growh2.inp normal, covariate, no m ssing
MONTECARLO NAMES ARE yl1-y4 Xx;

CUTPO NTS = x (0);

NOBSERVATI ONS = 150;

NREPS = 10000;

SEED = 53487;

NCLASSES = 1;

16



ANALYSI S:

MODEL MONTECARLO:

MODEL :

OUTPUT:

GCLASSES = 1,

SAVE = growt h2. sav;
TYPE = M XTURE;
ESTI MATOR = M,;

YEOVERALL%

[x@]; x@,;

i BY yl-y4@,

s BY yl1@ y2@ y3@ y4@3;
[yl-y4@];

[i*0 s*.2];

i *.25;

s*. 09;

i WTH s*0;

yl-y4*.5;

i ON x*.5;
s ON x*. 2;

YCH1L%
[i*0 s*.2];

Y%OVERAL L%

i BY yl-ya4@,;

s BY y1@ y2@ y3@ y4@3;
[yl-y4@];

[i*0 s*.2];

i *.25;

s*. 09;

i WTH s*0;

yl-y4*.5;

i ON x*.5;
s ON x*.2;

UCH1%

[i*0 s*.2];
TECHO;

Mplus Input File For The Growth Model With Normally Distributed Continuous
Outcomes With Missing Data With A Covariate That Has A Regression Coefficient Of
0.2 For The Slope Growth Factor

TI TLE:
MONTECARL O

grom h3.inp normal, covari ate,

NAMES ARE y1-y4 Xx;
CUTPO NTS = x (0);
NOBSERVATI ONS = 250;
NREPS = 10000;

SEED = 53487;
NCLASSES = 1,
GCLASSES = 1;

17

nm ssi ng



M SSI NG = yl1-vy4;
SAVE = growt h3. sav;
ANALYSI S: TYPE = M XTURE M SSI NG,
ESTI MATOR = M;
MODEL M SSI NG
Y%OVERAL L%
[yl@2 y2@1.5 y3@1 y4@];
y2-y4 ON x@;
MODEL MONTECARLO:
YOVERAL L%
[x@]; x@,
i BY yl-y4@,
s BY yl1@ y2@ y3@ y4@3;
[yl-y4@];
[i*0 s*.2];
i *.25;
s*. 09;
i WTH s*0;
yl-y4*.5;

i ON x*.5;
s ON x*. 2;

YCH1%

[i*0 s*.2];
MODEL :

YOVERALL%

i BY yl-y4@,

s BY yl1@ y2@ y3@ y4@3;

[yl-y4@];

[i*0 s*.2];

i *.25;

s*.09;

i WTH s*0;

yl-y4*.5;

i ON x*.5;
s ON x*. 2;

YCH1L%

[i*0 s*.2];
OUTPUT: TECH9;

Mplus Input File For The Growth Model With Normally Distributed Continuous
Outcomes Without Missing Data With A Covariate That Has A Regression Coefficient
Of 0.1 For The Slope Growth Factor

TI TLE: growmh4.inp normal, covariate, no m ssing
MONTECARLGC: NAMES ARE y1-y4 x;

CUTPO NTS = x (0);

NOBSERVATI ONS = 600;

NREPS = 10000;
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SEED = 53487;

NCLASSES = 1,

GCLASSES = 1;

SAVE = growt h4. sav;
ANALYSI S: TYPE = M XTURE;

ESTI MATOR = M,;
MODEL MONTECARLO:

YEOVERALL %

[x@]; xd,

i BY yl-y4@,

s BY y1@ y2@ y3@ y4@;

[yl-y4@];

[i*0 s*.2];

i *.25;

s*.09;

i WTH s*0;

yl-y4*.5;

i ON x*.5;
s ON x*.1;

YCH1%

[i*0 s*.2];
MODEL :

YOVERALL %

i BY yl-y4@,

s BY y1@ y2@ y3@ y4@3;

[yl-y4@];

[1*0 s*.2];

i *.25;

s*.09;

i WTH s*0;

yl-y4*.5;

i ON x*.5;
s ON x*.1;

UCH1%

[i*0 s*.2];
OUTPUT: TECH9;

Mplus Input File For The Growth Model With Normally Distributed Continuous
Outcomes With Missing Data With A Covariate That Has A Regression Coefficient Of
0.1 For The Slope Growth Factor

TI TLE: grow h5.inp normal, covariate, nissing
MONTECARLG: NAMES ARE yl-y4 Xx;

CUTPO NTS = x (0);

NOBSERVATI ONS = 1025;

NREPS = 10000;

SEED = 53487;

NCLASSES = 1;
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GCLASSES = 1;
M SSING = yl-y4;
SAVE = growt h5. sav;
ANALYSI S: TYPE = M XTURE M SSI NG,
ESTI MATOR = M,;
MODEL M SSI NG
YOVERALL%
[yl@2 y2@1.5 y3@1 y4@];
y2-y4 on x@,;
MODEL MONTECARLO:
YOVERALL %
[x@]; x@,
i BY yl-y4@,;
s BY y1@ y2@ y3@ y4@3;
[yl-y4@];
[i*0 s*.2];
i *.25;
s*. 09;
i WTH s*0;
yl-y4*.5;

i ON x*.5;
s ON x*.1;

YCH1L%

[i*0 s*.2];
MODEL :

YOVERALL %

i BY yl-y4@,

s BY yl1@ y2@ y3@ y4@3;

[yl-y4@];

[i*0 s*.2];

i *.25;

s*.09;

i WTH s*0;

yl-y4*.5;

i ON x*.5;
s ON x*.1;

YCH1L%

[i*0 s*.2];
OUTPUT: TECH9;

20



APPENDIX 2

Mplus Output Excerpts For the CFA Model with Normally Distributed Continuous
Factor Indicators and No Missing Data

MODEL RESULTS

ESTI MATES S E M S E 95% %Sig
Starting Average Std. Dev. Aver age Cover Coeff
CLASS 1
F1 BY
Y1 0. 800 0.7963 0. 0707 0. 0697 0.0707 0.949 1.000
Y2 0. 800 0.7981 0.0712 0. 0698 0.0712 0.942 1.000
Y3 0. 800 0. 7962 0. 0708 0. 0697 0.0708 0.946 1.000
Y4 0. 800 0.7975 0.0708 0. 0698 0.0708 0.944 1.000
Y5 0. 800 0.7971 0.0704 0. 0698 0.0704 0.947 1.000
F2 BY
Y6 0. 800 0. 7959 0. 0706 0. 0697 0.0707 0.945 1.000
Y7 0. 800 0.7961 0. 0702 0. 0697 0.0702 0.950 1.000
Y8 0. 800 0. 7950 0.0701 0. 0697 0.0701 0.945 1.000
Y9 0. 800 0. 7969 0. 0710 0. 0698 0.0710 0.946 1.000
Y10 0. 800 0.7968 0. 0703 0. 0698 0.0703 0.946 1.000
F1 W TH
F2 0. 250 0. 2497 0. 0864 0. 0850 0.0864 0.942 0.812
Resi dual Vari ances
Y1 0. 360 0. 3551 0. 0523 0. 0513 0. 0523 0.934 1.000
Y2 0. 360 0. 3548 0. 0523 0. 0514 0. 0523 0.933 1.000
Y3 0. 360 0. 3546 0. 0529 0.0513 0.0529 0.929 1.000
Y4 0. 360 0. 3553 0. 0525 0.0514 0. 0525 0.931 1.000
Y5 0. 360 0. 3547 0. 0526 0.0513 0.0527 0.934 1.000
Y6 0. 360 0. 3548 0. 0516 0. 0513 0.0516 0.939 1.000
Y7 0. 360 0. 3545 0. 0524 0. 0513 0.0524 0.929 1.000
Y8 0. 360 0. 3548 0. 0520 0. 0513 0. 0521 0.934 1.000
Y9 0. 360 0. 3554 0. 0524 0.0514 0.0524 0.935 1.000
Y10 0. 360 0. 3550 0. 0525 0.0514 0. 0526 0.934 1.000
Vari ances
F1 1. 000 1. 0000 0. 0000 0. 0000 0. 0000 1.000 0.000
F2 1. 000 1. 0000 0. 0000 0. 0000 0. 0000 1.000 0.000
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TABLE1

Sample Size Requirements For The CFA Model

No Missing Missing
Normal 150 175
Non-normal 265 315




TABLE 2

Sample Size Requirements For The Growth Model

No Missing Missing
No Covariate 40 NA
Regression Coefficient .2 150 250
Regression Coefficient .1 600 1025
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Figure Captions

FIGURE 1 CFA Model.

FIGURE 2 Growth Moddl.
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FIGURE 1
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FIGURE 2
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